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Abstract 

This article presents the research work on improving speech recognition systems for the morphologically complex 
Malayalam language using subword tokens for language modeling. The speech recognition system is built using 
a deep neural network–hidden Markov model (DNN-HMM)-based automatic speech recognition (ASR). We pro-
pose a novel method, syllable-byte pair encoding (S-BPE), that combines linguistically informed syllable tokeniza-
tion with the data-driven tokenization method of byte pair encoding (BPE). The proposed method ensures words 
are always segmented at valid pronunciation boundaries. On a text corpus that has been divided into tokens using 
the proposed method, we construct statistical n-gram language models and assess the modeling effectiveness 
in terms of both information-theoretic and corpus linguistic metrics. A comparative study of the proposed method 
with other data-driven (BPE, Morfessor, and Unigram), linguistic (Syllable), and baseline (Word) tokenization algo-
rithms is also presented. Pronunciation lexicons of subword tokenized units are built with pronunciation described 
as graphemes. We develop ASR systems employing the subword tokenized language models and pronuncia-
tion lexicons. The resulting ASR models are comprehensively evaluated to answer the research questions regard-
ing the impact of subword tokenization algorithms on language modeling complexity and on ASR performance. 
Our study highlights the strong performance of the hybrid S-BPE tokens, achieving a notable 10.6% word error rate 
(WER), which represents a substantial 16.8% improvement over the baseline word-level ASR system. The ablation 
study has revealed that the performance of S-BPE segmentation, which initially underperformed compared to syllable 
tokens with lower amounts of textual data for language modeling, exhibited steady improvement with the increase 
in LM training data. The extensive ablation study indicates that there is a limited advantage in raising the n-gram 
order of the language model beyond n = 3 . Such an increase results in considerable model size growth without sig-
nificant improvements in WER. The implementation of the algorithm and all associated experiments are available 
under an open license, allowing for reproduction, adaptation, and reuse.
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1 Introduction
Automatic speech recognition (ASR) is the process of 
converting speech acoustic signals into written text. This 
involves several stages, where the acoustic features are 
mapped to phonemes, which are the basic units of sound, 
and then reconstructed into meaningful words and sen-
tences of the language under consideration.

Morphologically complex low-resource languages pose 
a significant challenge to speech recognition [1]. Mor-
phologically complex languages exhibit productive word 
formation through agglutination, inflection, and com-
pounding, resulting in very long words with phonetic 
and orthographic changes at morpheme boundaries [2]. 
The presence of such lengthy and morphologically com-
plex words introduces difficulties in language modeling, 
which subsequently affects the word error rate (WER) in 
ASR tasks. This study aims to examine how different sub-
word tokenization algorithms affect the performance of 
ASR models developed specifically for Malayalam.

1.1  Morphological complexity of Malayalam language
Malayalam is a morphologically complex language which 
has seven nominal case forms (nominative, accusative, 
dative, sociative, locative, instrumental, and genitive), 
two nominal number forms (singular and plural) and 
three gender forms (masculine, feminine, and neutral). 
These forms are indicated as suffixes to the nouns. Verbs 
in Malayalam get inflected based on tense (present, past, 
and future), mood (imperative, compulsive, promissive, 
optative, abilitative, purposive, permissive, precative, 
irrealis, monitory, quotative, conditional, and satisfac-
tive), voice (active and passive), and aspect (habitual, iter-
ative, perfect) [3].

The inflecting suffix forms vary depending on the 
final phonemes of the root words. Words agglutinate to 
form new words depending on the context [4]. Table  1 
gives examples of a few complex word formations in 
Malayalam. It has been demonstrated in the literature 
that the Malayalam language exhibits a high level of 

morphological complexity than many other Indian and 
European languages in terms of type-token ratio and 
type-token growth rate [5, 6].

Figure  1 presents a comparison of the type-token 
growth rate of Malayalam with that of other Indian 
languages and English highlighting the notably higher 
rate at which new words (types) are encountered in the 
Malayalam corpus. This creates a large number of low-
frequency words and it is practically impossible to build 
a pronunciation lexicon that covers all complex word 
forms. Additionally, it introduces the problem of data 
sparsity in language modeling [7].

1.2  Deep neural network–hidden Markov Model 
(DNN‑HMM)‑based ASR architecture

The classical ASR decoder shown in Fig. 2 is composed 
of an acoustic model (AM), a language model (LM), and 
a pronunciation lexicon (PL). The AM captures the rela-
tionship between acoustic features and phonemes in the 
language. The PL contains the phonemic representations 
of all words to be decoded by the ASR system. The LM 
establishes the statistical relationship between words in 
the language. Word-level statistical modeling of mor-
phologically complex languages can not achieve the word 
sequence prediction capabilities of simple morphol-
ogy languages [8, 9]. Additionally, the finite-sized word 
vocabulary of a pronunciation lexicon does not cover 
complex word forms and loan words that appear in a 
real-world setting. As a result, there is difficulty in recov-
ering words that are not in the lexicon. [7].

The out-of-vocabulary (OOV) rate is the proportion of 
words in a given speech sample that are not present in 
the vocabulary of the ASR lexicon. OOV words can not 
be recognized by a word-based ASR decoder. A large 
number of OOV words and data sparsity are the natural 
consequences of word-based language models in ASR 
for morphologically complex languages [7]. Segmenting 
words to appropriate subword tokens before process-
ing, and later reconstructing them to the whole words 

Table 1 Complex morphological word formation in Malayalam

Malayalam word English translation Remark

In the box Nominal locative suffix to the word  (box).

To the child Nominal sociative suffix to the word  (child).

Baby elephant Compound word formed by agglutination of nouns  
(elephant) and  (baby)

To the baby elephants Nominal sociative suffix to the plural form of the compound word 
 (baby elephant)

Do not stay awake Negative imperative mood of the verb  (be awake)

Will be singing Future tense iterative aspect of the verb  (to sing).
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is a viable approach to solve the issues of data sparsity 
and OOV rates. When subword tokens are used for lan-
guage modeling, a dummy symbol is added to identify 
the positions where the tokens can be glued together to 
form words [10]. When subwords replace words, the ASR 
vocabulary contains morphemes, syllables, or other char-
acter sequences that together can be used to create an 
unlimited number of words [11, 12].

An alternate approach to developing ASR models is 
the End to End (E2E) architecture, which is heavily data 
intensive. In the context of our research on the morpho-
logically complex Malayalam language, we encountered a 
significant challenge related to the limited availability of 

annotated speech corpora under open licenses, making 
it a low-resource language. With less than 75 h of anno-
tated data, training the E2E ASR system from scratch 
proved to be less practical due to the poor accuracy 
achieved with limited training data [13]. For improved 
speech recognition accuracy, DNN-HMM methods are 
best suited for languages with limited annotated speech 
[14]. Also, when much more text data is available than 
speech data, DNN-HMM models are the preferred 
choice [15, 16] than the modern E2E approaches. Addi-
tionally, DNN-HMM ASR models offer the advantage of 
easy integration into small hardware devices, enabling 
fast on-device speech recognition [14].

Fig. 1 Comparing the type-token growth rate of Indian languages in comparison to English. Reproduced from [5]

Fig. 2 Block schematic representation of a DNN-HMM ASR system
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1.3  DNN‑HMM ASR with subword tokens
The ASR system illustrated in Fig. 3, which utilizes sub-
word tokens, differs from the conventional ASR system 
depicted in Fig. 2 in terms of how the LM and the PL are 
constructed. In the subword token-based ASR, the LM is 
trained on a text corpus that is subword tokenized, and 
the PL consists of pronunciation descriptions for sub-
words instead of the conventional word-based entries. 
Subword ASR decoder requires an additional module to 
reconstruct words from the decoded subword units as 
shown in Fig. 3.

The reconstruction from subwords to words is facili-
tated by adding a dummy marker symbol [7]. In the 
experiments we perform in this work, we use the con-
tinuity marker “+” to the right side of the subwords, 
to indicate another subword has to follow it. In this 
approach, reconstruction is straightforward, as the 
marker indicates the positions for joining the following 
subword. Table 2 illustrates the usage of continuity mark-
ers in our experiments.

For languages where space and punctuation marks act 
as delimiters between words, segmenting the raw text 
of the language into word tokens is pretty straightfor-
ward. However, to segment text to subword units, there 
are data-driven as well as linguistically informed algo-
rithms [1, 7]. Morfessor [11, 17, 18], byte pair encoding 
(BPE) [19, 20] and Unigram [21] are a few data driven 

algorithms in popular use. These algorithms do not 
ensure that subword tokenization happens at valid pro-
nunciation boundaries. This makes precise representa-
tion of its pronunciation as a sequence of phonemes 
impossible.

For example, if the word SOPHIA  is segmented 
as SOP+ HIA, the pronunciation can not be segmented 
in a valid way. Then what is viable is to represent the 
subword tokens in the lexicon with their pronunciation 
described as a grapheme sequence. Tables 3 and 4 indicate 
how these entries would be represented in a phonemic 
and graphemic lexicon respectively. In this work, we use 
graphemic lexicons where graphemes would be mapped 
to acoustic features during acoustic model training. Sub-
word tokens in lexicon entries have the continuity marker 
“+" indicating it will be followed by another subword seg-
ment to complete a word.

