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Abstract 

Acoustic sensing by multiple devices connected in a wireless acoustic sensor network (WASN) creates new oppor-
tunities for multichannel signal processing. However, the autonomy of agents in such a network still necessitates 
the alignment of sensor signals to a common sampling rate. It has been demonstrated that waveform-based esti-
mation of sampling rate offset (SRO) between any node pair can be retrieved from asynchronous signals already 
exchanged in the network, but connected online operation for network-wide distributed sampling-time synchro-
nization still presents an open research task. This is especially true if the WASN experiences topology changes due 
to failure or appearance of nodes or connections. In this work, we rely on an online waveform-based closed-loop 
SRO estimation and compensation unit for nodes pairs. For WASNs hierarchically organized as a directed minimum 
spanning tree (MST), it is then shown how local synchronization propagates network-wide from the root node 
to the leaves. Moreover, we propose a network protocol for sustaining an existing network-wide synchronization 
in case of local topology changes. In doing so, the dynamic WASN maintains the MST topology after reorganization 
to support continued operation with minimum node distances. Experimental evaluation in a simulated apartment 
with several rooms proves the ability of our methods to reach and sustain accurate SRO estimation and compensa-
tion in dynamic WASNs.
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1 Introduction
The availability of smart devices equipped with diverse 
sensors has stimulated ample research in wireless sensor 
networks (WSNs)  [1–6]. Meanwhile, wireless acoustic 
sensor networks (WASNs) have emerged as a research 
area of its own  [7–9]. Due to the autonomy of agents, 
methods for sampling-time synchronization are a crucial 
piece of network infrastructure to discipline all WASN 
nodes to a consistent sampling rate  [10]. However, 

considerable attention is still required for smooth and 
efficient network-wide treatment.

Importance of time synchronization for signal process-
ing in WASN is evident from the fact that asynchronous 
signals even with sampling rate offset (SRO) values in the 
subhertz range cause a significant decrease of overall net-
work performance, such as, in acoustic source separation 
that operates with a sampling rate of 16 kHz , an SRO of 
only 1Hz leads to a drop of the signal-to-interference-
ratio gain from 9 - 10 dB down to only 3 - 4 dB  [11, 12]. 
For similar SRO values, the intelligibility of distributed 
beamforming-based noise reduction is reduced from 
0.8 up to 0.5 in terms of extended short-term objective 
intelligibility values, if sensor nodes are equipped with 
one or two microphones [13]. The SRO quantity is often 
normalized to the sampling rate of a reference node and 

*Correspondence:
Aleksej Chinaev
aleksej.chinaev@uol.de
1 Division of Speech Technology and Hearing Aids, Department 
of Medical Physics and Acoustics, Carl von Ossietzky Universität 
Oldenburg, Oldenburg, Germany

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13636-023-00311-9&domain=pdf
http://orcid.org/0000-0002-6256-7593
http://orcid.org/0009-0008-1122-0523
http://orcid.org/0000-0002-3096-1342


Page 2 of 20Chinaev et al. EURASIP Journal on Audio, Speech, and Music Processing         (2023) 2023:55 

measured in parts per million (ppm)1, since in real-world 
WASN applications it is usually a rather small value 
within the range of ±100 ppm  [14, 15].

Two core tasks of time synchronization are estima-
tion and compensation of all SRO values  [16, 17]. SRO 
compensation can be implemented either in hardware 
by changing the oscillator frequency (requiring a  direct 
access to respective circuitry of analog-to-digital con-
verters) or in software by digital-to-digital conversion 
(i.e., resampling) of microphone signals [18]. In the scope 
of this publication, we rely on comprehensive options for 
software-based online-capable SRO compensation  [19–
24]. Methods for SRO estimation are generally based 
either on time stamp exchange between network agents 
or on the acoustic waveforms already shared for joint sig-
nal processing [25].

Time stamp-based SRO estimation has traditionally 
received larger attention, especially for network-wide 
distributed synchronization of WSNs  [26–30], which 
aims at shared responsibilities across the network and 
at scalability in terms of communication bandwidth and 
computational load in contrast to centralized network 
operation  [10]. In such scenarios, the time stamps are 
exclusively exchanged either in one-way or in two-way 
communication procedure between neighboring nodes, 
which is referred to as a gossiping approach [31]. In the 
seminal work  [32], a wide-spread timing-sync protocol 
for sensor networks (TPSN) has been proposed where 
network-wide clock synchronization is provided by two 
consecutive steps: organization of the network in a hier-
archical topology and pair-wise synchronization of net-
work agents along the topology edges. Furthermore, 
a  reference node is set to whose timing all other nodes 
are to be aligned. Further control must be applied with 
the TPSN scheme to accommodate dynamic WSNs [33], 
meaning networks that may change their structure dur-
ing operation as a reaction to failure or appearance of 
nodes or communication links. Similar techniques are 
hardly available for waveform-based network-wide syn-
chronization of WASNs and a major goal of this paper is 
to fill this gap.

Waveform-based SRO estimation solely uses asynchro-
nous acoustic signals without any time stamp informa-
tion or protocol  [34–45], which is particularly rational 
when the network already exchanges acoustic waveforms 
for joint acoustic signal processing over the network. 
Typical acoustic excitation here is a directional or dif-
fuse sound field from single or multiple acoustic sources 
like speech, music, or even spatially correlated noise in 

non-reverberant and reverberant settings2. With the 
exception of  [45], waveform-based methods typically 
operate on pairs of sensor signals, i.e., one reference 
signal with nominal sampling and one non-reference 
signal with SRO. Apart from [34], the methods for pair-
wise waveform-based SRO estimation can be catego-
rized into three groups. The first group makes explicit 
use of the complex-valued spectral coherence function, 
whose phase drift is directly connected to the underlying 
SRO  [35, 39, 40, 44]. Methods of the second group rest 
upon statistical modeling of short-time Fourier trans-
form (STFT) coefficients [36, 41]. A desired SRO value is 
estimated here via maximization of the likelihood func-
tion defined on STFT coefficients of asynchronous and 
pre-synchronized sensor signals. In the third group, dif-
ferent techniques for correlation or coherence processing 
are deployed either in the time domain or in the STFT 
domain [37, 38, 42, 43]. Note that with the exception of 
[38, 44], the majority of the waveform-based methods are 
designed for offline SRO estimation.

Considering a network-wide waveform-based synchro-
nization, small WASNs comprising more than two sensor 
nodes have been investigated in  [38, 42, 44, 45] with no 
particular considerations regarding the network topology 
(it appears centralized). In [38, 42, 44] every sensor node is 
directly connected to the central reference node via a sin-
gle-hop link. In larger networks, the centralized topology, 
however, leads to a computational overload of the central 
node and to an inefficient use of a communication band-
width or can even be completely unfeasible [28]. In [45], 
all sensor nodes were linked with each other in a so-called 
fully connected topology that is even more demanding 
than a centralized topology. To avoid the drawbacks of 
the centralized method, a distributed SRO estimation for 
WASNs with arbitrary topology has been proposed very 
recently [47], however, only for offline signal processing 
based on a  specific calibration signal and implemented 
only on fully connected or almost-fully connected topolo-
gies. From time stamp-based WSN synchronization [32], 
we know that networks can be more efficiently organized 
in hierarchical tree topologies and synchronized by dis-
tributed procedures where every node aligns its own sig-
nal to the sampling rate of the reference node. On the way 
to a distributed online-capable waveform-based synchro-
nization, we have come up with a number of own devel-
opments that are briefly described as next.

1.1  Relation to own works
Before the synchronization of acoustic sensor networks 
received greater attention, a precursor of waveform-based 

1 An SRO of 1 Hz corresponds to 62.5 ppm for the sampling rate of 16 kHz. 2 No calibration signal is explicitly required here in contrast to [11, 12, 46].
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SRO estimation and compensation was described in the 
context of acoustic echo cancellation [48], where SRO was 
tracked by means of an LMS-type adaptive filter operat-
ing on two slightly asynchronous input signals. A related 
tracking theory for adaptive filters with asynchronous 
input and output signals was later reported in [49].

