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Abstract 

Speaker embeddings, from the ECAPA-TDNN speaker verification network, were recently introduced as features 
for the task of clustering microphones in ad hoc arrays. Our previous work demonstrated that, in comparison to sig-
nal-based Mod-MFCC features, using speaker embeddings yielded a more robust and logical clustering of the micro-
phones around the sources of interest. This work aims to further establish speaker embeddings as a robust feature 
for ad hoc microphone clustering by addressing open and additional questions of practical interest, arising from our 
prior work. Specifically, whereas our initial work made use of simulated data based on shoe-box acoustics models, 
we now present a more thorough analysis in more realistic settings. Furthermore, we investigate additional impor-
tant considerations such as the choice of the distance metric used in the fuzzy C-means clustering; the minimal 
time range across which data need to be aggregated to obtain robust clusters; and the performance of the features 
in increasingly more challenging situations, and with multiple speakers. We also contrast the results on the basis 
of several metrics for quantifying the quality of such ad hoc clusters. Results indicate that the speaker embeddings are 
robust to short inference times, and deliver logical and useful clusters, even when the sources are very close to each 
other.

Keywords Acoustic sensor networks (ASN), Distributed microphone clustering, Microphone clustering metrics, Ad 
hoc speaker separation

1 Introduction
Many ‘smart’ devices carry at least one microphone. 
Typical examples are phones, smart watches and lap-
tops. There is also a trend towards the internet of things 
(IoT) and smart homes, increasing the number of micro-
phone-carrying devices scattered around a room. Sharing 
information from all these microphones, by forming an 
acoustic sensor network (ASN), can give a good acoustic 

coverage of a room/living environment. This can be 
exploited for tasks like acoustic event detection, classifi-
cation, and separation, in scenarios such as assisted living 
and healthcare, hearing aids, and communications (see, 
e.g.  [1]).

Since the microphones can be distributed all over the 
room, the spatial diversity is greater than that of a com-
pact microphone array (microphones in close proxim-
ity). However, combining the signals of such distributed 
microphones is not straightforward. Firstly, the micro-
phones may not be driven by the same clock, so sample 
rate offsets (SROs) and sample time offsets (STOs) may 
be present. The relative time delay between signals at dif-
ferent microphones is therefore no longer only an effect 
of the propagation delays. Additionally, if the ASN is 
connected via wireless links (WASNs), bandwidth and 
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processing power limitations are introduced. Further-
more, for portable microphone-carrying devices, the 
position of the microphones is not known a priori, and 
forming an ASN from such ad hoc distributed micro-
phones makes it even harder to perform localisation or 
separation.

In order to cope with the unknown microphone posi-
tions, it is often helpful to cluster microphones based 
on the similarity of the signals they capture. Thereby 
all microphones dominated by the same source may be 
expected to be grouped in the same cluster. Similar clus-
tering of microphones which primarily pick up the ambi-
ent signal or noise can be performed. Such clustering has 
already been proven valuable for subsequent steps like 
source classification (e.g.  [2, 3]) and separation (e.g.  [4, 
5]).

The clustering procedure consists of two main stages: 
(i) proper selection of acoustic features, upon which clus-
tering is carried out, and (ii) choosing an appropriate 
clustering algorithm. Below we first discuss prior work 
in this regard, before outlining the main contributions of 
our work.

1.1  Prior work
A variety of clustering features have been proposed in the 
literature. For example, the magnitude squared coher-
ence (MSC) between microphones on the noise-only part 
of the signal is used in  [4]. Assuming the noise field to 
be diffuse gives a direct relation between the noise-MSC 
and the inter-microphone distance. In a similar vein, the 
room impulse responses (RIRs) are first estimated for 
each microphone in  [6], and are subsequently used to 
cluster microphones. Such classes of techniques depend 
solely on the room properties to perform clustering.

In contrast, the MSC on the speech-active parts of the 
signal is utilised as cluster features in  [3]. This contains 
information about the RIRs and the content of the signal, 
thus both the room characteristics and signal correlation 
is exploited. Similarly, in  [7], the individual microphone 
auto-correlation of the source signal and the auto-corre-
lation of the noise signal are computed, where identifica-
tion of the noise and source regions is done with the help 
of voice activity detection (VAD). These yield source- 
and location-specific features, which are used for the 
clustering.

All the above-mentioned techniques are influenced 
by the room characteristics. These characteristics could 
be useful if geometry-related information is required, 
e.g. to estimate the position of the microphones in 
the room. This would however also require a prior 
calibration stage for different positions in the room, 
as done in  [8]. In contrast, features that are speech- 
or content-specific are useful to be able to focus on 

pre-determined targets (e.g. in care homes, where mon-
itoring of particular patients may be desired). Addi-
tionally, speaker-specific features can lead to a more 
targeted clustering, and without the need to first esti-
mate the room-acoustics.

Clustering based on purely signal-dependent features 
has, therefore, also been investigated. The work in  [2, 
5, 9, 10] proposed hand-crafted features, based on the 
modulation-domain Mel frequency cepstral coefficients 
(Mod-MFCCs), where mean subtraction reduces the 
effect of the room characteristics under the assumption 
that the source and microphone stay sufficiently static. 
In contrast, the work in [11] depends on data-driven fea-
ture extraction, where a variational auto-encoder (VAE) 
trained on all types of speech and music data is used 
within a federated learning framework. After training, 
the parameters of the bottleneck layer are randomised 
and the model is distributed to all the microphone nodes. 
During runtime, each node updates the bottleneck 
weights based on the captured signal, essentially over-
fitting on that signal. The accumulated gradients from 
multiple rounds of backpropagation are sent back to the 
central node and are used as cluster features. The advan-
tage of this appraoch is the privacy preservation of the 
speaker. However, the privacy constraint inevitably pre-
cludes the use case where speaker-specific processing is 
desired. Also, retraining the network at each node comes 
at a relatively high computational cost, which has been 
discussed and improved in [12].

Since the primary goal is to detect and cluster micro-
phones around speech sources, we introduced speaker 
embeddings —  representation of a talker in a high-
dimensional latent space — as features in  [13]. The 
embeddings are generated by a pre-trained speaker verifi-
cation network: the Enhanced Propagation and Aggrega-
tion Time Delay Neural Network (ECAPA-TDNN)  [14]. 
Since speaker verification should be robust to different 
room characteristics and perturbations, the embed-
ding network is trained with appropriately augmented 
data, yielding room-independent and yet source-specific 
embeddings, which serve well as clustering features.