In this paper, we propose a novel hybrid subword 
tokenization algorithm, Syllable - byte pair encoding 
(S-BPE), combining linguistic syllabification rules with 
the data-driven tokenization method of BPE.

Fig. 3 Block schematic representation of DNN-HMM ASR system, with subword-based language model and pronunciation lexicon

Table 2 Subword tokenization illustrating the usage of 
continuity marker symbol ‘+’

Original text

Subword tokenized text

Table 3 Phonemic Lexicon

Word Pronunciation

SOPHIA

Table 4 Graphemic Lexicon

Word/subword Pronunciation

SOPHIA S O P H I A

SOP+ S O P

HIA H I A
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1.4  Research objectives and key contributions
The objectives of this paper are (i) to provide an over-
view of existing subword tokenization algorithms in 
Malayalam and to propose a hybrid algorithm of sub-
word tokenization named S-BPE; (ii) to perform an 
analysis of the impact of different subword tokenization 
for Malayalam ASR in terms of WER, OOV-WER1, and 
model memory requirement; and (iii) to contribute to 
the research on Malayalam ASR by publishing the source 
codes of our experiments2 under permissive licenses to 
reuse and reproduce the results. We design our experi-
ments to answer four related research questions (RQ).

• RQ1: Which subword tokenization method offers the 
most effective language modeling?

• RQ2: Does the subword tokenization method that 
exhibits the best language modeling complexity also 
result in the lowest WER for ASR tasks?

• RQ3: How does subword tokenization impact ASR 
performance concerning model memory require-
ments and OOV recovery rate in a morphologically 
complex language?

• RQ4: How do the amount of audio and textual train-
ing data and the n-gram order of the language model 
affect the effectiveness of subword token-based ASR 
in a morphologically complex language?

To answer our research questions, we create subword 
token-based n-gram language models using six tokeniza-
tion algorithms: Word, Morfessor, BPE, Unigram, Sylla-
ble, and S-BPE. We analyze the complexity of language 
modeling using a modified perplexity metric (explained 
in detail in Section 2.2). These language models are then 
used to build DNN-HMM ASR models. We evaluate the 
performance of these ASR models based on metrics such 
as WER, OOV-WER, and the memory requirements of 
the models. The main contributions and practical impli-
cations of this study can be summarized as follows. 

1 We introduce a novel subword tokenization algo-
rithm, called S-BPE3, specifically designed for the 
Malayalam language.

2 We investigate the impact of different subword 
tokenization algorithms on the complexity of lan-
guage modeling. Our analysis reveals that tokeni-
zation algorithms resulting in a higher average 
number of tokens per word tend to receive a sig-
nificant penalty in terms of the complexity evalua-
tion metric known as surprisal per sentence (SPS). 

As a result, language models based on syllable-
level tokenization exhibit the highest complexity, 
while word-level tokenization leads to the lowest 
complexity.

3 We also found that the reduction in language mod-
eling complexity as measured by SPS does not neces-
sarily imply a reduction in WER for ASR in morpho-
logically complex languages.

4 With the proposed S-BPE tokenization algorithm, 
we could achieve state-of-the-art (SOTA) results for 
Malayalam ASR. The S-BPE model results in the best 
WER (10.6%) and best OOV-WER (24.8%), which 
is significantly better than the best baseline WER 
(27.4%) and OOV-WER (100%).

5 Additionally, the S-BPE model demonstrates model 
memory requirements comparable to other subword 
tokens, but considerably lower than the baseline 
word model. The significance of a smaller memory 
requirement happens in small hardware scenarios. It 
enables the efficient deployment of ASR models on 
resource-constrained devices, facilitating seamless 
on-device speech recognition.

6 Through a rigorous ablation study by varying the 
n-gram order and the amount of textual data used for 
language modeling and the amount of speech data 
used for acoustic modeling, we present the influence 
of these factors on ASR performance, providing valu-
able insights for optimizing ASR systems in the con-
text of subword tokenization.

7 We provide open licenses for all source codes and 
models related to subword tokenization4 and the 
resulting ASR models. This allows for public evalua-
tion and facilitates further research advancements in 
the field.

In the following sections, we describe the related works, 
present the proposed algorithm, describe the experimen-
tal setup, and analyze the results which lead to answers to 
the research questions posed in the earlier section.

2  Related works
In this section, we review various studies related to 
subword tokenization in morphologically complex lan-
guages. We begin with different subword tokenization 
algorithms and explore the possibility of employing them 
for language modeling in the Malayalam language. We 
then explore the use of subword token-based language 
modeling on the DNN-HMM ASR task and discuss the 
SOTA status of Malayalam ASR.

1 OOV-WER: The WER exclusively for OOV words
2 ASR Training script: https:// gitlab. com/ kavya manoh ar/ ml- subwo rd- asr
3 S-BPE Code Repo: https:// github. com/ kavya manoh ar/ subwo rd- syl- bpe- ml

4 Segmentation Models: https:// gitlab. com/ kavya manoh ar/ ml- subwo rd- 
segme ntati on

https://gitlab.com/kavyamanohar/ml-subword-asr
https://github.com/kavyamanohar/subword-syl-bpe-ml
https://gitlab.com/kavyamanohar/ml-subword-segmentation
https://gitlab.com/kavyamanohar/ml-subword-segmentation
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2.1  Subword tokenization algorithms
Subword token-based language modeling has been pro-
posed for applications in speech recognition [7, 11, 
12, 22, 23], statistical machine translation [24], neural 
machine translations [20, 21] and handwriting recogni-
tion [25]. The choice of subword tokens used in language 
modeling impacts the performance of the model on many 
downstream tasks [26] including speech recognition [7].

A language model estimates the likelihood of word or 
subword sequences to form a valid sentence. To estimate 
this likelihood, the raw text of the language has to be 
tokenized into words or subwords. This section explains 
various tokenization algorithms proposed in the litera-
ture. The suitability of tokenization algorithms depends 
on the task (speech recognition, machine translation, 
text prediction, etc.) under consideration. Tokenization 
techniques that could be adapted for the Malayalam lan-
guage are used in the ASR experiments performed in this 
research work.

To perform tokenization that aligns with the Malay-
alam script, it is important to analyze the nature of the 
grapheme inventory of Malayalam. The graphemes in 
Malayalam script are classified as: (i) vowels; (ii) vowel 
signs; (iii) regular consonants; (iv) special consonants: 
anuswara, visarga, and chili; and (v) multi-functional 
character: virama [4]. Vowel graphemes occur only at 
word beginnings. Regular consonants inherently have 
the vowel  present in them. Vowel sounds at positions 
other than word beginnings are represented by vowel 
signs. Vowel signs modify the inherent vowel sound 
of the consonants. A consonant cluster, also known as 
a conjunct, in Malayalam is a sequence of consonants 
separated by virama in between, where virama kills the 
inherent vowel from the preceding consonant [4]. Chillus 
are special consonants that do not have inherent vowels 
associated with them. The characteristics of other special 
consonants and virama are marked in Table 5. The four 
types of syllable structures possible in Malayalam are 
listed in Table 6 [27]. The syllable tokenization will make 
use of these linguistic rules.

Several approaches for tokenizing Malayalam text 
to meaningful morpheme units incorporating linguis-
tic knowledge are reported in the literature. But for the 

reasons listed below, none of these could be used for the 
language modeling task required for ASR. For Malay-
alam morphological tokenization, earlier studies have 
used probabilistic, rule-based suffix-stripping, machine 
learning, and dictionary-based approaches [28–31]. The 
most recent deep learning technique uses Romanised 
Malayalam text and requires annotated data for training 
[32]. However, none of these research offers an applica-
tion program interface (API) that can be programmed 
to perform morphological tokenization for use in down-
stream applications. The only tool with a programmable 
interface that works with Malayalam script performs 
morphological analysis5 and not morphological tokeni-
zation [3]. For example, we need the compound word 

 to be tokenized as 
, while its morphological analysis returns 
<noun><plural>. Morphological analysis is not appro-
priate for an ASR task, as we expect to piece together the 
original word from the morpheme tokens by concatena-
tion. For the ASR task, we, therefore, do not rely on any 
knowledge-based morpheme tokenization in Malayalam.

The data-driven tokenization algorithms are designed 
only based on word spellings and do not have access to 
pronunciation information. It is therefore possible for 
these algorithms to break a word sequence into units 
that do not imply well-formed correspondence to pho-
netic units. Pronunciation-assisted subword modeling 
(PASM) is an algorithm proposed to solve this issue by 
using a pronunciation dictionary as an aligner to deter-
mine the positions for tokenization [23]. To perform this 
task, PASM needs a pronunciation dictionary. PASM 

Table 5 Special consonants and Virama sign in Malayalam

Character Properties

Anuswara Represents /m/ at syllable ends

Visarga Introduces aspirated glottal stop

Chillu Dead consonants with no inherent vowel

Virama Kills Inherent vowel in conjuncts

Inserts schwa at word ends.