In the context of WASNs, as in Fig. 1, a double-cross-
correlation processor (DXCP) in the time domain with 
remarkable robustness to acoustic reverberation and 
noise has been proposed in [50] and restated as an FFT-
based implementation with phase transform (PhaT) for 
online SRO estimation with outstanding accuracy  [51]3. 
DXCP essentially refers to the concept of a second-
ary cross-correlation computed over a  moving primary 
cross-correlation on signals with SRO. The second-
ary correlation then allows unbiased extraction of the 
underlying SRO. The DXCP-PhaT version has further 
evolved with a demonstration of robustness to packet 
loss in WASNs  [52], with a  closed-loop implementa-
tion to integrate sampling rate compensation  [53], with 
extensions for tree-based distributed network-wide time 
synchronization  [54], and very recently with robustness 
for long-term operation under nonpersistent acoustic 
activity [55].

The real-world utility of DXCP-based SRO estimation 
has been assessed with open-source developments of 
demonstrators in a larger research unit on acoustic sen-
sor networks: (1) a first demo at WASPAA-2021 uses the 

MARVELO software on Raspberry Pi computers [56, 57] 
as a framework for our online SRO estimation between 
two sensor nodes; (2) a second demo at IWAENC-2022 
uses Python notebooks to present the network-wide 
closed-loop WASN synchronization on various topolo-
gies and geometries created by means of the PaderWASN 
toolbox [44] applied to the Sound Interface to the Swarm 
(SINS) apartment  [58] simulated as shown by  [59] and 
depicted in Fig. 14.

1.2  Proposals of this contribution
Based on our previous developments, a  distributed 
online-capable network-wide waveform-synchronization 
will be proposed in this paper. Additionally, it will be 
extended for use in dynamic WASNs. The specific novelty 
of our contribution here is threefold. 

1) All propagation of state and information in a network 
based on distributed local operation takes its time 
and effort  [54]. To support the information flow for 
network consensus, we propose:

• A buffer-based closed-loop (online) SRO estima-
tion and compensation taking place from the out-
set and round-robin on all nodes of the network 
in Section 3.2,

• A network topology according to a minimum 
spanning tree (MST) for better local connectivity 
in the network in Section 3.3.

Fig. 1 Simulated SINS apartment (left); WASN representation (blue/red dots correspond to acoustic sources/nodes) by PaderWASN toolbox (right)

3 Similar to SRO estimators based on time stamp exchange, e.g. ,from [31], 
the waveform-based DXCP-PhaT achieves root-mean-square error (RMSE) 
of around 0.03 ppm without a need of an additional communication link.

4 Source code for demo (1) at https:// github. com/ CN- UPB/ WASN and for 
demo (2) in “/distributed_synchro_demo” at https:// github. com/ fgnt/ asnsig.

https://github.com/CN-UPB/WASN
https://github.com/fgnt/asnsig/tree/main/contrib/distributed_synchro_demo
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2) Real-world networks with continued operation will 
sooner or later experience radical modifications, such 
as the appearance of new nodes or failure of nodes 
and communication links between them. Section  4 
therefore introduces a somewhat generic network 
protocol to handle these modifications with sus-
tained synchronization of already synchronous net-
work parts but with new MST configuration for con-
tinued operation.

3) An acoustic shoe-box room simulation might be an 
oversimplified enclosure regarding acoustic con-
nectivity of the available network nodes. Thus, we 
simulate a sophisticated SINS apartment with several 
connected rooms in Sections 5.1 and 6.1 in order to 
meaningfully assess DXCP-based network-wide syn-
chronization under the aforementioned organiza-
tional constraints.

The paper is otherwise organized as shown by Fig.  2, 
where sections with the specific novelty are marked by 
superscript asterisks. Methods for pairwise waveform-
based synchronization are revisited in  Section  2 to 
support our distributed network synchronization in Sec-
tion  3 and our proposed synchronization protocol for 
dynamic WASN in  Section  4. Experiments including 
a proof of concept and a  large-scale quantitative assess-
ment followed by some ablation studies are reported in 
Sections 5, 6, and 7.

2  Sampling rate offset and pairwise 
waveform‑based signal synchronization

After introduction of SRO, its impact on the acous-
tic sensor signals in time and frequency domain is dis-
cussed. Furthermore, components of a  waveform-based 
synchronization are considered including SRO compen-
sation that consists of an integer-based time shift of asyn-
chronous signal followed by signal resampling. Finally, 
a closed-loop architecture for pairwise signal synchroni-
zation [53] is explained more elaborately.

2.1  SRO parameter and its impact on a sensor signal
Considering a sensor node equipped with a single micro-
phone, a noisy microphone signal can be represented by 
an  additive signal model y(t) = x(t)+ v(t) , where t is 
the continuous time, x(t) a noise-free acoustic recording 
and v(t) a sensor self-noise. Assuming a  perfect analog-
to-digital converter (ADC) that is able to sample y(t) at a 
reference sampling rate fr , a  discrete-time noisy micro-
phone signal is given by y[n] = y(Tr · n) , where n ≥ 0 is 
the discrete time and Tr = 1/fr the reference sampling 
time period. Due to oscillator imperfection, however, 
an  imperfect ADC provides a  time-scaled sampling 
z[n] = y(Tε · n) with a  slightly different sampling time 
period

where the real-valued ε with magnitude |ε|≪1 is termed 
the SRO parameter5. Accordingly, the signals y[n] and 
z[n] are asynchronous and related via

where τsmp[n] = ε · n = τsmp[n− 1] + ε is an accumulat-
ing time drift (ATD) induced by SRO ε.

In frame-based signal processing, an  averaged SRO-
induced ATD is thus observed, i.e.,

where ℓ ≥ 1 is the frame index and 
nmid[ℓ]=(N−1)/2+ Ns · ℓ are the time points on the 
dimensionless axis t/Tr corresponding to the midpoint of 
the ℓ-th data frame with frame size N and frame shift Ns.

A linear phase-drift (LPD) model [36, 37] in the STFT 
domain is then expressed as

where Y [k , ℓ] and Z[k , ℓ] are the STFT coefficients of 
y[n] and z[n], respectively, j is the imaginary unit, and 
k ∈ {0, . . . ,N − 1} denotes a  discrete frequency index. 
According to Eqs.  (2), (3), and  (4), z[n] is a time-scaled 
waveform of y[n] corresponding to a time shift between 
y[n] and z[n] linearly growing with time for fixed SRO 
ε  = 0 . Note that this constitutes a common assumption, 
as in reality the SRO varies over time only very little6.

(1)Tε = Tr · (1+ ε) ,

(2)z[n] = y(Tr · (n+ τsmp[n])) ,

(3)τ [ℓ] = ε · nmid[ℓ] = τ [ℓ− 1] + ε · Ns ,

(4)Z[k , ℓ] ≈ Y [k , ℓ] · ej
2π
N k·τ [ℓ],

Fig. 2 Workflow of the paper

5 The SRO parameter ε  = 0 here relates sampling frequencies according to 
fε= fr/(1+ε)=(1−ε/(1+ε))·fr ≈(1−ε)·fr , if |ε|≪1.
6 A pairwise waveform-based SRO estimation introduced in this paper is 
online-capable and therefore can track time varying SRO as shown in [44].
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2.2  Waveform‑based SRO estimation and compensation
Considering any two acoustic nodes indexed by r and  i, 
the node r is assumed to be the reference node with 
perfect ADC ( ε = 0 ). In contrast, node i uses an imper-
fect ADC characterized by the SRO parameter εri  = 0 . 
Waveform-based synchronization (WS) of zr[n] and zi[n] 
consists of SRO estimation and compensation. Using 
one of the methods for SRO estimation designed for 
frame-based processing [35–37, 39–42, 44, 45, 51], SRO 
estimates ε̂ri[ℓ] can be obtained from the observed asyn-
chronous signals zr[n] and zi[n].