For the clustering algorithm itself, we note that there 
are many approaches in the literature, e.g. K-means is 
used in  [6], non-negative matrix factorisation is uti-
lised in  [3], while matrix bi-partitioning is deployed in 
[11]. In contrast, fuzzy C-means (FCM) is incorporated 
in approaches based on the mod-MFCC features  [2, 5, 
10]. The fuzzy weights indicate the degree to which a 
microphone belongs to a cluster  — which is indirectly 
an indication of the strength of the target source at that 
microphone. Therefore, we also adopted FCM in our 
approach, as the fuzzy weights can be informative for 
later stages, like enhancing the source.
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This work builds on the initial results of [13]. The goal 
is to obtain a holistic overview of the opportunities and 
limitations of using speaker embeddings as clustering 
features for ad hoc distributed microphones. The main 
contributions of this work are outlined below.

1.2  Contributions
For the FCM clustering, the standard Euclidean distance 
was used in previous work, whereas speaker verification 
implementations typically use the cosine similarity, as the 
direction and orientation of the embeddings yield more 
discrimination. Therefore, as part of this work, we inves-
tigate the benefit of using the cosine distance in FCM-
based clustering.

Also, our initial comparison [13] of the speaker embed-
dings with the Mod-MFCC-based features was in simu-
lated shoe-box rooms. There it was shown that the 
embeddings generate more robust and visually logical 
clusters. It was also assumed that the sources to be sepa-
rated were sufficiently far apart and the feature extraction 
was on data aggregated across a relatively long time-span 
of 4 s. This initial study raised several interesting ques-
tions, which are handled in the current contribution, 
namely: (i) what is the effect of realistic room environ-
ments on the features? (ii) As mentioned above, what dis-
tance metric is best suited for the clustering? (iii) What 
happens if the sources were placed in close proximity? 
(iv) Does the time-scale of data aggregation affect the 
performance? And, last but not least, (v) can speaker-
embedding-based features be used to detect the pres-
ence of known talkers and only extract them in realistic, 
dialogue-like situations? We believe that answering these 
questions is important to obtain a full picture for practi-
cal implementations.

For realistic room environments, we employ the SINS 
database [15]. We systematically evaluate the perfor-
mance on distant- and closely-spaced sources. Next, we 
vary the duration of the segment on which the clustering 
features are generated. The former will generate insights 
into the robustness of the features under increased dif-
ficulty, while the latter indicates the feasibility of adapt-
ing to quickly changing environments (more frequent 
updates on shorter segments) or of scaling the complex-
ity (e.g. for bandwidth and power constraints) by updat-
ing less frequently and on shorter segments.

For quantitative appreciation of the results, a concept 
of cluster quality needs to be defined. However, this is 
not a trivial task, as generating the ground truth is not 
straightforward. Thus, we proposed three intuitive met-
rics in [13]: (I) the histograms of the direct-to-reverber-
ant and (II) direct-to-reverberant-interference-and-noise 
ratios (DRR and DRINR) of microphones attributed 
to a speech-source cluster (indicating the quality of the 

microphones allocated to a cluster), and (III) the average 
number of microphones in a speech-source cluster (indi-
cating spatial diversity available at a cluster). Additionally, 
we also benchmark on cluster-based speaker separation 
from [5]. With these metrics taken together, we obtain a 
more holistic performance overview.

The rest of the paper is structured as follows: in Sec-
tion 2, we will write out the signal model followed by a 
succinct explanation of the Mod-MFCC and speaker 
embedding-based features in Section  3. The FCM algo-
rithm is discussed in Section 4, followed by the speaker 
separation scheme for evaluation in Section 5. Section 6 
explains the different situations we evaluate, as well as 
the metrics we use to benchmark the clustering. The dis-
cussion of the results is done in Section 7, and Section 8 
concludes the paper.

2  Signal model
For our setup, we consider J concurrently active sources 
and M microphones distributed in the room. The mth 
microphone signal, ym , is given as:

where n is the discrete time index, xj,m is the source sig-
nal captured by the mth microphone and generated by 
the jth source, and vm symbolises the additive noise at the 
mth microphone.

In the following, we shall use the short-time Fourier 
transform (STFT) representation of the signal for pro-
cessing. The signal in this domain is denoted as:

where k is the STFT frame index and l is the index of the 
discrete frequency bin.

3  Clustering features
As previously mentioned, there are three major catego-
ries of feature types on which clustering has been per-
formed. The first set, based on estimating the relative 
locations of the microphones with respect to each other, 
is termed geometry-based features (GBFs). The second 
class of features exploits geometry and signal information 
and is termed as signal-based features (SBFs). The last set 
generates features that are source-specific and we term 
these source-dependent latent features (SDLFs).

GBFs extract information relating to the relative spatial 
distances between microphones. This can be obtained 
explicitly by estimating the RIRs ([6, 8]) or implicitly, 
using the coherence in the noise-only periods as in [4].

SBFs are computed by comparing signals across dif-
ferent microphones and typically contain information 

(1)ym(n) =

J

j=1

xj,m(n)+ vm(n),

(2)Ym(l, k) = STFT[ym(n)] ,
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on the acoustic environment and the source signals. The 
use of the MSC, as in [3, 7] are examples of such feature 
usage.

The use of SDLFs is based on the fundamental assump-
tion that signals from microphones close to the same 
source will generate similar latent features. Additionally, 
if the latent features are designed to be source discrimi-
nating, features characterising one source should be very 
different from those for other sources and the ambient 
noise. A seminal example here is the set of hand-crafted 
Mod-MFCC features proposed in  [9]. A data-driven 
approach to get SDLFs is proposed in  [11], which is 
based on the use of auto-encoders and federated learning 
principles.

Although the latter two methods try to focus on the 
source-specific characteristics, there will always be some 
influence of the room characteristics —  which reduces 
the discriminative capacity of these features. Therefore, 
we propose to use speaker verification networks to gener-
ate source-specific features, as these networks are trained 
to generate the same embedding for a speaker with rela-
tive robustness to the environmental conditions. Addi-
tionally, as the embeddings should be sufficiently unique 
in order to discriminate between different speakers, they 
can yield a robust indication of source dominance at a 
microphone — making them ideal for the application to 
ad hoc arrays.