Table 6 Syllable structure in Malayalam with examples

a  Beginning of word

 b End of word

Type Syllable structure Example

1 <BoW>a + vowel

<BoW> + vowel + special consonant

2 Consonant

Consonant + special consonant

Consonant + vowel sign + special consonant

3 Conjunct

Conjunct + special consonant

Conjunct + vowel sign + special consonant

4 Consonant+ virama + <EoW>b

Conjunct + + virama +<EoW>

5 Mlmorph: https:// pypi. org/ proje ct/ mlmor ph/

https://pypi.org/project/mlmorph/
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implemented in the English language was reported in 
[23] using the CMUDict pronunciation dictionary. But 
many low-resource languages do not have a ready-to-use 
pronunciation dictionary. In the comparative analysis 
performed in this work, we use several tokenization algo-
rithms that break the pronunciation flow. So to be fair in 
the comparison, we use only graphemic lexicons and not 
phonemic ones. In this scenario, PASM for tokenization 
is not used.

The tokenization techniques already reported in the lit-
erature and that could be adapted for the Malayalam lan-
guage and employed in the experiments reported in this 
work are described in the following subsections.

2.1.1  Word tokens
In Malayalam, the technique of word tokenization is 
simple. After removing punctuation, the raw text cor-
pus is divided up by spaces. Given a word of length 
M, it requires no more splitting, and hence time com-
plexity of further tokenization of a word is a constant, 
denoted by O(1).

2.1.2  Morpheme tokens
Morfessor is a language-independent, data-driven 
method of subword tokenization. The Morfessor base-
line algorithm is based on the minimum description 
length principle [17]. It is an unsupervised technique 
in which frequently occurring sub-strings in several 
different word forms from the training text corpus are 
proposed as morphs (or morpheme-like units) and 
the words are then represented as a concatenation of 
morphs [11]. Its current version, Morfessor2.0, has 
a Python interface that may be customized and it sup-
ports annotated training data as well [18]. The Morfes-
sor algorithm does not guarantee either tokenization at 
appropriate pronunciation boundaries or tokenization 
into meaningful units.

2.1.3  BPE tokens
BPE is a data-driven algorithm that determines the opti-
mal set of subword tokens through an iterative process. 
It was originally proposed as a data compression algo-
rithm [19]. The BPE algorithm splits the training data 
into characters and creates an initial vocabulary. During 
further iterations, the most frequent character bigrams 
are determined, merged into a single token, and added 
to the vocabulary. The process is continued until a 
desired number of merge operations are performed. The 
final vocabulary size is the sum of the initial vocabulary 
and the number of merge operations, which is a hyper-
parameter [20]. The time complexity in training the BPE 
model is O(Nm) , where N is the corpus length and m the 
number of merge operations [33].

The subword tokens in the learned vocabulary are later 
used to segment any text. BPE ensures that the most 
common words are represented in the pronunciation dic-
tionary as a single token while the rare words are broken 
down into two or more subword tokens [20]. BPE tokeni-
zation algorithm available in subword-nmt Python 
library is used in the experiments described in this work6. 
The time complexity in tokenizing a word of length M 
using BPE implementation in [20] is O(M2)7 [33].

2.1.4  Unigram tokens
Subword regularization with Unigram language model, 
henceforth refrerred to as Unigram tokenization [21] is 
a language-independent tokenization algorithm. It makes 
the assumption that the probability of the occurrence of 
subword tokens in the sentence is independent of one 
another. The vocabulary of the desired size is built from 
a heuristically large vocabulary by retaining only η% (say 
η = 80 ) of the subwords in each iteration and discarding 
the rest. The top 80% of subwords are obtained by rank-
ing all subwords according to the likelihood reduction of 
removing them from the vocabulary. The most probable 
tokenization of an input sentence is determined by the 
Viterbi algorithm. The Unigram tokenization algorithm is 
available in the open source Python library, sentence-
piece8, which is used in the experiments performed in 
this work.

2.1.5  Syllable tokens
Orthographic syllable-based tokenization of text was 
proposed by Kunchukuttan et  al. for statistical machine 
translation applications [24]. Splitting the tokens based 
on vowels and adjacent consonants, named vowel seg-
mentation, was proposed by Adiga et  al. and employed 
in the context of Sanskrit speech recognition [22]. These 
two methods segment text into syllable-like units at valid 
pronunciation boundaries.

A syllabification algorithm tailored for Malayalam script 
using finite state transducers has been proposed in [34]. 
The linguistic rules for syllable tokenization described 
in Table 6 have been computationally implemented as in 
Algorithm  1 and made available in the Mlphon Python 
library9. The algorithm analyzes the input text sequence 
and determines whether it falls into one of the four allow-
able categories of syllable structures in Malayalam. If 
it falls into any of these categories, it inserts tags (  

6 subword-nmt: https:// pypi. org/ proje ct/ subwo rd- nmt/
7 Byte Pair Encoding and Data Structures https:// guill aume- be. github. io/ 
2021- 09- 16/ byte_ pair_ encod ing
8 sentencepiece: https:// pypi. org/ proje ct/ sente ncepi ece/
9 https:// pypi. org/ proje ct/ mlphon/

https://pypi.org/project/subword-nmt/
https://guillaume-be.github.io/2021-09-16/byte_pair_encoding
https://guillaume-be.github.io/2021-09-16/byte_pair_encoding
https://pypi.org/project/sentencepiece/
https://pypi.org/project/mlphon/
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and ) at the appropriate positions to indicate the 
beginning and end of syllables. For a more comprehen-
sive understanding of this algorithm, please refer to [34]. 
This results in variable-length subword tokens where each 
segment is a syllable with valid pronunciation. Since this 
algorithm is implemented as a deterministic and mini-
mized finite state automaton, the time complexity for 
the syllable tokenization process is O(M) , where M is the 
number of characters in a word [35].

The perplexity, PPL(S), of a sentence, is the inverse 
probability normalized by the number of tokens, N. 
Normalization ensures, longer sentences are not heavily 
penalised [8].

(3)PPL(S) =
1

P(S)

1
N

Algorithm 1 FST-based Syllabification Algorithm

2.2  Language modeling analysis
Tokenization can mitigate the effects of rich mor-
phology by breaking down highly inflected words into 
smaller components [9]. Statistical n-grams serve as 
a simple and powerful tool to capture language mod-
eling information. The order of n-gram needed to cap-
ture this information depends largely on the properties 
of the tokens used. The tokenization algorithm deter-
mines the properties (the total number of tokens in the 
text, the number of characters within each segment, 
the number of tokens in a word, and the frequency of 
tokens) of the subword tokenized language modeling 
corpus.

Perplexity can be interpreted as the weighted average 
branching factor of a language. The branching factor of 
a language is the number of possible next words that can 
follow any word. Higher perplexity is positively corre-
lated with difficulty in language modeling [36]. For a sen-
tence, S, formed by a sequence of N tokens S = s1, s2...sN , 
the probability P(S) of the sentence is given by the follow-
ing formula applying the chain rule of probability [36].

Based on the Markovian assumption of n-gram lan-
guage modeling, the probability of each word depends 
only on the previous n− 1 words [36]. This makes the 
sentence probability to be computed as

(1)
P(S) = P(s1, s2, ...sN )

= P(s1)P(s2|s1)...P(sN |sN−1, sN−2...s1)

(2)P(S) =

N
∏

i=1

P(si|si−1, si−2..si−(n−1))

Applying logarithm base 2 on the Eq. (3), we get

Since the number of tokens, N, in a sentence is largely 
determined by the tokenization method, the perplex-
ity measure that is dependent on this parameter can not 
be used to compare modeling complexity across differ-
ent tokenization algorithms [8]. The negative log-like-
lihood, NLL(S), of the sentence probability distribution, 
effectively removes this dependency as described in the 
following equation and is called the surprisal of that sen-
tence [9].

Based on Eq. (4), this can be rewritten as

By scaling down the NLL(S) by the number of characters, 
M in a sentence, we obtain the character level surprisal, 
NLLc(S) as in Eq. (7) [37]. The number of characters in a 
sentence is a parameter independent of the tokenization 
used. This metric can also be used to compare language 
modeling complexity across tokenization algorithms.

Alternatively, word level surprisal, NLLw(S) , where 
the scale factor is the number of words, W in a sen-
tence, can also be used for comparison across tokeniza-
tion algorithms [7, 12].

(4)log2 PPL(S) = −
1

N
log2 (P(S))

(5)NLL(S) = −log2 (P(S))

(6)NLL(S) = Nlog2 (PPL(S))

(7)NLLc(S) =
N

M
log2(PPL(S))
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The metric surprisal per sentence (SPS) is a measure 
that quantifies the average surprisal of a corpus by divid-
ing the total surprisal of the corpus by the number of sen-
tences it contains. To calculate SPS, we follow these steps: 

1 Compute surprisal: First, calculate the surprisal for 
each sentence in the corpus. This involves using a 
language model to estimate the probability of each 
word or subword unit in the sentence given the pre-
ceding context.