Next, ε̂ri[ℓ] should be appropriately removed from 
asynchronous signal zi[n] , leading to an  SRO-compen-
sated, synchronized signal zi,S[n] , aligned to the reference 
signal zr[n] in terms of sampling rate. For this, the real-
valued time-variant ATD from (3) can be recursively esti-
mated in every ℓ-th data frame by

Note, Eq. (5) implies that both SRO estimation and 
compensation are executed at the same frame-rate 
fWS= fr/Ns . Then, τ̂ri[ℓ] can be compensated in every sig-
nal frame by execution of two processing steps: (a) cor-
rection of an integer-valued ATD

that can be removed from zi[n] by sample-wise shift of 
the i-th sensor signal, leading to a roughly synchronized 
signal zi[n− τ̂ intri [ℓ]] and (b) compensation of a fractional 
ATD

via resampling of the roughly synchronized signal; 
see  Fig.  3. Various resampling methods can be applied 
for compensation of fractional ATD  [19–23, 36]. Since 
the  STFT resampling method from  [36] proved to be 
a very computationally efficient and sufficiently accurate 
resampling method7, it seems to be an appropriate choice 
for frame-wise compensation of τ̂ frcri [ℓ] . Thus, the STFT 
coefficients Zi,S[k , ℓ] of a  synchronized sensor signal 
zi,S[n] are obtained by

where Zint
i [k , ℓ] are the STFT coefficients of the roughly 

synchronized signal zi[n− τ̂ intri [ℓ]] . Note that the LPD 
model (4) is used in (8). Further it should be mentioned 

(5)τ̂ri[ℓ] = τ̂ri[ℓ− 1] + ε̂ri[ℓ] · Ns.

(6)τ̂ intri [ℓ] = round(τ̂ri[ℓ])

(7)τ̂ frcri [ℓ] = τ̂ri[ℓ] − τ̂ intri [ℓ]

(8)Zi,S[k , ℓ] = Zint
i [k , ℓ] · e−j 2πN k·τ̂ frcri [ℓ],

that the FFT window size can be different for SRO esti-
mation and compensation.

2.3  Closed‑loop synchronization of sensor node pairs 
using internal model control

In order to accomplish a  robust waveform-based time 
synchronization of large acoustic networks by using 
the subsystems for SRO estimation and compensation 
described in the previous section, a structural combina-
tion of both subsystems to obtain a feasible synchroniza-
tion unit has to be discussed.

2.3.1  Open‑loop synchronization
Retrieval of SRO from asynchronous signals zr[n] and 
zi[n] can lead to estimation with significant bias and 
uncertainty, where a  subsequent SRO compensation 
can leave an unacceptable synchronization error [40]. In 
terms of control theory, such a consecutive implementa-
tion of the subsystems can be referred to as an open-loop 
control system depicted in  Fig.  4a. A  significant disad-
vantage of such architecture applied for online signal 
processing is that the SRO estimation is executed on the 
asynchronous signals with growing ATD between them. 
Consequently, the requirement of similar frame con-
tents necessary for the LPD model  (4) is only fulfilled if 
the condition |τri[ℓ]| ≪ N  is valid, i.e., as long as the aver-
age ATD between zr[n] and zi[n] is well within the frame 
size  N  [37]. Otherwise, SRO estimation (and also com-
pensation) will collapse with time, making such archi-
tecture suitable only for short signal segments or small 
SROs [36].

2.3.2  Closed‑loop synchronization
In offline signal processing, synchronization can be 
improved by applying the so-called multi-stage proce-
dure with multiple closed-loop iterations of SRO estima-
tion and compensation over the entire signal  [40]. This 
mechanism can be converted into a continuous feedback-
control loop comprising a controlled subsystem for SRO 
compensation followed by an online implementation of 
SRO estimation as shown in Fig. 4b. Since the subsystem 
for SRO estimation operates on the synchronized signals, 
it estimates a current residual SRO �εri[ℓ] between zr[n] 
and zi,S[n] after SRO compensation. Thus, the require-
ment of similar frame content is always fulfilled here. 
Compared to the open-loop structure, however, such 

Fig. 3 Two-steps SRO compensation

7 For arbitrary sampling rate conversion of narrow-band, speech, and full-
band signals, the STFT resampler has been proven to achieve accuracy 
of 50–60 dB in terms of signal-to-interpolation noise ratio at a very small 
computational effort in terms of the real-time factor of only 0.005 on aver-
age [24].
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a  closed-loop architecture requires an  additional sub-
system, a  controller that accumulates the residual SRO 
estimates to the current SRO estimate ε̂ri[ℓ] between 
asynchronous signals zr[n] and  zi[n] . In the steady 
state, the system is meant to approach �ε̂ri[ℓ] → 0 and 
ε̂ri[ℓ] → εri . Therefore, since SRO estimation is more 
precise for smaller SRO values as shown in  [50], the 
closed-loop structure naturally ensures operation of SRO 
estimation at the optimal working point. In contrast to 
multi-stage processing, the resulting control architecture 
merely applies a  single treatment of each signal frame, 
while efficiently diminishing SRO bias and uncertainty 
with time.

2.3.3  Design of controller based on internal model control 
(IMC) theory

The controller has to be developed for the frame-based 
rate fWS of the waveform-synchronization. As a discrete-
time system, it is designed in the domain of the bilateral 
z-transform, where an impulse response of the controller 
gC[ℓ] is represented by a system function GC(z).

From various types of control strategies, we suggest to 
use a controller based on IMC theory [60, 61], while other 
designs are possible too. Therefore, an explicit model of the 
controlled system (plant) is required that consists of SRO 
compensation and estimation. Abstracting the underlying 
SRO from the audio signals, we can create a block diagram 
of the control loop as depicted in Fig. 5a. Here, the func-
tion of SRO compensation is described as a subtraction of 
the estimated SRO  ε̂ri[ℓ] from the actual SRO εri[ℓ] . Fur-
thermore, we suggest to use the DXCP-PhaT method [51] 
for residual SRO estimation, the dynamical behavior of 
which is characterized here with GDXCP(z) . Aiming at 

perfect signal synchronization that would be observed as 
�ε̂ri[ℓ] = 0 , the reference control signal w[ℓ] is defined 
as zero. The IMC control circuit implies a  plant predic-
tive model leg placed in parallel to the actual plant, where 
the SRO compensation simplifies to a “−1” multiplier and 
an approximation ĜDXCP(z) is used instead of the actual 
GDXCP(z) . The output difference �ε̂ri[ℓ] −�ε̃ri[ℓ] feeds 
back to an IMC filter GIMC(z) . The latter is designed 
for quadratic minimization of the control error, i.e., the 
residual SRO signal �εri[ℓ] = εri[ℓ] − ε̂ri[ℓ] , resulting in 
an optimal IMC filter Gopt

IMC(z) = −1/GDXCP(z) for ideal 
approximation ĜDXCP(z) = GDXCP(z) [53].

In order to deal properly with feasibility of the control 
circuit, the optimal solution is extended by a lag element of 
order nf ( PTnf  ) [62] with filter function

where TWS = 1/fWS is the time shift between STFT 
frames, TIMC a desired time-constant of FIMC(z) and nIMC 
the order of FIMC(z) . Overall, the IMC filter therefore 
becomes

A sophisticated DXCP-PhaT model GDXCP(z) as derived 
in [53] can be simplified regarding model order and com-
plexity of the corresponding IMC controller to a mini-
mum architecture

(9)FIMC(z) =

(
1− e−TWS/TIMC

z − e−TWS/TIMC

)nf
,

(10)GIMC(z) = FIMC(z) · G
opt
IMC(z) = −

FIMC(z)

GDXCP(z)
.

(11)ĜDXCP(z) =
1− α2

z − α2
,

Fig. 4 Time-synchronization of two nodes in a open-loop and b closed-loop architectures
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parameterized by the dominant smoothing constant α2 of 
DXCP-internal recursive averaging. The latter is used in 
DCXP for estimation of a secondary generalized cross-
spectral density  [51] and is responsible for its dominant 
time-constant TDXCP = TWS/ln(1/α2).