Given our focus on demonstrating the benefits of 
source-specific features in ASNs, we limit ourselves to 
SDLFs in this study. Specifically, we use the Mod-MFCC 
features as a baseline for benchmarking speaker embed-
ding features. The federated learning framework is not 
considered due to its large computational cost and com-
plexity (multiple rounds of backpropagation are needed). 
Furthermore, in contrast to speaker embeddings, infor-
mation about specific talkers cannot be exploited within 
this framework — making it less versatile.

3.1  MFCC‑based features
The modulated Mel-frequency cepstral coefficients 
(Mod-MFCC) based features were first utilised in [2, 
9]. These hand-engineered features consist of two N
-dimensional cepstral modulation ratios (CMR) and one 
N -dimensional averaged modulation amplitude (AMA), 
where N  is the number of considered cepstrum bins.

We briefly summarise the computation of these fea-
tures as proposed in  [2] and subsequently denoted as 
FMFCC . First, the MFCC, YMFCC(η, k) are computed from 
the STFTs in (2). Here, η is the cepstral index. Cepstral 
mean subtraction (CMS) is applied to reduce the effect of 
reverberation, resulting in features that better capture the 
speech structure [16, 17].

The Mod-MFCC is then calculated as the DFT of the 
MFCC features with a rectangular window of length L:

where � ∈ {0, · · · ,�− 1} is the modulation index, Q the 
modulation shift and κ ∈ {0, · · · , L/2} is the modula-
tion frequency bin. Averaging the modulation ampli-
tude spectra, |YMod−MFCC(κ , η, �)| , over time is done in 
order to be robust against time shifts that are expected 
in ASNs:

Then the cepstral modulation ratio (CMR) features 
and averaged modulation amplitude (AMA) features are 
defined as:

The final MFCC-based feature vector is then: FMFCC 
= [AMA

T , CRMT
1|1, CRM

T
2|8]

T , where AMA , CRM1|1 
and CRM2|8 are N -dimensional column vectors. The first 
cepstral bin is omitted ( η ∈ {1, · · · ,N } ) to reduce sensi-
tivity to the amplitude of the signals.

3.2  Speaker verification‑based features
Speaker embeddings refer to the representation of a 
talker in a high-dimensional latent space. In speaker 
verification tasks, such embeddings are used to test if 
two audio utterances are spoken by the same person. 
For this, embeddings extracted from the utterances are 
compared using a similarity metric that is appropriate 
to the embedding extractor architecture. The utterances 
are accepted as coming from the same speaker if the 
similarity exceeds a predetermined threshold. Applied 
to our case, such embeddings, extracted from the indi-
vidual microphone signals, can similarly be compared 
— whereby microphones dominated by the same speaker 
would yield embeddings that are near identical.

The embedding features are generated by the recent 
Emphasized Channel Attention, Propagation and 

(3)

ỸMFCC(η, k) = YMFCC(η, k)−
1

K

K−1
∑

k=0

YMFCC(η, k) .

(4)

YMod−MFCC(κ , η, �) =

L−1
∑

L=0

ỸMFCC(η, �Q + l)e−j2π lκ/L
,

(5)ŶMod−MFCC(κ , η) =

�−1
∑

�=0

|YMod−MFCC(κ , η, �)| .

(6)CRMκ1|κ2(η) =

∑κ2
κ=κ1

ŶMod−MFCC(κ , η)

(κ2 − κ1 + 1)ŶMod−MFCC(0, η)
,

(7)AMA(η) =
1

L/2+ 1

L/2
∑

κ=0

ŶMod−MFCC(κ , η) .
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Aggregation Time Delay Neural Network (ECAPA-
TDNN) [14]. ECAPA-TDNN improves upon the popu-
lar x-vector architecture [18] by introducing several 
enhancements. First, an attentive statistics pooling 
layer is incorporated into the network which empha-
sises important frame- and channel-level features dur-
ing the statistics pooling operation. Additionally, a 
speech-adapted version of Squeeze-Excitation (SE) [19] 
is introduced to inject global context in the intermediate 
frame-level features of the model. Finally, multi-layer fea-
ture aggregation before the pooling layer gives the model 
the opportunity to incorporate information learned 
from multiple levels in the network. The ECAPA-TDNN 
model is optimised using the Additive Angular Margin 
(AAM) [20] softmax loss function. This enables us to 
also consider the cosine similarity as the similarity metric 
for comparing two embedding vectors. We use the same 
training procedure as described in [14].

The embedding features, FSpVer , extracted for 
each microphone, are directly input to the clustering 
algorithm.

4  Fuzzy C‑means clustering
We use, similar to Gergen et  al. [2], the fuzzy C-means 
(FCM) algorithm to cluster the microphone features. 
FCM is closely related to the K-means algorithm, with 
the main difference being the fuzzy membership val-
ues (FMV) included in FCM. K-means generates hard 
clusters where a microphone is either part of the clus-
ter or not. However, the FMVs, which reflect how much 
a microphone belongs to each cluster, are useful for 
subsequent processing. It can for instance be used to 
determine the reference microphone, or indicate that 
certain sources, although part of one cluster, also con-
tains information about another cluster. The first is use-
ful in estimating initial speaker separation masks [10], 
while the latter can reasonably increase the number of 
microphones to be included in beamforming efforts [5]. 
Additionally, the FMV can be used to inform a weighted 
delay-and-sum beamformer (DSB) [5]. These separation 
methods will be discussed in more detail in Section 5.

In general, we will generate C = J + 1 fuzzy clusters. 
That is, one cluster for each source and one background 
(noise) cluster. The background cluster ideally collects all 
the microphones dominated by noise or reverberations, 
thus assuring that each microphone from a source cluster 
is dominated by that source.

4.1  FCM algorithm
The FCM algorithm minimises the following weighed 
error function [21]:

where µm,c are the FMVs, δ(Fm,Cc) is the distance met-
ric between the features of microphone m and the cth 
cluster centre Cc , and α is the fuzzy weighting exponent. 
Putting α to 1 will result in hard clusters, while setting 
α → ∞ will results in µm,c → 1/C ; thus, a bigger α will 
result in fuzzier clusters. Typically, 1 ≤ α ≤ 2.

The minimisation of (8) is accomplished by iteratively 
updating the cluster centres and FMVs with the following 
functions:

4.2  Distance metrics
Whereas previous works primarily used the standard 
Euclidean distance metric:

with ‖.‖2 is the ℓ2 norm of a vector, we investigate, here, 
the cosine distance as well:

This choice of similarity metric also derives from 
work on speaker verification. For speaker embeddings 
extracted by the ECAPA-TDNN, the closeness of two 
embedding vectors is related chiefly to their direction and 
orientation because of the AAM loss function used. In a 
similar manner, since the mod-MFCC features should 
ideally be scale-invariant, the cosine distance is applica-
ble here as well and, as we demonstrate, turns out to be 
more discriminative.