2 Sum surprisal: Add up the surprisal values for all sen-
tences in the corpus to obtain the total surprisal.

3 Calculate SPS: Divide the total surprisal by the num-
ber of sentences k, to compute the SPS. 

For language modeling complexity comparisons across 
tokenization algorithms, SPS computation using NLL(S) 
is employed in [9], NLLc is used in [37], and NLLw(S) is 
used in [7].

2.3  Subword‑based ASR
Subword-level modeling has proved to be instrumental in 
addressing the challenges posed by morphologically com-
plex languages. Language modeling on subword tokens 
in ASR for morphologically complex languages has been 
extensively studied [11, 38, 39] in the framework of DNN-
HMM ASR systems. Representation using subword units 
allowed for a more granular representation of words. 
Promising results have been achieved by applying Morfes-
sor-based tokenization to DNN-HMM ASR systems, lead-
ing to reduced WER and improved OOV word recovery in 
languages such as Finnish, Arabic, Swedish, and English [7].

The introduction of subword units, such as morphemes 
or BPE tokens, has shown improved performance in cap-
turing the morphological richness of Indian languages. An 
analysis of data-driven subword tokenization algorithms 
in Tamil and Kannada revealed significant reductions in 
WER compared to baseline word-based ASR systems. Spe-
cifically, the study conducted by Pilar et al. [40] reported 
an absolute WER reduction of 6.24% for Tamil and 6.63% 
for Kannada. Alternately, by manually identifying word 
classes and creating lists of prefixes, infixes, and suffixes 
for subwords, a subword grammar model was developed 
for Tamil and Kannada. This approach achieved even 
greater improvements in ASR performance, with a maxi-
mum absolute WER reduction of 12.39% for Tamil and 
13.56% for Kannada [41]. These findings demonstrate the 

(8)NLLw(S) =
N

W
log2(PPL(S))

(9)SPS =
1

k

k
∑

i=1

NLL(Si)

effectiveness of subword-level modeling techniques in 
Indian languages, highlighting their potential for enhanc-
ing ASR systems by effectively capturing the morphologi-
cal complexity present in the languages.

Open vocabulary speech recognition in the Malayalam 
language has received limited exploration so far. To the 
best of our knowledge, the only prior work in this area was 
reported by Manghat et al. [12]. They proposed a tokeniza-
tion technique that ensures the inclusion of rare subwords 
in the vocabulary, specifically focusing on Malayalam-
English code-switched ASR. Their study marked the first 
attempt to employ subword-based language modeling for 
this particular language pair. Unfortunately, as the algo-
rithmic implementation is not publicly available, we were 
unable to incorporate it into our experiments for this study.

The current work presented in this paper builds upon 
the initial findings presented in [42], which primarily 
focused on investigating the impact of using syllables as 
subword tokens in Malayalam ASR. While the previous 
study served as an exploration of a single algorithm, the 
present work represents a significant advancement. In the 
current study, we have expanded the acoustic modeling 
dataset size by five fold and conducted a thorough anal-
ysis of five different subword tokenization algorithms, 
including Morfessor, BPE, Unigram, Syllable, and S-BPE 
along with detailed ablation studies. These enhance-
ments provide a more comprehensive understanding of 
subword-based approaches for ASR in the context of the 
Malayalam language.

2.3.1  Comparison with other reported works
When comparing ASR models, it is reasonable when a 
common benchmark dataset is used. Most of the works on 
Malayalam ASR are evaluated either on private datasets or 
the exact test data split is not published. Hence, we attempt 
to compare our results with the previous work [42] which 
was tested on the same test dataset as in the current work.

Notably, our SOTA results demonstrate remarkable 
improvements in ASR performance. In the previous 
work, the best WER achieved on a medium OOV test set 
was 26%. However, through the advancements made in 
the current study, we have achieved a significant reduc-
tion in WER. Specifically, by utilizing the proposed 
S-BPE method, we have achieved a remarkable WER of 
10.6%. These results underscore the substantial improve-
ments in ASR performance that can be achieved through 
the utilization of subword-based modeling techniques for 
the Malayalam language.

3  Proposed subword tokenization algorithm
In this section, we present the details of our proposed 
subword tokenization algorithm. It is built on top of the 
syllabification algorithm using finite state transducers 
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(FST) explained in Section  2.1.5. This hybrid algorithm 
combines the data-driven approach of BPE with the lin-
guistic information about syllables.

3.1  S‑BPE algorithm
S-BPE is a hybrid algorithm that takes into account sylla-
bles as irreducible units in the same way that BPE takes into 
account characters. The traditional BPE algorithm oper-
ates at the character level, where it progressively merges 
the most frequent pairs of characters into a single subword 
unit [20]. However, in the context of S-BPE, the algorithm 
operates on syllables instead of individual characters. The 
pseudocode for the S-BPE training algorithm is described 
in Algorithm  2. The S-BPE training begins by initializing 
the vocabulary, V, with all individual syllables present in the 
training data. It then iteratively applies the following steps: 

1 Frequency calculation: The algorithm counts the fre-
quencies of all pairs of adjacent syllables ( SL : The left 
syllable and SR : The right syllable) in the training cor-
pus, C.

2 Pair merging: It identifies the most frequent pair of 
syllables and merges them into a new subword unit, 
Snew . This merged subword unit is then added to the 
vocabulary.

3 Updating the corpus: The algorithm updates the cor-
pus by replacing occurrences of the merged pair with 
the newly created subword unit, Snew.

4 Repeat: The algorithm continues to iterate, recalcu-
lating frequencies of pairs in the updated training 
corpus, merging the most frequent pairs, and updat-
ing the vocabulary until a predefined number of 
merges (k) is reached. The number of merge opera-
tions is set to k = 10, 000 , in our experiments.

Algorithm 2 S-BPE Training Algorithm

The algorithmic implementation10 has been adapted 
from the original BPE algorithm in subword-nmt Python 
library, and made available under MIT License [20].

The syllabification operation, being implemented as 
an FST based regular expression [34], has a linear time 
complexity, O(N ) , where N is the number of characters 
in the training data. The time complexity of BPE tain-
ing is documented as O(sm) in [33], where s represents 
the length of the input string (measured in terms of the 
number of syllables), and m denotes the number of merge 
operations. The maximum possible number of syllables s 
is equal to N, the corpus length in number of characters. 
Thus the BPE portion of the algorithm may potentially 
have a complexity of O(Nm) . To summarize, S-BPE algo-
rithm has an overall time complexity determined by the 
dominant factor in O(N ) and O(Nm) , which is O(Nm).

Once the training part is completed, the S-BPE model 
is created with a model vocabulary. To segment words 
using S-BPE, the algorithm compares the input text with 
the learned vocabulary. First, the text is syllabified using 
a specific syllabification algorithm tailored for the Malay-
alam script (Algorithm 1). It has a linear time complexity, 
ie., syllabifying a word of M characters is O(M) . Then, for 
every instance of the syllable sequence SL,SR in the text, the 
algorithm replaces it with a newly created subword sym-
bol Snew . The replacements are performed in the order in 
which the symbols were learned and added to the vocabu-
lary, as in the original BPE implementation in [20] and this 
process has a time complexity of O(M2)11. The overall time 
complexity of S-BPE-based syllabification is determined 
by the dominant factor which is O(M2) . On a comparative 
scale, the S-BPE algorithm has the same time complexity 
as that of BPE, both during training and during tokeniza-
tion. However, tokenization is only a one-time process in 
the training of ASR models discussed in this work.

The S-BPE algorithm ensures that the most common 
words in the corpus are represented by a single symbol 
in the vocabulary. On the other hand, rare words are 
broken down into two or more subword tokens, while 
maintaining valid pronunciation for each segment. This 
combined process of knowledge-based syllabification and 
data-driven BPE allows for effective subword tokeniza-
tion. While the syllabification algorithm is specifically 
designed for the Malayalam script, the S-BPE algo-
rithm can be extended to other languages that can be 
syllabified.

In summary, the S-BPE algorithm leverages both knowl-
edge-based syllabification and data-driven BPE techniques. 
It creates a vocabulary of frequent syllable sequences dur-
ing training and uses this vocabulary to segment words into 
subwords during tokenization, ensuring effective represen-
tation of both common and rare words in the language.

10 https:// github. com/ kavya manoh ar/ subwo rd- syl- bpe- ml/ tree/ sbpe
11 https:// guill aume- be. github. io/ 2021- 09- 16/ byte_ pair_ encod ing

https://github.com/kavyamanohar/subword-syl-bpe-ml/tree/sbpe
https://guillaume-be.github.io/2021-09-16/byte_pair_encoding
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4  Experimental setup
This section presents the details of our experiments12. 
We begin with a description of the datasets followed 
by the structure of the DNN-HMM ASR system. We 
will describe in detail about the tokenization of the text 
corpus for language modeling, the creation of subword-
tokenized pronunciation lexicons, and the process of 
acoustic modeling.