Now, the system function of the final IMC-based con-
troller GC(z) in Fig. 5b can be derived as 

 where the architecture in Fig. 5b is an equivalent reor-
ganization of the block diagram in Fig. 5a and the IMC 
filter from (10) with approximation (11) is used in (12a) 
for obtaining (12b).

Given the closed-loop synchronization unit  Fig.  4b 
with an embedded DXCP-PhaT method for SRO estima-
tion and the derived IMC-based controller, a  gossiping 
approach for distributed network-wide synchronization 
can be developed in the next section.

3  Online distributed network‑wide 
synchronization using closed‑loop unit

Based on the pairwise synchronization, our concept 
of a synchronization gossip from [54] is introduced 
first. A  buffer-based implementation of the closed-loop 
synchronization unit is then described to prepare the 
appropriate flow of information in the gossip. Finally, 
a topological organization of WASN by means of a mini-
mum spanning tree is introduced here to support the 
acoustic connectivity of involved node pairs.

(12a)GC(z) =
GIMC(z)

GIMC(z) · ĜDXCP(z)+ 1

(12b)=
FIMC(z)

FIMC(z)− 1
·

1

ĜDXCP(z)
,

3.1  Concept of synchronization gossip
We consider a WASN with NWASN acoustic sensor nodes 
labeled with index i ∈ {0, . . . NWASN−1} . Among these, a 
root node r is always defined/chosen to be the global ref-
erence node whose sampling rate is equal to the reference 
sampling rate fr . In this kind of WASN, at least NWASN−1 
unknown SROs have to be estimated for a  successful 
network-wide signal synchronization. From graph-theo-
retical point of view[63], the topology of a WASN can be 
described as a directed tree denoted as 

−→
T =(V , E) , where 

the vertex set V contains NWASN nodes and the edge set E 
consists of NWASN−1 network links [10, 16, 64]. On such 
a  tree, a network-wide time synchronization can be real-
ized either in a centralized or in a distributed way.

3.1.1  Centralized synchronization
In contributions for waveform-based synchronization 
with more than two nodes, the centralized synchroniza-
tion is considered implicitly [38, 42, 44, 45]. For this, all 
acquired signals are transmitted via a  single-hop com-
munication to the root node, where the entire synchro-
nization takes place. The significant drawbacks here are 
a  possible computational overload of the central node 
in a  larger network and a  simultaneous requirement of 
communication bandwidth [28].

3.1.2  Distributed synchronization
Here, on the contrary, the distributed scheme spreads 
the signal synchronization task over the network so that 
SRO of every non-reference node is estimated and com-
pensated on the same node where the signal is acquired 
as it is proposed in publications with time stamp-based 
synchronization  [29, 31]. Significant advantages of such 
a  distributed scheme are the sharing of computational 
power required for synchronization and the scalability 
regarding communication bandwidth [10, 30].

3.1.3  Network topologies and their properties
Three particular types of topologies for distributed syn-
chronization are distinguished here: a  star tree, a  path 
tree and a rooted tree. Every topology can further be con-
sidered with two different edge directions either as an in-
tree (edges oriented to the root) or as an out-tree (edges 
oriented away the root). Examples of out-tree topologies 
for NWASN = 5 placed in an isolated shoe-box room are 
depicted in  Fig.  6: star-out-tree (SOT), path-out-tree 
(POT) and rooted-out-tree (ROT). The root node is high-
lighted with a bold circle. The direction of edges indicates 
a  one-way out-flow of signals zi[n] from node  i along 
the respective wireless links8. Accordingly, every WASN 

Fig. 5 Equivalent block diagrams of the closed-loop synchronization 
architecture in the domain of control signals: a IMC filter, b IMC 
controller

8 Note that the NWASN−1 links of these topologies are the necessary ones for 
the synchronization task, while other coherent processing of sensor signals 
may require additional communication links.
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node has to be equipped with a digital receiver (RX) and 
transmitter (TX).

Sensor nodes organized in a  certain topology can 
be characterized by the property of depth (or level). 
The depth of a node di is defined as the length of its path 
to the root node, which itself has zero depth ( dr = 0 ). 
The tree depth is given by the depth of its deepest node. 
In the case of SOT, this tree depth is always one. For 
some node locations, however, the SOT topology may 
trail off the acoustic connectivity to the root. In those 
cases, a multi-hop POT potentially improves upon this 
problem but does so at the expense of maximizing the 
tree depth. In many situations, the multi-hop ROT con-
stitutes a compromise between SOT and POT with good 
acoustic connectivity and intermediate tree depth. Still, 
the optimal choice of topology generally depends on the 
actual node locations at hand.

3.1.4  Proposed scheme for distributed synchronization
For waveform-based network-wide synchronization on 
all distributed topologies, we consider a server-less peer-
to-peer operation on node pairs, i.e., one sending node 
providing the reference signal zj[n] and the receiving 
node owning the respective non-reference signal zi[n] ; 
see Fig.  7. Moreover, we aim at continuous processing 
of zj[n] and zi[n] on finite buffers, and, hence, their asyn-
chronous generation of data needs to be continuously 
aligned with an asynchronous resampler in the loop. 
The closed-loop synchronization unit introduced in Sec-
tion 2.3 can be efficiently used for such pairwise distrib-
uted synchronization. However, the synchronization 
unit must be configured on every non-reference node in 
a slightly different manner dependent on the role of the 
respective node. Specifically, the i-th non-reference node 
is to be configured either as a leaf node (switch position 
S = 0 ) or as an intermediate node (switch position S = 1 ) 
according to Fig. 7.

In other words, each node receives a local reference 
signal one-way, either directly from the reference node or 
from a parent node. Next, the node synchronizes its own 
microphone signal zi[n] and provides the synchronized 
signal zi,S[n] to its children according to the network 

topology. By doing so, the signal synchronization is prop-
agated network-wide and uses computational resources 
of the whole WASN. Naturally, the process of network-
wide synchronization will accumulate more latency in 
deeper networks. The overall duration for the synchro-
nization to propagate from the root node to the deepest 
leaf node is roughly composed of two contributions: the 
initialization phase of DXCP-PhaT and its time-constant 
TDXCP (cf. Section 2.3) multiplied by the tree depth9. To 
accelerate network-wide synchronization, a synchroni-
zation gossip on rooted trees with moderate tree depth 
would thus be favorable.

The proposed network-wide distributed synchroniza-
tion, however, was initially developed for use in a  static 
WASN in [54], i.e., not considering any dynamic network 
changes usually occurring in real WASNs.

3.2  Buffer‑based realization of closed‑loop (online) 
synchronization unit

Our implementation of closed-loop time synchronization 
makes use of multiple buffers. A  block diagram of the 
buffer-based time synchronization implemented on the 
i-th sensor node is depicted in  Fig.  8a, where the node 
obtains the global reference signal from the root node r 
via a single-hop link ( j = r ) and thus belongs to the first 
network level with node depth di = 1 . From the esti-
mated SRO values ε̂ji[ℓ] delivered by the IMC controller, 
a  real-valued ATD estimate is obtained as in  (5) under 
requirement of the same frame shift Ns in both SRO esti-
mation and compensation. However, since both subsys-
tems work on time-domain input signals, the former are 
allowed to use different frame sizes. The proposed buffer-
based implementation of SRO compensation is designed 
for a  frame size equal to the frame shift Ns . Hence, the 
size of required buffers is a simple multiple of Ns.

Fig. 6 Topologies for network-wide distributed synchronization 
with NWASN=5 and root r = 0

Fig. 7 Role-dependent closed-loop architecture unit 
for network-wide distributed synchronization

9 Furthermore, a  communication latency between nodes practically needs 
to be considered, however, its analysis is beyond the scope of this paper.
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While the integer-valued ATD τ̂ intji [ℓ] from  (6) is com-
pensated using a sliding Ns-long window that is appro-
priately moved over the resampler buffer, the remaining 
fractional ATD τ̂ frcji [ℓ] from (7) is removed by applying the 
STFT resampling method [24, 36] that is also implemented 
for the frame size Ns . In order to provide for causal resa-
mpling, the resampler buffer must introduce at least one 
frame delay, such that the sliding window (SW) is able to 
move to the right. We choose a resampler buffer length of 
3 frames, where the second frame corresponds to the ref-
erence position of the SW. In order to compensate for the 
resulting delay of one frame, an equivalent delay is applied 
to the received signal zj[n] via the delay buffer.