5  Cluster‑based source separation
The separation framework used here is identical to 
that described in  [5, 10]. The main steps are as follows: 
first, we obtain an initial estimate of the target source in 
each cluster by means of time-frequency masking (Sec-
tion  5.1). These initial estimates are then used to time-
align the microphone signals in the respective clusters. 
Following, a simple delay-and-sum beamforming (DSB) 
is applied to compute the enhanced target signal for the 
cluster (Section 5.2). Additionally, the fuzzy membership 

(8)L =

C−1
∑

c=0

M−1
∑

m=0

µα
m,cδ(Fm,Cc)

(9)Cc =

∑M−1
m=0 µ

α
m,cFm

∑M−1
m=0 µ

α
m,c

(10)µm,c =

(

C−1
∑

c̃=0

(

δ(Fm,Cc)

δ(Fm,C c̃)

)2/(α−1)
)−1

(11)δEuclid(Fm,Cc) = ||Fm − Cc||
2
2

(12)δCos(Fm,Cc) = 1−
F

T
mCc

||Fm||2||Cc||2
.



Page 6 of 20Kindt et al. EURASIP Journal on Audio, Speech, and Music Processing         (2023) 2023:46 

values will be exploited to perform a weighted delay-and-
sum beamformer, termed fuzzy membership value aware 
DSB (FMVA-DSB) (Section  5.3). As the last step, the 
improved source estimates are used to compute a post-
filter (Section  5.4), which is applied to the beamformed 
signals for additional noise and interference suppression. 
These steps are schematically depicted in Fig. 1

While this is a relatively simple framework, it is still 
insightful because the quality of the speaker separation 
is directly correlated with the cluster quality. Addition-
ally, it allows a straightforward possibility to include 
the fuzzy membership values within the framework — 
which gives more insight into the clustering. This makes 
the framework a good tool for evaluating the clustering. 
Note that this does not gainsay the importance of more 
sophisticated methods, e.g., using cross channel corre-
lations  [22, 23] to statistically optimise the separation. 
Only, this is not fully relevant to the scope of the current 
study (improving the clustering), and can be tackled in 
future work. We can reasonably expect a good clustering 
to improve the performance of the more sophisticated 
methods as well.

5.1  Initial source estimation
The time-frequency (T-F) masks — M(l, k)  — used for 
the initial estimate are obtained based on the empiri-
cally validated assumption that localised speech sources 
are approximately W-disjoint in their STFT representa-
tion [24]. In order to compute this mask, we assume the 

amplitude at T-F bins from microphones close to the 
target sources is greater than the amplitude of the micro-
phones close to other sources or the background micro-
phones. Thus, if we choose a reference for each source, 
we can compare their amplitudes to obtain a rough indi-
cation of which T-F bins are dominated by which source. 
By including information from the reference microphone 
allocated to the background cluster additionally helps to 
suppress reverberation and noise in the initial estimate.

We can directly use the FMVs to select the reference 
microphone Y ref

c (l, k) of each cluster c. This is simply 
done by selecting the microphone with the highest fuzzy 
value for that cluster:

Now that we have chosen a reference signal for each 
cluster, the respective binary mask, Mc(l, k) , is obtained 
by comparing the amplitude of each T-F bin of the refer-
ence signals:

Here, we have introduced the averaging parameter B 
which, while not required for conventional binary mask-
ing, is necessary for the ASN setting. This is because the 

(13)

Y ref
c (l, k) = Ym(l, k) if µm,c > µm̄,c ,

∀m̄ ∈ {0, · · · ,M − 1}, m̄ �= m

(14)

Mc(l, k) =







1 |Y ref
c (l, k)| > 1

B

�

l

b=l−B+1 |Y
ref
c̄

(b, k)|,

∀c̄ ∈ {0, · · · ,C − 1}, c̄ �= c

0 else .

Fig. 1 Scheme for clustering and cluster based source separation. Features (either Mod-MFCCs or speaker embeddings) extracted 
from the microphone signals are used to cluster the microphones. Inter- and intra-cluster information is then exploited to extract the sources 
dominant in each speech cluster. Yellow blocks indicate stages at which speaker separation can be performed — and which we use for evaluation. 
These consist of initial masking, delay and sum beamforming (DSB), fuzzy membership value aware DSB (FMVA-DSB) and postfiltering one 
of the DSB outputs. The dotted box is a condition that is not included in the tabulated results
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inter-microphone delay for a source is non-negligible 
compared to the STFT length and frameshift due to the 
much larger microphone spacings. These delays induce 
jitter in the STFT amplitudes, and consequently would 
do the same to the masks without averaging.

The obtained masks of a cluster c can then be applied 
to the microphone signals to get the source estimate 
X̂Mask
m,c (l, k) of that cluster:

5.2  Mask‑based delay‑and‑sum beamforming
The mask can already extract the corresponding source 
from the mixture at each microphone. However, masks 
are inherently non-linear operations and combined with 
the crude definition of the initial mask results in sub-par 
quality and intelligibility of the masked signals. A bet-
ter signal estimate can be obtained by a simple delay and 
sum beamformer. In contrast to compact microphone 
arrays, the inclusion of more microphones does not nec-
essarily improve the separation capability of the beam-
former  [4]. Therefore, only microphones with sufficient 
target dominance should be considered — and this infor-
mation is reflected in the FMV.

Thus, to attribute microphones to a cluster, we trans-
form the fuzzy clusters into hard partitionings based on 
the FMV. A microphone m is allocated to cluster c if:

We will denote the corresponding signal as ym,c , and 
Mc the number of microphones in cluster c.

To compensate for the inter-microphone delays, we 
first have to estimate these. For this, the masks, Mc(l, k) , 
are applied to all the microphone signals of the respective 
cluster —  yielding an initial estimate of the underlying 
source signal of that cluster. The delay τ̂m,c with respect to 
the reference microphone of cluster c is then computed 
from these estimates by simple correlation analysis. 
Time-alignment is then performed on the unprocessed 
microphone signals ym,c , following which the DSB is 
computed for cluster c:

Note that the original microphone signals, and not the 
masked signals, are used in  (17) since we do not want 
the distortions caused by the masks in the beamformer 
output.