4.1  Datasets
Obtaining an adequate training corpus for Malayalam 
ASR is challenging due to the limited availability of 
comprehensive speech datasets. Creating such datasets 
involves resource-intensive tasks, including recruiting 
diverse speakers, establishing recording environments, 
and ensuring accurate transcription. While there is a vast 
amount of multimedia content available online, we have 
not attempted to use it for ASR training tasks mainly 
because of the difficulty in obtaining high-quality, aligned 
speech and text segments from the online content. To 
address this limitation, we leveraged existing publicly 
available open licensed speech datasets in Malayalam, 
such as Indic TTS [43], Open SLR 63 [44], IMaSC [45], 
MSC [46], and IIITH [47]. Among these, MSC has the 
highest number of speakers but exhibits an imbalance in 
the number of utterances per speaker. In contrast, Open 
SLR 63 offers a more balanced distribution of utterances 
among its 44 speakers, allowing for multi-speaker testing. 
Consequently, we partitioned the Open SLR 63 dataset to 
facilitate multi-speaker testing.

Each audio recording in the dataset is paired with a 
corresponding textual transcript written in the Malay-
alam script. The recordings are provided as wav files, 
with a sampling rate of either 16 or 48 kHz and 16-bit 
precision for each sample. For consistency during acous-
tic model training, the higher sampling rate of 48 kHz is 
downsampled to 16 kHz.

The speech dataset content is predominantly non-
conversational in nature, with one dataset [46] recorded 
in natural environments. By including diverse speech 
samples from natural settings, we aim to enhance the 
robustness and generalizability of our findings. We divide 
the available speech into train and test datasets, ensur-
ing zero speaker overlap. The train datasets described in 
Table 7 are combined to get approximately 69 h of audio 
for acoustic modeling. The ASR models are tested on a 
subset of the multi-speaker Open SLR 63 [44] dataset.

To create the language model, we use the sentences 
from the speech transcripts and combine it with the 
curated collection of text corpus published by SMC [48]. 
The resulting text corpus contains 227,686 sentences, 
1,425,504 word types, and 364,170 unique word tokens.

4.2  DNN‑HMM ASR system
The DNN-HMM ASR decoder consists of three modules 
as described in Fig. 2. The functions of these modules are 
listed below: 

1 Acoustic model: It predicts the posterior likelihood 
p(P|X) of phone states P = p0, p1, ...pK  given the 
acoustic feature frames X = x0, x1, ..., xN trained with 
deep neural networks based on the frame level align-
ment of audio and phoneme labels obtained from a 
previously trained GMM-HMM acoustic model [49].

2 Pronunciation lexicon: It maps words into a sequence of 
phonemes. The acoustic model training module would 
need to look up the pronunciation lexicon to convert 
the word-level transcripts into phoneme sequences.

3 Language model: It predicts the conditional likeli-
hood p(wi+1|w0,w1, ...wi) of the next word wi+1 
given the previous words.

In the ASR decoder, all these components are composed 
into a weighted finite-state transducer framework [50] 
and the most likely word sequence is retrieved using 
graph search methods. This word-based system would 
serve as the baseline for our experiments. In a subword 
ASR system described in Fig. 3, the pronunciation lexicon 
and the language model are subword based.

Table 7 Details of speech datasets used in our experiments

Corpus #Speakers #Utterances Duration (hours) Environment Usage

Indic TTS, IITM [43] 2 8601 14 Studio Training

Open SLR 63 - Train [44] 37 3346 5 Studio Training

IMaSC [45] 8 34,473 49 Studio Training

MSC [46] 75 1541 1 Natural Training

IIITH [47] 1 1000 1 Studio Development

Open SLR 63 - Test [44] 7 679 1 Studio Testing

12 The Kaldi Experimental Setup: https:// gitlab. com/ kavya manoh ar/ ml- 
subwo rd- asr

https://gitlab.com/kavyamanohar/ml-subword-asr
https://gitlab.com/kavyamanohar/ml-subword-asr
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The creation of an acoustic model, a subword-tokenized 
text corpus for subword language model training, and the 
creation of subword-tokenized pronunciation lexicons 
are explained in the following subsections.

4.3  Acoustic modeling
Acoustic modeling in speech recognition begins with 
extracting relevant features from the raw audio signal. 
This process involves dividing the audio into frames of a 
fixed size using overlapping windows. To ensure smooth 
transitions at the frame borders and to avoid frequency 
artifacts, a Hamming window [51] is applied. In our 
experiments, we use a window size of 25 ms with a 10 ms 
overlap with the previous frame.

Once the speech signal is windowed, a fast Fourier trans-
form (FFT) is applied to convert the signal from the time 
domain to the frequency domain. The resulting spectrum 
is then transformed logarithmically to obtain the log-
magnitude representation. To capture the spectral charac-
teristics relevant to speech recognition, the energy within 
specific Mel frequency ranges is computed. These energy 
values are typically represented as Mel frequency cepstral 
coefficients (MFCC), which provide a compact represen-
tation of the speech signal’s spectral content [52]. MFCCs 
are commonly used as features in acoustic modeling due to 
their effectiveness in capturing the phonetic information 
necessary for speech recognition tasks [53].

In addition to MFCCs, the inclusion of i-vectors as 
features in the acoustic model training process is cru-
cial [54]. These i-vectors play a vital role in effectively 
modeling and addressing speaker variability, resulting in 
improved recognition accuracy, especially in scenarios 
involving multiple speakers or unknown speakers. By 
capturing and incorporating speaker-specific informa-
tion, i-vectors enable the system to adapt and account for 
individual speaker characteristics, ultimately enhancing 
the robustness of the acoustic model.

The training of the DNN-HMM model begins with the 
creation of a traditional HMM acoustic model, followed 
by utilizing the HMM state labels for each frame to train 
the time delay neural network (TDNN) acoustic model 
[55]. This two-step process facilitates the incorporation 
of both the conventional HMM framework and the pow-
erful representation learning capabilities of the TDNN, 
resulting in an enhanced acoustic model for improved 
speech recognition performance.

Acoustic features used in TDNN training are (i) 
40-dimensional MFCCs extracted from frames of 25 ms 
length and 10 ms shift and (ii) 100-dimensional i-vectors 
[56] computed from chunks of 150 consecutive frames. 
Three consecutive MFCC vectors ( 3× 40 dimension) and 
the i-vector corresponding to a chunk (100 dimension) are 

concatenated, obtaining a 220-dimensional feature vector 
for a frame [14].

There are 16 layers of TDNNs, each working with dif-
ferent temporal contexts. Each layer is a succession of 
typical DNN operations, such as affine transforms, ReLU 
activations, and batch normalizations. Layers 2 to 13 use 
factored form of TDNN with the subsampled connection 
between layers. No subsampling is used in the remaining 
layers. All other hidden layers of the TDNN are trained in 
parallel. A declining learning rate was used, with an initial 
αinitial = 0.0015 and a final αfinal = 0.00015 . This acous-
tic model is trained simultaneously with two discrimina-
tive training criteria, one based on cross-entropy loss and 
the other based on maximum mutual information [57]. 
The dimension of the output layer is determined auto-
matically, based on the number of tied phoneme states. 
The model is trained for 5 epochs where every layer uses 
L2 regularization to avoid overfitting. To achieve opti-
mal WER, we made parameter adjustments motivated by 
improvements in WER on a development speech corpus, 
accounting for the interplay between the acoustic model, 
pronunciation lexicon, and language model. The model is 
trained on a single Nvidia Tesla T4 GPU.

4.4  Creating subword tokenized text corpora
Subword-based ASR, as shown in Fig.  3, is very much 
like a word-based ASR system, except that (i) the lan-
guage model represents the conditional probability of 
subword sequences, instead of words and (ii) the pronun-
ciation lexicon is composed of subword tokens. The word 
boundary marker is chosen so that the predicted subword 
tokens can be easily concatenated to form words. We use 
the tokenization algorithms described in Sections  2.1 
and 3.1, and compare them with the baseline word-based 
ASR to answer the research questions.

Data-driven and hybrid tokenization algorithms 
require a training corpus for learning the model param-
eters, which is then applied to the target text to obtain 
a subword tokenized text corpus. Morfessor, BPE, and 
Unigram are data-driven tokenization algorithms while 
S-BPE is a hybrid one that additionally relies on linguistic 
knowledge. As the training corpus, we set aside a subset 
of the entire text corpus (7.5k sentences). 

1 Words are separated by spaces in the text corpus and 
are thus already segmented.

2 Morfessor model is trained using the morfes-
sor python library [18]. The training stops when 
the decrease in the model cost of the last iteration 
is smaller than finish_threshold value of 0.005. 
The trained model is applied to create the mor-
pheme-tokenized text corpus.
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3 BPE [20] learns the vocabulary from the train-
ing dataset. The initial vocabulary is formed by the 
Malayalam characters in the training dataset. The 
number of merge operations is set to 10,000. This 
results in a BPE model which is used to obtain the 
BPE tokenized text corpus.