For sensor nodes with a bigger distance to the root node, 
i.e., di > 1 , the individual delays of buffer-based SRO com-
pensation in preceding levels accumulate and must be 
compensated using an additional microphone delay buffer 
(MDB) with a depth-dependent length LMDB = di frames as 
shown in Fig. 8b. Analogously to the delay buffer, the MDB 
appends to the sensor-own signal zi[n] a delay of di − 1 
frames. In other words, the local microphone signal must 
be passed through the MDB for causal alignment with the 
delayed reference signal received along the network route.

3.3  Network organization using MST
For accurate waveform-based synchronization, acous-
tic connectivity between zi[n] and zj[n] is essential  [55]. 

Since the connectivity is primarily governed by the dis-
tance between nodes, the network topology should gen-
erally be configured so as to keep geometric distances 
between nodes at a minimum.

3.3.1  Minimum spanning tree (MST) as topology
We therefore consider the graph-theoretical MST to 
maximize acoustic coupling and coherence between node 
pairs. The MST connects all vertices in a graph without 
loops and with the minimum possible total edge weight, 
in this context given by the distance between nodes [65]. 
As two prominent examples that make use of MST, [66, 
67] utilize the concept of MST for route discovery to 
minimize a  total Euclidean distance between nodes for 
energy-efficient multi-hop communication and network-
wide signal enhancement, respectively. In contrast to 
our previous work in  [54], we therefore adopt the MST 
topology to organize our network. Because algorithms 
for MST rooting are based on relative sensor positions, 
we assume that the coordinates of all involved nodes are 
known up to a  certain estimation error10. In a  realistic 
scenario, such estimates could be provided by dedicated 
methods for network self-calibration [68–71].

Fig. 8 Block diagrams of buffer-based synchronization unit on the i-th sensor node: a single-hop linked to the reference node ( j = r , di = 1 ); 
b connected only to a local reference ( j  = r , di > 1)

10 As shown in Section 7.3, the proposed buffer-based synchronization unit 
can be also successfully used for distributed synchronization of dynamic 
WASNs organized in simpler topologies without any knowledge of node 
positions.
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3.3.2  Optimal choice of the reference node
While the MST is considered as the optimal solution 
for connecting all nodes with regard to acoustic con-
nectivity, a choice of the reference node r is further 
required to obtain an actual WASN topology. With 
the goal of keeping the tree depth as small as possible, 
we propose to assign this reference role to the node 
with the smallest average distance to its neighbors. 
Note that electing the reference node then determines 
the directions of all edges in the otherwise undirected 
MST.

An example of an MST in a network with 13 nodes is 
depicted in  Fig.  9a. Identifying node 4 as the the opti-
mal reference node in the aforementioned sense yields 
the WASN topology shown in  Fig.  9b, where the depth 
of individual nodes is color-coded by means of the cor-
responding inward edges.

4  Maintaining waveform‑based synchronization 
in dynamic WASNs

A dynamic WASN should be able to adapt to network 
changes, such as appearance or failure of network 
nodes or links, without the need to restart the syn-
chronization procedure from scratch, thus avoiding 
another time-intensive convergence that can cause 
undesirable degradation in the performance of a net-
work-wide signal processing. This can be achieved 
by appropriately adapting the network topology in 
response to observed changes, while maintaining 
an already achieved waveform synchronization state 
(MWS) of persistent nodes that was attained right 
before the topology change. In this section, we show 
how the network-wide distributed synchronization 
presented in Section 3 can be maintained in a dynamic 

WASN encountering four fundamental types of possi-
ble network modifications: 

(a) Appearance of new nodes,
(b) Failure of communication links,
(c) Failure of non-reference sensor nodes,
(d) Failure of the reference sensor node.

For simplicity, we here restrict modifications to one 
node or communication link at a time and further assume 
that the WASN has reached a good synchronization state 
before any such change takes place. This assumption is 
deemed reasonable, as the initial convergence period 
takes relatively little time (as we shall see) when consid-
ering continued long-term WASN operation11. Further-
more, the type and time-point Tc of a  network change 
are required to be known for the respective treatment. 
Obtaining this knowledge is credited to the informa-
tion basis as provided by an address resolution protocol 
(ARP)  [72] or a network discovery protocol (NDP)  [73] 
outside the scope of this paper.

In essence, our strategy for MWS then is to automati-
cally generate an optimal MST network topology for any 
configuration of nodes and coordinates, respectively, and 
do so every time a network change occurs. This approach 
allows us to formulate a mostly universal MWS protocol 
for handling the various types of changes in the network, 
requiring only few case specific actions. A summary of 
the proposed algorithm for operating a dynamic WASN 
is provided in Algorithm 1 and described in the following 
line by line.

Fig. 9 Network organization: a MST, b directed MST with highlighted depth of sensor nodes ( di = {1, 2, 3, 4} for black, blue, green, and red edges)

11 How the proposed method works in the case of an early network change 
before reaching the initial good synchronization state is shown in Section 7.2.
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Algorithm 1 MWS protocol for dynamic WASNs

4.1  Network‑wide protocol steps (lines 4–9)
To find an optimal network topology, we generate a graph 
representation of all nodes, where edges are weighted with 
the Euclidean distance between nodes (line 4). This Euclid-
ean graph is first corrected by removing those edges that cor-
respond to unavailable communication links between nodes. 
Next, we find the minimum spanning tree via repeated exe-
cution of Prim’s algorithm  [74], considering every node as 
a possible starting point (line 5), while retaining the choice 
for global reference if the respective node is still available. If 
not, a node with the smallest average distance to its neigh-
borhood has to be discovered and appointed as a new refer-
ence node (lines 6–8). Finally, based on the reference node, 
the direction of all edges in the MST are determined (line 9).

4.2  Node‑specific protocol steps (lines 11–16)
Because the synchronized signal of each node is system-
atically delayed in proportion to the level it resides in the 
network, as discussed in Section 3.2, the MDB of nodes 
whose depth has changed needs to be resized accord-
ingly (lines 11–12); see Fig. 8b. If a node moves closer to 
the reference, the MDB size is reduced by discarding the 
most recent frames. In contrast, the MDB of nodes that 
moved further away from the reference is increased in 
size by appending zeros on the right side. In both cases, 
this mechanism inevitably leads to a small time glitch in 
the synchronized microphone signals with respect to the 
local reference signal. This, however, does not negatively 
impact the SRO estimation process, as will be shown in 
Section 5.3 below12.

In addition to the adjustment of MDB size and content, 
the (a) and (d) types of network change require further 
attention that are detailed in the following.

Change type (a): A  node newly integrated into the 
WASN can usually rely on an already synchronized sig-
nal of its topological parent node as a (local) reference 
and hence synchronize its own microphone signal to it. 
Until the synchronization is converged, however, its out-
put signal is still asynchronous and should not be utilized 
as local reference by its topological children nodes. We 
therefore temporarily freeze the SRO estimation process 
of any node that directly receives reference from a newly 
integrated node for a freezing time Tf  (lines 13–14). Dur-
ing Tf  , the children of a newly integrated node discard a 
reference signal provided by it and hold their previous 
SRO estimate13.

Change type (d): As mentioned, failure of the reference 
sensor node requires appointing a new reference. Because 
this new reference node no longer receives a reference for 
itself, the previously explained method of freezing the SRO 
estimate is applied permanently (lines 15–16). By doing so, 
operation of the WASN can continue seamlessly and with-
out the need to adjust to a significantly different reference 
sampling rate of the newly elected reference node.