5.3  FMV‑aware delay‑and‑sum beamforming
As an extension to the DSB, [5] proposed a fuzzy mem-
bership value aware DSB (FMVA-DSB). This better 

(15)X̂Mask
m,c (l, k) = Mc(l, k) Ym(l, k)

(16)µm,c > µm,c̄, ∀c̄ ∈ {0, · · · ,C − 1}, c̄ �= c .

(17)x̂DSBc (n) =
1

Mc

∑

m

ym,c(n− τ̂m,c) .

exploits the information given by the FCM where, ideally, 
the microphones best capturing a source will have high 
FMV for that source cluster. Thus, the FMVA-DSB out-
put is obtained by a straightforward modification of (17) 
to yield the weighted sum:

Note that despite the soft weighting applied in  (18), 
the ym,c are still only the signals of microphones that are 
‘hard-clustered’ to cluster c.

5.4  Postfiltering
Similar to the initial mask, a binary mask can be com-
puted to remove leftover interference and noise. This is 
particularly useful for the lower frequencies since those 
are hard to improve with simple beamforming. The post-
filter is computed on the output of the DSB (or FMVA-
DSB) as follows:

where X̂B
c (l, k) is the STFT representation of the beam-

formed signal at source cluster c. This postfilter is sub-
sequently applied to the beamformed signal in a similar 
manner to (15).

6  Experimental study
6.1  Focus of the study
Our prior work demonstrated the benefit of speaker 
embeddings for microphone clustering using simu-
lated scenarios based on shoe-box acoustic models. This 
served as a proof-of-concept study, and raised the follow-
ing interesting questions: 

 Q1. What is the clustering performance in realistic 
room environments (speakers of varying loudness, 
real room responses,...)?

 Q2. What is the effect on the choice of the distance 
metric used in the clustering?

 Q3. How does the clustering performance degrade as 
the sources are in closer proximity?

 Q4. How does the time-scale of data aggregation affect 
the performance?

 Q5. Given that speaker-embeddings are talker-specific, 
can this be exploited to detect known talkers and 
only extract them in realistic, dialogue-like situa-
tions?

These are addressed through the experimental evaluation.

(18)

x̂FMVA-DSB
c (n) =

1
∑

m µm,c

∑

m

µm,c ym,c(n− τ̂m,c) .

(19)

M
Post
c (l, k) =







1 |X̂B
c (l, k)| >

1
B

�

l

b=l−B+1 |X̂
B
c̄
(b, k)|,

∀c̄ ∈ {0, · · · ,C − 1}, c̄ �= c

0 else ,
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6.2  Realistic setup — SINS database
For the evaluations, we make use of the realistic room 
impulse responses (RIRs) available in the SINS database 
[15]. This database is based upon the apartment layout 
and properties of the apartment used in  [25], which is 
depicted in Fig. 2. As can be seen, there is a big living 
area (with an open kitchen), a bedroom, a bathroom, 
a toilet and a hall. The total floor area is 50m2 . CATT-
Acoustic with cone-tracing [26] is used to compute the 
RIRs for different combinations of source and micro-
phone positions. This is an important step towards vali-
dation of the system in real world settings, and a step 
up from shoe-box acoustics used in our previous work. 
In turn, this might validate the usefulness of shoe-box 
simulation as an evaluation setup if the results stay 
consistent!

To better interpret the performance of the system, 
we split the scenarios into two sets based on the inter-
source distance. The first set of scenarios — designed to 
answer Q1 — is a direct parallel to what we previously 
did using shoe box acoustics. The scenario only selects 
sources and microphones from within the living (and 
kitchen) area, where one source is in the left half of the 
room, and another one in the right half. For maximum 
interpretability, we avoid cases where the critical dis-
tance regions of the sources can overlap.

The second set of scenarios increases the difficulty of 
microphone-cluster assignment by bringing the sources 

closer to each other. In this setting, sources are sepa-
rated by at most three times the critical distance of the 
room, while the minimum distance is limited by the 
dataset to 0.4m. Since the critical distance of the room is 
dcrit = 0.68m , the critical distance regions of the sources 
will overlap. The performance in such situations will pro-
vide us with an answer to Q3.

In both scenarios, we shall test the Euclidean metric as 
well as the cosine distance metric — the point of Q2.

To answer Q4  — how the segment length for feature 
extraction influences the resulting clusters  — we will 
revert to the first set of scenarios, to reduce the influence 
of other factors. We will take 4 s as our baseline, consist-
ent with prior work in the literature, and benchmark the 
performance here against segment lengths of 2,  1 and 
0.5 s.

Lastly, for Q5, we incorporate a known speaker embed-
ding into the clustering algorithm. For this, we generate 
a scenario where the interfering speaker is constantly 
active, whereas the known speaker is active only for 
a short time in the middle of the scenario. Since the 
speaker is known, we initialise one cluster centre using 
the pre-computed speaker embedding of the known 
speaker. While the target source is inactive, we should 
ideally have an empty cluster for this source, while the 
cluster should be populated by microphones during the 
period of source activity.

For each scenario, there are 200 different settings with 
M = 16 microphones distributed across the room, and 
the presence of J = 2 sources for each setting. Further-
more, we ensure that at least 3 microphones are picked 
from within the critical distance of each source, while the 
locations of the other 16− 3J  microphones are chosen at 
random.

The database consists of four-element microphone 
array nodes. Since we consider individually distributed 
microphones, we only pick one microphone from each 
node. We do, however, select a random microphone in 
order to increase the diversity in the scenarios.

6.3  Audio data
The LibriSpeech corpus [27] is chosen for the dry speech 
sources in the experiments. In line with previous work 
([28]): signals of 10 s are selected from the train-clean-100 
LibriSpeech subset, where a voice activity detector is 
used to verify the presence of speech in the selected seg-
ments. The corpus contains recordings of different speak-
ers and at different amplitudes. We do not normalise the 
utterances to equal levels — thus allowing for combina-
tions of speakers where one speaker can be up to 12 dB 
louder than the other.

Fig. 2 SINS room for a specific scenario. The solid dots indicate 
the location of the two sources, while the crosses are the microphone 
positions. The green circles indicate the critical distance region 
for each source ( dcrit = 0.68m for the room).
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The ECAPA-TDNN is trained on the Voxceleb 1 and 
2 database  [29], where audio of around 7250 celebrities, 
and in different environmental settings, is scraped from 
YouTube. Thus, it is trained on completely different data 
than that used in the evaluation.