4 Unigram [21] model is trained by the sentence 
piece library using the training dataset with a 
vocabulary of 15,000. The trained Unigram model is 
used to get the Unigram tokenized text corpus.

5 Being a rule-based algorithm, the syllabifier requires 
no training. Algorithm 1 is directly applied to the text 
corpus to obtain syllable tokenized corpus.

6 The S-BPE model is trained using the Algorithm 2 so 
that the vocabulary is learned. The initial vocabulary 
is formed by the Malayalam syllables present in the 
training dataset. The number of merge operations is 
set to 10,000. This results in a model which is used to 
obtain S-BPE tokenized text corpus.

Samples of text tokenized using these methods are pre-
sented in Table 8. These examples indicate how the num-
ber of tokens per sentence varies with the method of 
tokenization.

4.5  Language modeling
In the experiments performed in this work, we report 
SPS computed on NLL(S) for measuring language mod-
eling complexity. Statistical n-gram language modeling is 
performed on the subword tokenized text corpus. SRILM 
toolkit is used for the training and evaluation of lan-
guage models [58]. To avoid zero probability assignment 
to unseen word sequences, the probability weights are 
redistributed by a process known as smoothing. We use 

the modified Kneser-Ney smoothing algorithm [59] to 
create n-gram language models of orders 2 to 6 for every 
tokenization algorithm. The models are trained to pre-
dict the next segment based on the previous n-gram con-
text. The SRILM toolkit can evaluate the test dataset and 
return the log-likelihood values with respect to base 10 
logarithms and the perplexity. Surprisal values are com-
puted by converting these values to base 2 logarithms.

4.6  Creating subword tokenized lexicons
The graphemic lexicon describes the pronunciation using 
the language’s native alphabets, or graphemes. Since BPE, 
Unigram, and Morfessor tokenization algorithms in our 
experiments do not have access to pronunciation informa-
tion, the tokenization can happen at locations that break the 
pronunciation flow. So, it was decided to use a graphemic 
pronunciation lexicon, instead of a phonemic one [7] for all 
the tokenization algorithms to ensure fair comparison.

For the baseline ASR, the word pronunciation lexicon 
is prepared by using all the words in the text corpus with 
at least three occurrences. It is then expanded to include 
all the words in the training speech transcript. This word 
lexicon is referred to as PLword and has 79,947 entries. 
Subword lexicons are obtained by segmenting every word 
entry in PLword as per the tokenization algorithm under 
consideration and choosing the list of unique tokens as 
described in Algorithm  3. This involves the following 
steps. 

1 Initialize an empty list to store the subword tokens.
2 Iterate over each word in the input word lexicon.
3 Tokenize the current word into subword units.
4 Add these to the list of subword tokens.
5 Repeat this process for all words in the input lexicon.
6 Make the list of subword tokens unique by removing 

duplicates.
7 Generate pronunciations for each unique subword 

token.

Algorithm 3 Subword Lexicon from Word Lexicon

Table 8 Examples for different tokenization algorithms. Space 
is used as delimiter between tokens. Number of tokens per 
sentence is also tabulated

Method Example Segment 
count

Word 3

Morfessor 6

BPE 6

Unigram 5

Syllable 9

S-BPE 4
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The number of entries in these lexicons is described 
in Table 9.

4.7  Summary of experimental investigations
The acoustic models are built and combined with lan-
guage models and pronunciation lexicons using the 
Kaldi toolkit [60]. From six ways (word, morfessor, 
BPE, unigram, syllable, S-BPE) tokenized text corpus, 
we construct language models with n-gram orders of 
2 to 6. The language modeling effectiveness is then 
measured using corpus level and information theo-
retic metrics. Keeping the Kaldi-based TDNN acous-
tic model fixed across tokenization algorithms, we use 
subword tokenized lexicons and corresponding lan-
guage models to create 30 (1 acoustic model × 6 sub-
word tokenized lexicons × 5 n-gram orders) different 
ASR decoders. These decoders are then tested on a 
multispeaker test dataset described in Table 7.

5  Results
In this section, we present the findings from our experi-
ments. We first perform a corpus linguistic analysis on 
the subword tokenized corpora. After that, we analyze 
the language model. This is done in terms of the metric 
SPS, which roughly indicate the complexity, and the over-
all difficulty that the model has in predicting sentences 
[8]. Finally, we analyze the ASR results. The WER, OOV-
WER, lexicon size, and overall model size are used to 
measure this.

5.1  Corpus linguistic analysis of the LM
Words can be broken down into smaller pieces that are 
likely to convey similar meanings in different contexts 
by segmenting them into subwords, which can lessen 
the impact of rich morphology. We analyze the linguistic 
properties of these tokens in this section.

5.1.1  Linguistic validity of tokens
The tokens given by different methods, as exemplified 
in Table  8, do not necessarily comply with linguistic 

correctness. The word tokens are orthographically 
and phonetically valid linguistic units. The tokeniza-
tion given by the Morfessor tool is not true morpheme 
tokens. The Morfessor tokens break the orthographic 
flow as in  being subword tokenized as 

. In the second segment, the vowel 
sign , occurs without a consonant preceding it, which 
is an invalid orthographic usage. Similar invalid ortho-
graphic usages can be observed in BPE and Unigram 
tokenization algorithms too.

Syllable tokenization method, by its design, always 
gives orthographically valid subword units. The S-BPE 
method also gives orthographically valid subword units, 
which are longer than syllable tokens. But none of the 
methods are capable of providing linguistically meaning-
ful subword tokens. However, unlike machine transla-
tion applications, this is not an essential requirement for 
building an ASR system.

5.1.2  Mean length of tokens
The mean length of tokens is the average number of charac-
ters in a token and it depends on the tokenization algorithm. 
The distribution of token lengths, in the form of box plots is 
shown in Fig. 4. It is the highest for words (8.3) as expected 
and the smallest is for syllables (2.2). The mean token length 
for Morfessor, Unigram, BPE, and S-BPE tokenization algo-
rithms are 3.9, 4.3, 4.5, and 4.8, respectively.

A comparatively smaller box for syllables indicates 
the length is distributed closely about the median value, 
with very few outliers. However, for word tokenization, 
the length of the box plot is larger, indicating the seg-
ment lengths vary widely.

5.1.3  Token count per word and per sentence
The distribution of the number of tokens per word in 
the test dataset is illustrated in Fig. 5. Word tokeniza-
tion does not break down the words, resulting in a 
single bar graph. In BPE, Unigram, and S-BPE tokeni-
zation algorithms, more than 50% of the words remain 
unsegmented, followed by words being tokenized into 
two subwords. In Morfessor tokenization, the distribu-
tion shows more than half the words are tokenized into 
two, followed by words remaining unsegmented. The 
percentage of words that get segmented into more than 
two tokens is rare in all these methods. However, in syl-
lable tokenization, about 28% and 24% of words get seg-
mented into two and three subwords respectively. The 
token length per word is more broadly distributed in 
syllable tokenization.

On analyzing the tokenization statistics over sen-
tences, we get the values reported in Table  10. It 

Table 9 Lexicon Sizes of different tokenization algorithms

Segmentation Lexicon size

Word 79,947

Morfessor 10,545

BPE 9986

Unigram 19,564

Syllable 6279

S-BPE 15,926
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describes the minimum, maximum, and mean number 
of tokens per sentence. Syllable tokenized sentences 
contain on average 19.9 subword tokens, which is the 
highest count of all. Sentences that contain a large 
number of tokens would need a longer n-gram lan-
guage model context to guide the decoding [7]. We will 
analyze its impact on ASR later in this section.

5.2  Information theoretic analysis of the LM
The complexity of a language model is related to its dif-
ficulty in determining the next segment from the previ-
ous n-gram context. The higher order n-grams extract 
more context for the occurrence of a segment and gen-
erally reduce language modeling complexity and hence 
perplexity and surprisal. However, raising the n-gram 
order beyond a limit reintroduces the data sparsity prob-
lem, resulting in unimproved perplexity and surprisal val-
ues [37]. Subword language models require higher-order 
n-grams to capture the context than word-based ones [40]. 
In our experiments, we create language models of orders 
n=2 to 6 and analyze their complexity in terms of SPS.

The SPS values obtained in our experiments are shown 
in Table  11. For every tokenization method, with the 
increase in n-gram order, the SPS reduces initially and 
then stabilises. The best set of SPS values are obtained for 
the word segment-based language model. Our investiga-
tion demonstrates that tokenization algorithms yielding a 
greater average number of tokens per sentence are asso-
ciated with a notable increase in the complexity evalua-
tion metric SPS. Consequently, language models utilizing 

syllable-level tokenization demonstrate the highest com-
plexity, whereas word-level tokenization yields the lowest 
complexity. Syllable tokens of lower n-gram orders show 
higher SPS values than all other tokenization algorithms.