5  Illustration of the proposed mechanism 
for dynamic WASN operation

In order to demonstrate the methods proposed in Sec-
tions 3 and 4 of this paper, we firstly create a synthetic 
dataset to simulate a WASN with an exemplary topol-
ogy, which, after initial convergence, is subjected to 
one network modification of each type. Before examin-
ing the resulting effects on distributed SRO estimation 
for the initial and dynamic WASNs, we first discuss 
our procedure for generating the synthetic WASN data 
in a SINS apartment. A large-scale evaluation of the 
proposed methods is conducted in Section 6.

5.1  WASN simulation in a SINS apartment
With help of Paderbox and PaderWASN toolboxes  [44], 
we simulate14 a WASN in an artificially generated SINS 
apartment  [58]. In our setup, a total number of 13 
nodes, each equipped with a single microphone, are dis-
tributed in the apartment. It consists of a  living room, 
a  hall, a  bedroom, a  bathroom, and a  toilet. Further-
more, three static acoustic sources (music H4, female 
speaker N6, male speaker B0) are placed in the living 

12 Moreover, with knowledge of the incident time frame ℓc and the sensor 
depth di , if need be, the time glitches in the synchronized signals could be 
taken into account in further processing of the sensor signals beyond the 
waveform synchronization (which is not in the scope of this paper).

13 Although the SRO estimation process is frozen, the node continues syn-
chronization of its own signal by resampling according to the estimated 
SRO.
14 For more details on the implementation of our simulation framework, 
please refer to https:// github. com/ STHAL abUOL/ MWSfo rDynW ASN.

https://github.com/STHLabUOL/MWSforDynWASN
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room, all of which are active for almost the total dura-
tion of simulated signals of 9 min. The locations of the 
acoustic sources15 and all nodes of the acoustic sensor 
network are depicted in Fig. 10a, where the SINS apart-
ment from Fig. 1 is depicted as shaded background. The 
room impulse responses between sources and nodes in 
this simulated environment are provided by the authors 
of  [75] with reverberation time T60 ≈ 700ms . Node  9 
participates in all WASN configurations to provide suf-
ficient acoustic coupling between sensor nodes in the 
living room and outside16. The idea of this small-space 
WASN is a moderate set of proximity nodes with reason-
able acoustic coherence and manageable wireless link for 
sustainable synchronization. Some critical nodes may 
temporarily leave the network and ideally return with 
continued synchronization to the momentary reference 
node (the time for network resynchronization may oth-
erwise be in the order of 1–2 min as shown by Fig.  14 
below) and new nodes shall gracefully integrate without 
disrupting the existing network.

All source signals exhibit a  reference sampling rate 
of fr = 16 kHz . While a  music source is downloaded 
from the Freesound datasets  [76], clean speech signals 
are taken from the LibriSpeech corpus  [77]. The result-
ing microphone signals are superimposed by uncor-
related computer-generated sensor noise of constant 
power yielding a  global signal-to-noise ratio (SNR) of 
around 33 dB averaged over all sensor nodes; see Fig. 10b. 
The SROs εi of individual nodes are simulated by using 
an overlap-save method (OSM) for signal resampling [22] 
with FFT size NOSM = 213 , a  frame size of NOSM/2 , 
a frame shift NOSM/4 , and a Hann analysis window. The 
εi values are drawn from a uniform distribution on the 
interval [−100; 100]  ppm except for ε0 , which is set to 
zero.

The buffer-based closed-loop synchronization unit 
from  Fig.  8 is implemented as described in  Section  3.2. 
The parameters of the DXCP-PhaT, the IMC controller 
and the STFT resampler are given in Table 1.

5.2  Synchronization in the initial WASN
From the generated WASN environment, an  initial WASN 
with NWASN = 5 nodes is drawn consisting of the nodes 
{0, 1, 6, 7, 9} as depicted in Fig. 10a. This initial WASN is used 
to demonstrate the behavior of our MWS protocol proposed 
in  Section  4. While the node r = 0 is chosen as the refer-
ence node, the nodes {1, 9} and {6, 7} represent the first and 
the second rank of network depth, respectively, with SRO 

Fig. 10 a Setup of synthetic data generation with an initial WASN: 
root r = 0 and NWASN = 5 ; b individual SNRs observed on the sensor 
nodes; c activity pattern of the sources; and d SRO estimation 
in the initial static WASN

15 Moving sources are not in the scope of the presented analysis. The typi-
cal experience of a moving source is a temporary perturbation of the wave-
form-based SRO estimation when a specific trajectory induces time-varying 
time delay (i.e., the equivalent of SRO-based time drift) at the microphones 
[37]. The precise analysis of the limitations is still an open research topic 
and the working assumption of spatially fixed acoustic sources is still 
very common in SRO estimation. Practically, the construction of realis-
tic dynamic acoustic scenes for evaluation is already complicated by the 
computationally prohibitive simulation of time-varying room impulse 
responses, whereas the easier case of alternating sources does not impose 
a major problem  [44]. In real-time systems with real signals, we have 
observed that the estimation will stabilize to a new steady state when the 
sources halt to a new position.
16 Further connections between nodes from the living room and other 
rooms are avoided in MST building to respect their potential acoustic 
decoupling.
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values of εri = εi − εr = {20.89, 33.42, 13.44, 61.18} ppm 
for i = {1, 6, 7, 9} , respectively.

Figure  10c provides an overview over the acoustic 
activity for each of the three sources over a limited 
timespan of 300 s . The first source H4 is playing music 
in order to provide for continuous acoustic excitation 
in the background, while the sources N6 and B0 corre-
spond to female and male speakers, respectively, simu-
lating a conversation in the living room.

For the initial WASN, Fig.  10d presents the conver-
gence of SRO estimates after an initialization phase 
of DXCP-PhaT at the very beginning. The SRO trajec-
tories nodes  {1, 9} with depth  1 converge rather fast 
to their target values, depicted by the dashed lines of 
the respective color. Note that the SRO estimations 
of nodes  {6, 7} initially take off in the wrong direc-
tion, which is however appropriate with respect to 
their local parent node 9 during the transitional time 
period before its settling. The wrong SRO estimations 
may even overshot according to the time constants of 
the DXPC-PhaT measurement and the IMC controller 
and are consistently pulled into the right direction of 
their target values upon settling of their parent node 9. 
Overall, the initial WASN then achieves good synchro-
nization state within the first 100 s.

5.3  Dynamic WASN modifications
In order to apply a  network modification of each type 
to the initial WASN of Fig.  10a, we choose the time 
point Tc = 200 s after settling. Specifically, consider 

(a) The appearance of a new sensor node 4
(b) The failure of link between nodes 6 and 9
(c) The failure of the non-reference node 7
(d) The failure of the reference node 0

The modified topologies are depicted in Fig.  11 as 
a  result of the network-wide processing steps of the 
proposed MWS protocol in  Section  4. Taking a closer 
look at the modified topologies, it is plausible that all 
of them represent the desired MST under given con-
straints. Thus, the network topology remains optimal 
even after the network modification.

Figure  12 shows the SRO estimation of all involved 
nodes for each network modification type in subfig-
ures using a  freezing time Tf = 100 s . This value of Tf  
safely upper bounds the settling time of newly inte-
grated nodes as will be shown in Section 6.2. Figure 12a 
firstly demonstrates the expected convergence of the 
newly integrated node 4 to its true SRO with respect to 
the reference, while the persistent nodes are obviously 
unaffected by the network modification. Figure 12b, c, 
and d show that all persistent nodes in case of these 
network modifications maintain their SRO estimation 
state, which is especially evident from Fig.  12b, where 
all nodes remain in the modified WASN. Naturally, in 
Fig.  12c and d the SRO trajectories of discontinued 
nodes 7 and 0 disappear for t > Tc . Most importantly,  
application of the proposed protocol avoids a time- 
consuming reconvergence in (d).