6.4  Parameter settings
All audio signals are sampled at 16 kHz. A von Hann 
window of length 512 samples (32 ms) and window shift 
of 160 samples (10 ms) is applied before computing 
the STFT representations. The MFCC parameters are: 
L = 16 and Q = 8 . Discarding the zeroth MFCC-bin, we 
take the first N = 13 elements, resulting in a 39-dimen-
sional feature vector FMFCC.

The speaker verification feature FSpVer length is 192. 
However, we note that a longer feature vector does not 
necessarily lead to more informative features for the 
Mod-MFCC feature representation. The averaging fac-
tor B for the mask computation in  (14) and (19) is set 
to 5. For clustering, we use the fuzzy C-means python 
package [30].

6.5  Evaluation metrics
Defining good performance metrics that can quantify the 
clustering quality is not straightforward as it is difficult to 
define a ground truth.

Attempts have been made to generate ground truths 
with the help of oracle knowledge of either microphone-
source distances [4, 6] or the RIRs [3]. However, the for-
mer fails to convey the full picture regarding the signal 
mixing (it considers strictly circular boundaries without, 
e.g., accounting for the sound propagation along indirect 
paths). Using the oracle RIRs for the ground truths does 
solve the problem of creating non-circular boundaries, 
but is not easily adaptable to include background clusters 
or variations in signal levels.

Generating such ground truths also has the disad-
vantage of forcing hard cut-offs —  which does not 
well-describe the soft transition between clusters. The 
normalised cluster-centroid-to-source distance metric 
used in  [9] does give more informative results in that 
sense. However, it also does not convey the full picture of 
the signal mixture (e.g. if one source speaks louder than 
the other one), and thus assumes that a circular distribu-
tion around the target speaker is the ideal result.

Therefore, we proposed 3 additional metrics in  [13], 
which should provide an intuitive means of quantifying 
the clustering. This is briefly discussed in Section  6.5.1. 
We also note that an indirect way to evaluate the cluster 
quality is by evaluating the performance of the subse-
quent tasks, e.g. [2] evaluates the performance based on 
the results of a gender classification task. In this paper, 

we evaluate the clusters based on standard instrumental 
metrics for speaker separation, which will be explained in 
Section 6.5.2.

6.5.1  Metrics to evaluate clustering quality
The goal of our 3 alternative metrics is to allow an intui-
tive interpretation of the clustering performance. Since 
the underlying aim is source separation, a clustering that 
favours microphones with a strong direct-path compo-
nent and a good signal to interference and noise ratio 
would be desirable. Accordingly, we compute (i) the 
direct-to-reverberant ratio (DRR) and (ii) the direct-to-
reverberant, interference, and noise ratio (DRINR) for 
each microphone m allocated to a speech-source cluster. 
To this end, we split source signal xj,m(n) into the direct 
path component xdirj,m and the reflections xrevj,m:

Then the DRR and DRINR are defined as follows:

Subsequently, we plot the distribution of these val-
ues. A distribution centred around high DRRs and 
DRINRs values indicates that the clustering selects only 
those microphones with relevant information about the 
speaker of that cluster. Lastly, the third metric indicates 
the amount of spatial diversity available from the cluster-
ing. This is computed as the average number of micro-
phones allocated to a speech cluster.

6.5.2  Source separation metrics
As previously noted, clustering quality is indirectly 
reflected by performance in the subsequent tasks. Here, 
we use source separation metrics for this purpose, under 
the reasonable assumption that good clusters would lead 
to good source separation. We consider 3 standard and 
widely used instrumental metrics for source separa-
tion: the first is the source-to-interference ratio (SIR), as 
defined by [31]. This is an important metric for the initial 
masks since the masked signals are used to estimate the 
TDOA for subsequent delay compensation in the DSBs. 
After applying the initial masks, it is crucial that only the 
target source is present for a correct TDOA estimation.

However, interference and noise suppression is only 
a part of the story. We also use the short-time objective 
intelligibility (STOI)  [32] and the perceptual evaluation 

(20)xj,m(n) = xdirj,m(n)+ xrevj,m(n).

(21)DRR =

∑

n(x
dir
c,m(n))

2

∑

n(x
rev
c,m(n))

2
and

(22)DRINR =

∑

n(x
dir
c,m(n))

2

∑

n(ym(n)− xdirc,m(n))
2
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of speech quality (PESQ)  [33]) metrics to quantify the 
target-attenuation.

7  Results and discussion
7.1  First set of scenarios — sources far apart
The results are plotted in Figs. 3, 4, 5 and Table 1. We first 
take a look at the results for the Euclidean distance only, 
since that corresponds with the results for the shoe-box 
acoustics presented in [13]. Here, we see fairly similar 
patterns: in Fig.  3, the notched box-plots show that the 
speaker verification features lead to better speaker sepa-
ration metrics, with statistical significance at the median 
level. This is true for all separation methods (x-axis) and 
evaluation metrics (subfigures). Figures  4a and 5a also 
show that the Mod-MFCC features tend to include more 
microphones with relatively low source dominance (low 
DRR and DRINR). In contrast, the histogram plots for the 
speaker embeddings are narrower and include a larger 
number of microphones with relatively high DRRs and 
DRINRs, suggesting that using the speaker embeddings 
allows the clustering to find more useful microphones. 
Additionally, Table  1 also indicates that the cluster size 
when using speaker embeddings is larger than that using 
mod-MFCC features. This combination of a larger num-
ber of microphones which have, on average, better source 
dominance (high DRR and DRINR), indeed makes it pos-
sible to improve separation — which is seen in the sepa-
ration metrics. For comparison, the metrics computed on 
the reference microphone for each cluster is also plotted 
(first column).

Interestingly, when using the cosine distance metric, 
the performance of the Mod-MFCC features improves 
greatly and the separation performance becomes compa-
rable to the separation performance when using speaker 
embedding based features. The improvement is less evi-
dent for the speaker-embedding based features. The 
DRR and DRINR distributions in Figs.  4b and 5b indi-
cate, the speaker embeddings in combination with the 
cosine distance yield ever so slightly narrower histograms 
compared to using the Euclidean distance. This may be 
verified more straightforwardly from the DRINR histo-
grams for Euclidean and cosine distance in Fig. 6. Thus, 
the tendency is towards the selection of fewer lower-qual-
ity microphones for each source cluster. This improved 
microphone selection translates to, similarly, a slightly 

Fig. 3 Performance metrics (SIR, PESQ, STOI) showing the separation 
effectiveness of the cluster feature types (colours) and method (x-axis) 
for the first set of scenarios, where the sources are always sufficiently 
far apart. For this and the other scenarios, some audio examples are 
available at https:// users. ugent. be/  sbkin dt/ EURAS IP_ ASN/

https://users.ugent.be/%7esbkindt/EURASIP_ASN/
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better separation performance, visible in Fig.  3, where 
there are fewer outliers and a more compact boxplot.