The impact of subword token-based language mode-
ling on the ASR decoder needs to be evaluated in terms 
of its ability to recover OOV words and a correspond-
ing reduction in WER, which is attempted in the fol-
lowing section. However, lowering the language model 
complexity does not always ensure an improvement in 
automatic speech recognition accuracy [7, 61].

5.3  WER for each tokenization algorithm
To begin with, we present the ASR error rate which is 
computed as WER. It is based on the number of words 
inserted (I), deleted (D), and substituted (S) in the pre-
dicted speech transcript when compared to the ground 
truth transcript according to Eq. (10), where N repre-
sents the total number of words in ground truth tran-
script [62].

The evaluation is performed on a multi-speaker studio 
recorded dataset. About 14% of words in this test dataset 
are OOV words, which can not be recovered by word-
based ASR. According to [63], it has been shown that 
the presence of an OOV word in the test set can result in 
approximately two errors during ASR decoding.

(10)WER =
(I + D + S)× 100

(N )

Fig. 4 Distribution of token length
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Figure 6 presents the best set of WER obtained for dif-
ferent tokenization algorithms. To study the performance 
of subword-based ASR compared to the baseline word 
model on OOV recovery, we compute the WER, specifi-
cally for OOV words. The OOV words in the test set are 
determined with respect to the word-level lexicon. To 
analyze the extent of OOV-WER in subword token-based 

ASR, we use the texterrors Python library[64]. Pro-
viding the list of OOV words in the test set along with the 
true speech transcripts, this library computes the OOV-
WER of the subword ASR model.

The baseline method, using words as the tokenization 
units, achieves a WER of 27.4% but suffers from a high 
OOV-WER of 100.0%, indicating that it struggles with 
words not present in the pronunciation lexicon. Among 
the alternative tokenization algorithms, Morfessor 
achieves a WER of 12.8% and significantly reduces the 
OOV-WER to 26.6%. BPE and Unigram tokenization also 
show competitive performance with WERs of 11.0% and 
11.9% respectively, but their OOV-WERs remain close to 
that of Morfessor.

Syllable tokenization, while having a relatively higher 
WER of 13.5%, manages to achieve a lower OOV-WER of 
24.8% compared to other methods. This is because syllables 
being the most granular of all tokenization algorithms, pro-
vide more opportunities for partial matching with available 

Fig. 5 Distribution of the number of tokens per word in the text corpus

Table 10 Sentence length statistics in terms of the number of 
tokens per sentence

Tokenization Minimum Maximum Mean

Word 5 14 6.4

Morfessor 6 29 11.7

BPE 5 26 8.5

Unigram 5 29 10.1

Syllable 8 49 19.9

S-BPE 5 25 8.1
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lexical units, enabling better recovery of OOV words in 
ASR systems. However, this same property also makes syl-
lable token-based ASR less suitable for general words, as it 
requires the decoder to recover a higher number of tokens 
per sentence, increasing the likelihood of errors.

Notably, the proposed hybrid S-BPE tokenization 
outperforms all other methods with the lowest WER of 
10.6% and an OOV-WER of 24.8%, demonstrating its 
effectiveness in improving ASR performance. While 
both S-BPE and syllable tokenization exhibit compa-
rable OOV-WER, S-BPE holds the added advantage of 
superior performance on non-OOV words. This is due 
to its ability to strike a balance between granularity and 
coverage. Overall, the results indicate that alternative 
tokenization algorithms offer improvements over the 
baseline word tokenization in terms of both WER and 

OOV-WER, with S-BPE yielding the best performance in 
this evaluation.

6  Ablation studies
In the preceding section, we presented the optimal WER 
achieved for each tokenization algorithm, leveraging 69 
h of speech data for acoustic modeling and 227,686 sen-
tences of textual data for language modeling, employing 
an n-gram order of n = 6 . In this section, we investi-
gate the influence of various tokenization algorithms by 
altering the n-gram order and adjusting the quantity of 
speech and textual training data used in the experiments. 
Our aim is to gain deeper insights into how these factors 
impact ASR performance and identify the most effec-
tive combination of tokenization and n-gram order to 

Table 11 Language modeling complexity in terms of SPS. Lower SPS implies lower complexity

a  Morfessor

 b Unigram

 c Syllable

n‑gram Word Morf.a BPE Uni.b Syl.c S‑BPE
SPS

2 45 88 82 108 157 78

3 42 68 64 84 109 62

4 42 63 61 79 93 60

5 42 62 61 78 85 60

6 42 62 61 79 82 60

Fig. 6 The best WER for each tokenization method and the corresponding OOV-WER
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optimize the accuracy and memory efficiency of the ASR 
system.

6.1  Impact of n‑gram order on WER for different 
tokenization algorithms

In this analysis, we investigate the impact of the 
n-gram order on the WER for different tokenization 
algorithms utilized in subword token-based ASR. The 
results are illustrated in Fig. 7. For ASR systems based 
on word tokens, the n-gram order shows little or no 
effect on the WER. However, in other subword token-
based ASR models, we observe a significant reduc-
tion in WER, by at least 4%, when the n-gram order 
increases from n = 2 to n = 3 . Further increases in the 
n-gram order beyond n = 3 result in only marginal 
improvements in WER.

Compared to the baseline word token-based ASR, all 
subword token-based ASR models perform better at all 
n-gram orders, except for the syllable token-based ASR 
at n = 2 . Particularly, the S-BPE token-based ASR out-
performs other tokens at corresponding n-gram orders.

Overall, this analysis offers valuable insights into how 
the n-gram order impacts WER for various tokenization 
algorithms in subword token-based ASR. It highlights 
the superiority of subword token-based approaches, 
especially S-BPE tokenization, and underscores the 

importance of choosing the right n-gram order to opti-
mize ASR accuracy effectively.

6.2  Impact of n‑gram Order on ASR model memory 
requirement for different Tokenization algorithms

The order of the n-gram impacts the memory require-
ment of the ASR model. To study the model memory 
requirement, we computed the size of the weighted 
FST graph (HCLG.fst) used for decoding. HCLG.
fst is composed of four FSTs namely, H.fst, C.fst, 
L.fst, and G.fst. The H.fst and C.fst together 
form the acoustic model, L.fst the phonetic lexicon, 
and G.fst the grammar of the language model. Thus 
the total memory includes the model size for both the 
acoustic model and the language model combined.

The bar plot in Fig. 8 illustrates the impact of n-gram 
orders on the model memory requirement of dif-
ferent ASR models employing various tokenization 
algorithms. The x-axis represents the tokenization algo-
rithms and the y-axis shows the ASR model memory 
requirement in Megabytes (MB).

From the plot, we observe that the n-gram order sig-
nificantly affects the memory requirement of ASR mod-
els for most tokenization algorithms. As the n-gram 
order increases, the model memory requirement gen-
erally tends to rise across all tokenization algorithms. 

Fig. 7 WER comparison for different tokenization algorithms in ASR with varying n-gram order



Page 19 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing         (2023) 2023:47  

This is expected as higher n-gram orders lead to larger 
language models, which require more memory to store 
the increased contextual information.

Notably, the word token-based ASR (baseline) shows rel-
atively consistent memory requirements regardless of the 
n-gram order. However, other subword token-based ASR 
models, experience notable increases in memory require-
ment with higher n-gram orders. For n-gram orders ≤ 3, 
the syllable tokenization method exhibits the lowest mem-
ory requirement while S-BPE tokenization requires the 
most memory among the subword token-based models.

Based on the discussions about the WER and the 
model memory requirement, we find that higher n-gram 
orders, which lead to improved WER, come at the cost 
of increased model memory requirement. There exists a 
trade-off between achieving better ASR accuracy through 
more extensive context capture (higher n-gram order) 
and the computational resources needed to accommo-
date the larger language model in memory.

6.3  Trade‑off between WER and model memory 
requirement

Through our investigation, we have observed that 
subword tokens of n-gram orders ≤ 3, exhibit a con-
siderably smaller WER compared to the correspond-
ing word-based models while having a lower model 

memory requirement. For n-gram orders above 4, 
the model size increases substantially without much 
improvement in WER and hence is not recommended. 
A comparative analysis of the WER and model size is 
presented in Table 12, for n-gram = 3.

In the trade-off diagram shown in Fig.  9, the model 
size of the word-based baseline ASR model does not 
change significantly with the model size. However, the 
error rate of the word-based baseline model is higher 
than all subword-based models, except for the syllable 
bigram ASR. Although the syllable bigram ASR has the 
smallest model size, its error rate is so high that it is not 
practical to use it.