Table 1 Parameters of pairwise synchronization unit

Module Description Symbol Value

DXCP- Frame length / FFT size N 213

PhaT FFT shift Ns 211

Temporal distance Lb 39

Settling parameter Lc 4

Maximum lag � 80

Upsampling factor p 4

First smoothing constant α1 0.5

Second smoothing constant α2 0.99

IMC- Time constant TIMC 8 s

controller Filter order nIMC 2

STFT- FFT size Nres 212

resampler FFT shift Nres,s 211

Fig. 11 Modified topologies obtained after executing 
of the network-wide protocol steps of Algorithm 1 on the initial 
WASN from Fig. 10a: a appearance of a new node 4, b failure 
of communication link between node 6 and node 9, c failure 
of non-reference node 7, d failure of reference node 0
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6  Large‑scale evaluation
For large-scale quantitative assessment, we describe the 
rendering of a richer database of dynamic WASN con-
ditions. Our proposals from Sections  3 and  4 for net-
work-wide SRO estimation and compensation are then 
evaluated on this data in terms of estimation precision, 
settling time, and synchronization accuracy.

6.1  Generation of database for dynamic WASN
Using the setup from Section 5.1, we now create random 
network modifications based on 50 random, unique ini-
tial WASN topologies. For the latter, we sample random 
numbers NWASN ∈ {4, 5, 6} from the entire set of 13 pos-
sible sensor nodes of the simulated WASN environment 
and construct the MST-optimal topology as described 
in Section 3.3. To avoid any ill-conditioned links through 
walls, every node outside the living room connects to 
node  9, which is included in every topology. The time 
point of a  network change Tc is determined randomly 
from the interval Tc ∈ [250, 290] s , such that sufficient 
simulation time is available for network-wide synchroniza-
tion before and after the network modification. Network 

modifications of each type are then drawn as follows. For 
modification (a), the new node is sampled from the set 
of nodes not part of the initial WASN. For modification 
(b), one of the existing communication links is randomly 
disabled, however, maintaining the previously described 
bottleneck-role of node  9. For modification (c), one 
non-reference node from the initial WASN is randomly 
selected to be removed. Finally, for modification (d), the 
global reference node is removed from each initial WASN.

6.2  Network‑wide SRO estimation
In order to examine the immediate effect of topology 
changes including the application of Algorithm 1 on the 
SRO estimation error of persistent nodes, Fig.  13 spe-
cifically compares the root-mean-square error RMSEε of 
SRO within the last 10 s “before” topology changes (left) 
with that of the first 10 s after topology changes (mid-
dle) by boxplots, where one data-point corresponds to 
one of the initial WASN topologies. We firstly observe 
that RMSEε before Tc is very small with a median of only 
0.04 ppm . This indicates that all topologies under inves-
tigation were given enough time for initial convergence. 
Moreover, regardless of the specific type of network 
modification (a)–(d) occurring at Tc , there is no sig-
nificant increase in the RMSEε values observed after Tc . 
A number of outliers can be noticed, all of which, how-
ever, rest safely below a threshold of 1 ppm. Apart from 
that, the average RMSEε in (d) appears to be slightly ele-
vated compared to that of all other cases. This is due to 
the small SRO estimation error of the newly appointed 
reference node just before t = Tc and it requires the 
duration of a network settling time Ts after Tc to propa-
gate this slightly new reference sampling rate to all nodes. 
Overall, the MWS procedure in Algorithm 1 for handling 
the topology changes is successful in sustaining the SRO 
estimation accuracy of the persistent nodes.

Figure  13  (right) then shows an extra boxplot of the 
RMSEε of only the newly integrated “joined” nodes based 
on the last 10 s of the entirely simulated signal. With 
its overall similar RMSEε distribution as compared to 
the initial convergence “before” topology change, we 
can once more conclude the successful handling of the 
related network change.

Figure  14 (left) depicts the corresponding settling 
time Ts of the SRO estimation, which is here defined as 
the time period from initial synchronization startup 
until the temporal RMSEε(t) falls below a  threshold 
RMSEε(t ≥ Ts) ≤ 1 ppm . In the diagram, the settling 
times of all initial WASNs are split by the depth of the 
involved nodes, which demonstrates a staggered nature 
of settling according to the synchronization gossip from 
the root to the leaves. Nodes located closest to the root 
naturally settle first, as they are directly connected to the 

Fig. 12 SRO estimation of WASN undergoing modifications 
from Fig. 11 at Tc = 200 s : a appearance of a new node 4, 
b failure of communication link between node 6 and 9, c failure 
of non-reference node 7, d failure of reference node 0
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given reference, while deeper nodes still rely on the ongo-
ing settling at intermediate node depths (as illustrated by 
Fig. 10d). After initial settling of the entire network, any 
newly “joined” node, irrespective of its corresponding 
node depth, exhibits the fast settling time with median 
of about 50 s (right) as found for initial settling at depth 
di = 1 (left) also. Of course, the actual settling times are 
also governed by the actual SRO of each node, which 
determines the spread of the boxplots. After 100 s, almost 
all of the newly “joined” nodes have attained synchroni-
zation, which determines our choice of the freezing-time 
parameter Tf  in the MWS protocol of Algorithm 1.

6.3  Network‑wide signal synchronization
After SRO estimation and evaluation across the network, 
the related time synchronization of waveforms is eventually 
assessed in terms of an averaged mean-squared coherence 
(AMSC) [78] and a signal-to-synchronization-noise ratio17

where Var(·) is an  operator for signal variance and the 
waveform zi,r[n] refers to a synchronous representation 
of the actual node signal zi[n] at the sampling rate of the 
respective reference node r. The signal zi,AS[n] in the i-
th node is determined by the resampled signal zi,S[n] 
from  Fig.  8, but compensated for a  residual time offset 

(13)SSNR = 10 · log10
Var(zi,r)

Var(zi,AS − zi,r)
,

τ resri [n] =
∑n

m=1(ε̂ri[n] − ε̂ri[m]) that accumulates in the 
closed-loop synchronization unit due to transitional SRO 
estimation.

Firstly analyzing the initial WASN before a topology 
change, the resulting AMSC and SSNR values obtained 
within last 10 s before Tc are presented in Fig.  15 (left). 
The results confirm poor signal synchronization of the 
raw asynchronous “async” signals, indicated by a median 
AMSC of only 0.15 and a median SSNR of about −3 dB . 
Outliers at AMSC = 1 do belong to the initial WASNs 
with node  0 in the role of a  non-reference node with 
ε0 = 0 ppm , while similar outliers are not visible in the 
SSNR due to axis limitations. For synchronized “sync” 
signals, however, the AMSC values appear to be very 
close to the maximum possible value of 1 and the SSNR 
assumes a reasonable median of about 12 dB with some 
variance. The moderate SSNR here is explained by the 
well-known sensitivity of the SSNR metric with respect 
to remaining small SRO and timing errors of signals. In 
summary, these results indicate good WASN synchroni-
zation just before the time point of network change Tc.

Then, with dynamic network conditions (a) to (d) 
according to Section 6.1 and with the application of the 
MWS protocol of Algorithm 1, the distribution of result-
ing AMSC and SSNR values obtained on the persistent 
nodes within first 10 s after Tc are shown in Fig. 15 (mid-
dle). As a result of our coordinated treatment of the 
dynamic conditions, the signal synchronization attained 
before topology changes well sustains into the phase after 
the modification for the subset of persistent nodes with a 
median of 12 to 14 dB SSNR. As shown in Fig. 15 (right), 

Fig. 13 RMSEε values for persistent nodes within last 10 s before Tc 
(left) and within first 10 s after Tc (middle) and for newly joined nodes 
within last 10 signal seconds (right)

Fig. 14 Settling times Ts of SRO estimation of the initial WASN split 
by nodes depths ∈ {1, 2, 3} (left) and of the newly joined nodes (right)

Fig. 15 Synchronization performance in terms of a AMSC and b SSNR 
for persistent nodes within last 10 s before Tc (left) and first 10 s after Tc 
(middle) and for newly integrated nodes within last 10 signal seconds 
(right)17 Higher values of both AMSC and SSNR values mean better performance.
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the remaining subset of newly “joined” nodes evaluated 
within last 10 signal seconds of the simulation indicates a 
synchronization comparable to that of persistent nodes, 
i.e., with very good AMSC values and only a slight loss of 
SSNR once more being attributed to the sensitivity of this 
metric to small residual timing errors.