When comparing the average number of microphones 
per source cluster (Table 1), there are fewer microphones 
on average when using the cosine distance. However, the 
DRR and DRINR distributions indicate that the micro-
phones that are omitted are mostly of lower quality.

In general, we can conclude that for this set of sce-
narios, the cosine distance metric is better than the 

Euclidean distance. The improvement is most marked for 
Mod-MFCC based features. The combination of cosine 
distance and Mod-MFCC based features yields clusters 
with separation performance comparable to that using 
speaker embedding based features. Also, we obtain the 
same trends in performance in this realistic setting as we 
obtained using the simulated (shoe-box acoustics) rooms.

7.2  Second set of scenarios — sources in close proximity
The results for this more challenging setting are pre-
sented in Figs.  7, 8, and  9 and Table  2. Bringing the 
sources closer, unsurprisingly, makes the clustering 
harder. While the separation performance using speaker 
embedding features still outperforms the mod-MFCC-
based features, all speaker separation metrics are lower 
than for the first scenario. SIRs are even, sometimes, 
below 0 dB. However, since the sources can have differ-
ent signal amplitudes, it is possible that for such close 
sources, one source dominates, making it nearly impos-
sible to separate those with the chosen simple separation 

Fig. 4 DRR histograms with a the Euclidean distance or b the cosine distance for the first set of scenarios. In this set, the sources are located quite 
far apart. The DRRs are computed only for microphones that are part of a source cluster

Fig. 5 DRINR histograms with a the Euclidean distance or b the cosine distance for the first set of scenarios. In this set, the sources are located quite 
far apart. The DRINRs are computed only for microphones that are part of a source cluster

Table 1 Average number of microphones per source cluster and 
choice of distance metric. Results for the first set of scenarios, 
where the sources are placed relatively far from each other. The 
larger the number of microphones, the more the spatial diversity 
available for a cluster

Euclidean Cosine

MFCC 4.64 4.57

SpVer 4.84 4.76
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scheme. This highlights the importance of more sophisti-
cated separation approaches.

One interesting observation on the speaker separation 
metrics is that the cosine distance seems to give a signifi-
cant improvement over the Euclidean distance, and for 
both sets of features. This is most prominent for the ini-
tial mask estimate, which indicates that using the cosine 
distance yields a better reference microphone for each 
cluster.

The histograms in Figs.  8 and 9 tell a similar story, 
where the speaker embedding features select more use-
ful microphones. Nevertheless, it is instructive to zoom 
in on the region of less than ideal microphones (− 10 dB 
DRR and lower) in Fig.  8a. There, the DRR histogram 
would suggest that the Mod-MFCC features lead to a 
better microphone allocation than the speaker embed-
dings. However, when looking at the DRINR distribution 
in Fig. 9a, the conclusions seem to be reversed. This indi-
cates that the speaker embeddings are better at incor-
porating information about the target and interference 
speaker for the clustering, rather than only the distance 
of a microphone to the target speaker (which is likely 
what the Mod-MFCC based features focus on). Note 
that this is mainly for the Euclidean distance metric. The 
results are more consistent when using cosine similarity. 
Additionally, Fig. 10 does demonstrate a clear benefit of 
the cosine distance in combination with speaker embed-
dings, making the cosine distance more beneficial in situ-
ations where the sources are close compared to situations 
where the sources are distributed further apart in the 
room (Fig. 6).

Table  2 shows that for the Euclidean distance, a simi-
lar conclusion as for the previous sections is applica-
ble: speaker verification features generate slightly larger 

clusters, and of higher quality (seen from the DRR and 
DRINR histograms). For the cosine distance, the number 
of microphones does not significantly change between 
the choice of features. Again, the number of microphones 
decreases when using the cosine distance, but it is mainly 
the lower quality microphones that are removed (conclu-
sion from the DRINR plots in Fig. 9).

7.3  Effect of segment length
Figures  11, 12, and  13 and Table  3 show the impact of 
shortening the length of the segment of the signal given 
to the feature extractors. The experiments were carried 
out for the same set of scenarios as Section 7.1 and using 
only the cosine similarity, since it yielded the best results 
in the previous experiments.

For the Mod-MFCC features, the clusters consist-
ently degrade as the segment lengths decrease and more 
drastically for lengths of 1 s and 0.5 s. In contrast, for the 
speaker embedding features, the segment length seems to 
have only a marginal impact on the clustering capability, 
even for the short length of 0.5 s. This is further visible 
in both the DRR and DRINR distributions, where those 
for the speaker embeddings have only a very slight shift 
towards lower DRRs and DRINRs, while for the MFCC-
based features, the shift is marked, becoming increas-
ingly prominent for shorter evaluation lengths.

The same effect is visible in the speaker separation 
metrics in Fig.  11: the performance of the Mod-MFCC 
based features again starts dropping with lower segment 
lengths. In contrast, the performance of the embedding 
based speaker separation stays quite consistent.

In terms of the average number of microphones per 
cluster  — this does not drastically change for different 

Fig. 6 DRINR histograms of the first set of scenarios (sources are far) for the speaker embedding based clustering. The DRINRs are computed 
only for microphones that are part of a source cluster



Page 13 of 20Kindt et al. EURASIP Journal on Audio, Speech, and Music Processing         (2023) 2023:46  

Fig. 7 Performance metrics (SIR, PESQ, STOI) showing the separation effectiveness of the cluster feature types (colours) and method (x-axis) 
for the second set of scenarios, where the sources are maximally separated by three times the critical distance
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evaluation lengths for the speaker embeddings, while for 
the Mod-MFCC, the number of microphones increase. 
This larger cluster mainly contains microphones with a 
poor signal to interference-and-noise ratio (visible in the 
DRINR histogram Fig. 13a), which negatively impacts the 
separation performance.

This leads us to the satisfactory conclusion that 
speaker embeddings computed on short segments still 
yield robust features for clustering ad hoc distributed 

microphones. This can be utilised to lower the compu-
tational complexity (less frequent updates of the cluster 
and feature extraction on short segments). Alternatively, 
the robustness of the features to shorter segment lengths 
can be exploited to quickly adapt the clustering in more 
dynamic scenarios.