Fig. 8 Size of ASR model (MB) for different tokenization algorithms in ASR with varying n-gram order

Table 12 Comparing the WER and model size of each subword 
tokenization method, at n-gram = 3. The relative reduction with 
respect to the baseline word model is also shown in percentage

Segmentation WER (%) Model size (MB)

Word (baseline) 27.4 123

Morfessor 11.7 ↓ 57% 104 ↓ 15%

BPE 13.7 ↓ 50% 90 ↓ 26%

Unigram 12.6 ↓ 54% 108 ↓ 12%

Syllable 14.7 ↓ 46% 94 ↓ 23%

S-BPE 11.4 ↓ 58% 110 ↓ 11%
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The performance of all subword models is better than 
the baseline, except for the bigram syllable language 
model. Syllables with the smallest mean length of tokens 
among all tokenization algorithms, require more n-gram 
context to make a reasonable prediction about the next 
subword segment. But once it has enough context, the 
predictions become more reliable as exemplified in the 
WER reduction in Fig. 9. The subword token-based ASRs 
show consistent improvement in WER with the increase 
in n-gram order. But the relative improvement dimin-
ishes with the n-gram order.

Researchers and practitioners need to strike a balance 
between n-gram order selection, WER performance, 
and available computational resources to design effi-
cient and effective ASR systems. This involves consider-
ing the desired ASR accuracy, memory constraints, and 
computational capabilities when making decisions about 
n-gram order and other language modeling parameters 
to optimize ASR performance.

6.4  Impact of LM training data on WER for different 
tokenization algorithms

To investigate the influence of LM training data on the 
WER of the ASR model, we conducted experiments by 
creating language models using varying amounts of tex-
tual data, ranging from 12.5 to 100% of available 227,686 

sentences utilizing an n-gram order of 3. The choice of 
n-gram was based on the fact that beyond n-gram=3, 
there would be a significant increase in model memory 
requirement without much improvement in WER. These 
language models were then combined with acoustic 
models built using the entire available audio corpora of 
about 69 h.

The plot in Fig.  10 depicts the relationship between 
WER and the percentage of available text corpora used 
for LM training. As the percentage of LM training data 
increases, there is a consistent reduction in WER for all 
tokenization algorithms. This demonstrates that more 
extensive LM training data leads to improved ASR accu-
racy, regardless of the tokenization approach used.

In the analysis, we observe that each tokenization algo-
rithm exhibits distinct WER performance across different 
amounts of LM training data. Initially, when LM training 
data usage is low, all subword tokenizations demonstrate 
comparable performance. However, as the percentage of 
LM training data increases, the WER for these tokeni-
zations starts to diverge. Morfessor, BPE, and Unigram 
tokenizations show competitive performance compared 
to the S-BPE tokenization, especially at lower levels of 
LM training data usage. However, with the increase in 
LM training data, the S-BPE tokenization consistently 
outperforms the others, showcasing the most robust 
WER reduction across all data sizes above 25%.

However, as the amount of LM training data increases, 
syllable tokenization, which initially showed competi-
tiveness at lower data usage, gradually loses its competi-
tive edge compared to other subword tokenizations. Its 
WER performance does not improve at the same rate as 
the other subword tokenizations, making it less favorable 
when utilizing the full available training data. In contrast, 
the word tokenization approach exhibits the highest 
WER among all algorithms, indicating its limitation in 
capturing the complexities of the language, especially in 
morphologically rich languages.

6.5  Impact of AM training data on WER for different 
tokenization algorithms

To investigate the influence of audio training data on the 
WER of ASR model, we conducted experiments by cre-
ating acoustic models using varying amounts of speech 
data, ranging from 4.5 to 69 h. These acoustic models 
were then combined with language models built using 
the entire available text corpora, utilizing an n-gram 
order of 3. The choice of n-gram was based on the fact 
that beyond n-gram=3, there would be a significant 
increase in model memory requirement without much 
improvement in WER (Fig. 11).

As the amount of training data increases, all tokeni-
zation algorithms show a clear reduction in WER. This 

Fig. 9 Trade-off between ASR WER and Memory requirement. The 
n-gram order is indicated as labels within the circles
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finding depicted in Fig. 11 indicates that more extensive 
and diverse training data leads to improved ASR accu-
racy across all subword tokenization approaches.

Every subword tokenization algorithm maintains its 
relative position in terms of WER at all levels of available 
training data. This is because the tokenization algorithms 
directly impact the LM modeling and not the acoustic 
modeling and our LM model is constant thought out this 
experimental investigation. Among the analyzed tokeni-
zation algorithms, the S-BPE consistently exhibits the 
lowest WER.

7  Analysis and discussions
Based on our detailed experimental investigations on 
developing subword-based DNN-HMM ASR models for 
Malayalam, we have reached answers to our research 
questions posed in Section 1.4.
RQ1: Subword and word token-based language models 

were compared based on their complexity using the SPS 
metric. The results showed that all subword tokeniza-
tions resulted in a higher number of tokens per sentence 
compared to word-based tokenization. Consequently, the 
subword token-based language models exhibited higher 
values for SPS, indicating higher complexity compared 
to word token-based LMs. Syllable tokens demonstrated 
the highest values, suggesting that their higher granu-
larity and token count adversely impacted the overall 

complexity of the language models. This shows the sub-
word tokenization did not improve the LM modeling effi-
ciency when evaluated using the SPS metric.
RQ2: The WER and LM complexity measured by the 

SPS metric were found to be uncorrelated. While sub-
word tokenization did not significantly improve the 
intrinsic LM complexity metric, it indeed led to improved 
ASR performance compared to word tokenization. This 
is because ASR involves additional complexities related 
to acoustics, pronunciation variations, and OOV words. 
These factors influence WER independently of the LM 
complexity. Thus the subword tokenization method that 
exhibits the best language modeling complexity does not 
lead to the lowest WER for ASR tasks.
RQ3: Subword token-based ASR models exhibit 

reduced WER and decreased model memory require-
ments, especially when the n-gram order is less than 
n = 4 when compared to the baseline word token-based 
ASR. This finding suggests that subword tokenization can 
be highly beneficial for ASR tasks, particularly in mor-
phologically complex languages or datasets with a large 
vocabulary. The hybrid method of S-BPE tokenization 
proposed in this work exhibited the lowest WER over 
diverse n-gram orders and AM and LM training data 
usage. Both S-BPE and Syllable token-based ASR could 
recover many OOV words resulting in the lowest OOV-
WER of 24.8%.

Fig. 10 WER vs. amount of textual data as a percentage of total available text corpora
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RQ4: The n-gram order significantly influences WER and 
ASR model size, with limited WER improvements beyond 
n-gram = 3, but higher orders increase model memory 
significantly. The optimal trade-off between WER and 
memory requires careful consideration of n-gram selection. 
Additionally, increasing the amount of AM training data 
generally leads to improved WER across all tokenization 
algorithms. On the other hand, the impact of increased LM 
training data varies for different tokenization algorithms. 
Some subword tokenizations (Morfessor, BPE, Unigram, 
and S-BPE) benefit more from additional LM training data, 
while others (word and syllable) did not show significant 
improvements. This underscores the importance of consid-
ering the interaction between tokenization algorithms and 
the amount of training data, both for LM and AM, to opti-
mize ASR accuracy effectively. In all these ablation studies, 
S-BPE stood out with the best WER.

8  Conclusions
The presented study holds significant importance as it 
represents the first comprehensive investigation into 
improving speech recognition systems for the morpho-
logically complex Malayalam language using subword 
language modeling techniques. By exploring various 
subword tokenization algorithms, we have conducted a 
detailed analysis of statistical n-gram language models’ 
usage in the context of a hybrid ASR task.

The results of our study have demonstrated the excep-
tional performance of the proposed hybrid S-BPE tokens, 

achieving a remarkable 10.6% WER, which represents a 
16.8% improvement over the baseline word-level ASR. 
While the linguistically informed syllable tokenization 
approach yielded a WER of 13.5%, it was unable to sur-
pass the WER performance of other data-driven tokeni-
zation algorithms.

The comprehensive ablation study highlights that 
increasing the n-gram order of the language model 
beyond n = 3 offers little benefit, as it leads to sig-
nificant model size growth without substantial WER 
improvement. On the other hand, augmenting the 
acoustic model training data consistently enhances 
WER across all tokenization algorithms. However, for 
data-driven tokenizations, increasing the LM train-
ing data proves especially beneficial, outperform-
ing word and syllable tokenizations in terms of WER 
improvement.

In conclusion, the adoption of S-BPE subword 
tokens offers the advantage of reduced model memory 
requirements. It enables the efficient deployment of 
ASR models on memory-constrained devices, facilitat-
ing on-device speech recognition. Additionally, S-BPE 
and syllable subwords exhibit the lowest error rate for 
out-of-vocabulary words, effectively identifying more 
than 75% of these words, with an OOV-WER of 24.8%. 
The findings highlight the benefits of subword tokeni-
zation, including decreased model memory demands 
and improved accuracy, thereby greatly benefiting lan-
guages with complex morphology like Malayalam.

Fig. 11 WER vs. Amount of training data in hours
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By addressing the challenges specific to Malayalam 
and offering valuable insights into subword tokeniza-
tion techniques, our research makes a significant con-
tribution to the field of speech recognition and lays the 
foundation for further advancements in ASR systems 
for morphologically rich languages.
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