7  Ablation studies
Due to the absence of a reference approach that would 
operate precisely under the same dynamic network con-
ditions as the proposed methods, this section investi-
gates the requirement of certain processing steps and 
the robustness to assumptions made. Specifically, the 
Algorithm  1 for maintaining waveform synchroniza-
tion is evaluated against several ablated versions of itself 
in Section  7.1. Then, the former assumption of topol-
ogy changes after network convergence is abandoned 
for early network changes taking place in Section  7.2. 
Eventually, a fallback network configuration to operate 
without the knowledge of the sensor coordinates and 
consequently without MST is described in Section 7.3.

7.1  Ablation studies of the proposed method
We investigate the effects on SRO estimation when omit-
ting parts of Algorithm 1, specifically 

 (i) When not temporarily freezing children of newly 
integrated nodes (line 14)

 (ii) When not resizing the MDB of nodes whose depth 
has changed (line 12) and

 (iii) When not freezing the SRO estimation of newly 
elected reference nodes (line 16).

In doing so, we rely on the previously introduced network 
modifications (a) and (d) as shown by Figs. 11 and 12 for 
which the former simulations are here repeated with 
ablations but otherwise under the identical conditions as 
before. Only for a considerable effect of ablation (ii) we 
have to reduce the DXCP-PhaT frame length to N = 211 
to effectively increase the WASN’s sensitivity to MDB 
size mismatches under the limited WASN size and con-
sidered time span.

Figure  16 depicts the resulting SRO estimation over 
time after network modifications at Tc = 200 s, as before, 
where ablation (i) is applied with network modification 
(a), while ablations (ii) and (iii) are applied with network 
modification (d).

Figure  16 (i) shows the contrast with the former 
Fig. 12a that the SRO estimation of node 9, as a child of 
the newly integrated node 4, degrades shortly after Tc and 
only recovers upon convergence of node 4. Of course, the 
grandchildren of node 4 (i.e., nodes 6 and 7) are affected, 
too, although with a delay according to their depth within 
the MST. As known from Fig. 12a, temporarily freezing 

direct children of newly integrated nodes would alleviate 
this problem.

Figure 16 (ii) refers to a dynamic modification with a new 
reference node 9. Since the depth relationship of nodes 6, 7, 
and 9 remains unchanged in this very example, their SRO 
estimation is apparently stable with time. However, node 1 
severely degrades at about 75 s after the change time Tc due 
to a modified depth relationship between node 1 and node 
9 (formerly relayed by node 0) and with the corresponding 
mismatch of MDBs not resized properly, which eventually 
violates the assumption of similar content of the input sig-
nals for waveform-based SRO estimation.

Figure  16 (iii) finally depicts a contrast with former 
Fig.  12d when resampling of the newly elected refer-
ence node 9 is somewhat naively discontinued, which 
corresponds to resetting its SRO estimation to zero 
(instead of continued resampling with frozen SRO esti-
mation according to Algorithm 1). Hence, all descend-
ants of the new reference node (the entire WASN) are 
required to adjust to the new reference condition by 
reconvergence, which temporarily and unnecessarily 
presents an undetermined state of the sensor network.

7.2  Dynamic WASN with early network change
For clarity of the arrangement, a steady-state synchro-
nization was assumed in Section 5.3 before any network 
change takes place and is being coordinated by the pro-
posed MWS protocol in Algorithm  1. The steady-state 
assumption there was inherently reasonable, since it is 
less interesting to maintain the state of a  WASN if its 

Fig. 16 Ablation studies for Algorithm 1
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nodes have not yet converged. However, in practice an 
early network change may arise before convergence and 
the intention now is to show that convergence is not a 
strict requirement for the employment of the proposed 
methods. Figure 17 therefore considers a network modi-
fication (a), a newly integrated node 4 before convergence 
of the initial network. It turns out that the early network 
change does not cause any permanent complications 
when Algorithm  1 is applied. The acoustic sensor net-
work only needs more time to settle (here around 2.5 min 
after the change) compared to the idealized case from 
Fig. 12a (only 1 min for new settling after the change).

7.3  Distributed buffer‑based synchronization 
without knowledge of positions of the sensor nodes

In this section, the performance of the buffer-based online 
realization of distributed WASN synchronization from 
Section  3.2 is investigated for the case if no knowledge 
of the node coordinates is available. In such a scenario, it 
is neither possible to build the geometric MST topology 
nor to optimally choose the reference node as described 
in Section 3.3. Instead, we may fall back to a centralized 
SOT topology mentioned in Section  3.1 with a fixed or 
randomly chosen reference node. For the analysis, we rely 
on sampled sets of nodes as described in Section 6.1 and 
evaluate WASN performance attained in the steady state 
between time 190 and 200 secs (the same time span as 
used for previous Figs. 13 (left) and 15 (left) with MST).

Figure  18 summarizes the outcomes, where “MST” 
stands as an anchor for the previous results, “SOT” 
refers to star-out topology with node 9 always the refer-
ence, and “rSOT” instead uses a random reference node 
(newly sampled without special treatment of node 9). 
With the metrics at hand we do observe similar network 
performances for all configurations, with maybe margin-
ally reduced RMSE of the SRO estimation and slightly 
advanced synchronization SSNR for the SOT topologies. 
This can be attributed to the minimum network depth of 
the SOT and thus an earlier and slightly better network 
convergence in the available simulation time, while the 
larger geometric distances between nodes connected 

along topology edges do not significantly impair the 
acoustic coupling in our small-space SINS environment.

In light of this ablation, the MST topology indeed has not 
proved superior in our simulated context, but we do see the 
reason in our relatively small-scale configuration and in the 
simulation of low-noise microphones. Conversely, we still 
see the necessity of local operation organized in an MST 
configuration (rather than SOT) when considering larger 
scenarios or use cases with increased requirements as of

• A lower acoustic coherence between distant nodes,
• An increased noise floor of low-cost microphones,
• A limited wireless connectivity of distant nodes,
•  Larger number of sensor nodes in the network,
• And a necessary decentralization for network robust-

ness or distribution of computational load.

These requirements may appear in crowded indoor net-
works with numerous sensors or in large-scale outdoor net-
works, for instance, biosphere monitoring. It turns out that 
such immense diversity of WASNs has not been represented 
in our analysis of small-scale configurations yet. Still, it was 
our intention to demonstrate the utility of proposed meth-
ods, including the closed-loop synchronization unit and the 
dynamic MWS protocol, under several circumstances.

8  Conclusions
An online distributed waveform-based sampling-time syn-
chronization for dynamic wireless acoustic sensor networks 
(WASNs) has been described in this paper and applied to 
a  simulated smart home environment for evaluation. The 
essential system component is a  buffer-based implementa-
tion of a closed-loop synchronization unit (with resampling 
and sampling-rate offset estimation in a loop) for any two 
nodes of the network. Our specific unit makes use of a dou-
ble-cross-correlation processor for waveform-based esti-
mation of sampling rate offset (SRO) and of a buffer-based 
SRO compensation by an STFT-based resampling method. 
This estimation and compensation in the closed-loop archi-
tecture are here coupled by an  internal-model-control unit. 

Fig. 17 Early network change for the network modification (a) 
from Fig. 11a

Fig. 18 Influence of topology type on WASN synchronization 
with and without knowledge of positions of the sensor nodes: 
a RMSE values of SRO estimation, b SSNR values of SRO 
compensation
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The suggested pairwise node synchronization unit is then 
employed for distributed synchronization of WASNs organ-
ized in a rooted-tree topology with minimum spanning tree. 
Our paper has demonstrated how the synchronization gossip 
in this case propagates from the root to the leaves of the net-
work. Eventually, a protocol for maintaining waveform-based 
synchronization has been proposed for scenarios with ran-
dom modifications of the original WASN taking place. Our 
experimental evaluation in the environment of a  simulated 
apartment with several connected rooms proved efficiency 
and robustness of the proposed system (for instance, against 
unknown sensor coordinates, early modification, and some of 
the ablations studied) for sustainable network-wide SRO esti-
mation and signal synchronization in dynamic WASNs.
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