7.4  Known speaker embedding
Having shown the general robustness of the speaker 
embedding features, applied to the task of clustering 
ad hoc distributed microphones, we focus on inves-
tigating whether these features can be exploited to 
focus on only a desired subset of speakers, which are 
known a priori. We only show one example for this sce-
nario — more as an empirical proof-of-concept. Since 
the scenario is dynamic, we use shorter evaluation seg-
ments of length 2 s. Figure 14 shows the results for this 
scenario.

Fig. 8 Histograms of DRR with a the Euclidean distance or b the cosine distance for the second set of scenarios. In this set, the sources are 
separated by at most three time the critical distance. The DRRs are computed only for microphones that are part of a source cluster

Fig. 9 Histograms of the DRINR with a the Euclidean distance or b the cosine distance for the second set of scenarios. In this set, the sources are 
separated by at most three time the critical distance. The DRINRs are computed only for microphones that are part of a source cluster

Table 2 Average number of microphones per source cluster and 
choice distance metric for the second set of scenarios, where the 
sources are placed in close proximity to each other

Euclidean Cosine

MFCC 4.54 4.39

SpVer 4.64 4.34
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In the first and last part (Fig.  14a and c), where only 
the interferer is active, there is an empty source clus-
ter for the target source. The FCM generates two other 
cluster centres that model the interfering source and the 
background characteristics. Note that in these periods 
it is desirable that the microphones close to the inactive 
speaker are grouped in the background cluster. During 
the period when the target source is active, the features 
extracted from microphones close to the source match 
the known-speaker embedding (which is used to initialise 
the cluster centre for this source) and the FCM faithfully 
attributes the appropriate microphones to this source — 
as can be seen in Fig. 14b. This demonstrates, in addition 
to robustness, the ability to induce microphone cluster-
ing in a speaker selective manner. This constitutes an 
additional benefit of using embeddings as clustering fea-
tures. Such behaviour would not be straightforward to 
implement using other features, e.g.  those purely based 
on room characteristics.

8  Conclusions
Our prior work, which introduced speaker embeddings 
as robust features for clustering ad hoc distributed micro-
phones, raised several interesting follow-up questions 
that were addressed in this paper. Firstly, we evaluated 
the performance of speaker embedding features in realis-
tic settings and demonstrated similar trends as previously 
reported using simulations based on shoe-box acoustics 
models. Next, the effect of the distance metric used in the 
clustering algorithm was investigated and it was shown 
that the cosine distance offers more discriminative clus-
tering compared to the Euclidean metric used previously. 

The benefit of this metric was more marked for the base-
line mod-MFCC features, bringing their performance 
to a level comparable to that of the speaker embedding 
features, in scenarios where the sources are far apart. 
In more challenging conditions, however, the speaker 
embedding features, in combination with the cosine dis-
tance metric, better exploit the source-specific informa-
tion and significantly outperform the Mod-MFCC based 
features.

In view of practical implementations, the effect of 
shorter segment lengths on the clustering perfor-
mance was studied. Here, whereas mod-MFCC-based 
features consistently degrade with shorter segment 
lengths, speaker embedding features are only margin-
ally affected and their performance remains more-or-
less constant. Even with a segment length of 0.5 s, the 
clusters stay similar to the baseline. This robustness of 
the speaker embedding features can be exploited for 
two purposes: complexity reduction and/or quicker 
adaptation in dynamic scenarios. Complexity can be 
scaled by only computing the features and updating 
the clusters sporadically and using only a small amount 
of data, sampled over a wider time-range. To allow for 
quick adaptation in more dynamic scenarios, the idea 
would be to similarly compute the features over short, 
but contiguous time-intervals and update the clusters 
more frequently.

Lastly, we presented a proof-of-concept of how 
speaker embeddings could be used to explicitly incor-
porate information on a known speaker for targeted 
clustering and separation. In future work, we aim to 
further focus on this setting and incorporate not only 

Fig. 10 DRINR histograms for the second set of scenarios (sources are close) for the speaker embedding based clustering. The DRINRs are 
computed only for microphones that are part of a source cluster
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Fig. 11 Performance metrics (SIR, PESQ, STOI) showing the separation effectiveness of the cluster feature types (hatches), method (x-axis) 
and duration (colour) for the first set of scenarios, where the sources are always sufficiently far apart
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more sophisticated separation approaches, like MVDR 
beamforming [22, 23, 34] or deep learning based meth-
ods [35], but also, the improved embedding extractor 
proposed in  [36], which offers increased robustness of 
the extracted embedding in the presence of interfering 
speech. Additionally, a comparison with spatially based 
cluster algorithms, like [3], should be performed, to 
see the trade-offs between the methods. Investigating 

Fig. 12 Histograms of the DRRs of the a Mod-MFCC features and b speaker verification features for different evaluation durations and the cosine 
distance metric. These are computed only for microphones that are part of a source cluster

Fig. 13 Histograms of the DRINRs of the a Mod-MFCC features and b speaker verification features for different evaluation durations and the cosine 
distance metric. These are computed only for microphones that are part of a source cluster

Table 3 Average number of microphones per source cluster for 
different evaluation lengths. The cosine distance metric is used 
throughout

4 s 2 s 1 s 0.5 s

MFCC 4.52 4.65 5.50 5.52

SpVer 4.71 4.68 4.77 4.90
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Fig. 14 Incorporation of known speaker embedding for targeted clustering. In this scenario, the interfering source is active 
throughout the experiment. However, the target (known) source is only active for a short period in the middle of the segment. This is schematically 
indicated above, where the blue bar indicates the time-period where the known speaker is active, while red indicates the interferer activity. 
We initialise the first cluster with the known speaker embedding. Thereby, the FCM algorithm generates an empty cluster in parts a and c and 
only allocates microphones to the target cluster when the known source is active. In the figure, a microphone is part of the cluster if its colour 
is dark purple, while the light blue colour indicated that it is not part of the cluster
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an optimal combination of spatial and speaker-specific 
information is also an interesting path we shall explore 
in future work.

Extra clustering examples and the associated audio 
corresponding to the presented work are available at 
https:// users. ugent. be/ ~sbkin dt/ EURAS IP_ ASN/.
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AAM  Additive Angular Margin
AMA  Averaged modulation amplitude
ASN  Acoustic sensor network
BLE  Bluetooth Low Energy
CMR  Cepstral modulation ratios
DRINR  Direct-to-reverberant interference and noise ratio
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