
Manohar et al.
EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47
https://doi.org/10.1186/s13636-023-00313-7

EMPIRICAL RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

EURASIP Journal on Audio,
Speech, and Music Processing

Improving speech recognition systems
for the morphologically complex Malayalam
language using subword tokens for language
modeling
Kavya Manohar1,2* , Jayan A R1,3 and Rajeev Rajan1,2

Abstract

This article presents the research work on improving speech recognition systems for the morphologically complex
Malayalam language using subword tokens for language modeling. The speech recognition system is built using
a deep neural network–hidden Markov model (DNN-HMM)-based automatic speech recognition (ASR). We pro-
pose a novel method, syllable-byte pair encoding (S-BPE), that combines linguistically informed syllable tokeniza-
tion with the data-driven tokenization method of byte pair encoding (BPE). The proposed method ensures words
are always segmented at valid pronunciation boundaries. On a text corpus that has been divided into tokens using
the proposed method, we construct statistical n-gram language models and assess the modeling effectiveness
in terms of both information-theoretic and corpus linguistic metrics. A comparative study of the proposed method
with other data-driven (BPE, Morfessor, and Unigram), linguistic (Syllable), and baseline (Word) tokenization algo-
rithms is also presented. Pronunciation lexicons of subword tokenized units are built with pronunciation described
as graphemes. We develop ASR systems employing the subword tokenized language models and pronuncia-
tion lexicons. The resulting ASR models are comprehensively evaluated to answer the research questions regard-
ing the impact of subword tokenization algorithms on language modeling complexity and on ASR performance.
Our study highlights the strong performance of the hybrid S-BPE tokens, achieving a notable 10.6% word error rate
(WER), which represents a substantial 16.8% improvement over the baseline word-level ASR system. The ablation
study has revealed that the performance of S-BPE segmentation, which initially underperformed compared to syllable
tokens with lower amounts of textual data for language modeling, exhibited steady improvement with the increase
in LM training data. The extensive ablation study indicates that there is a limited advantage in raising the n-gram
order of the language model beyond n = 3 . Such an increase results in considerable model size growth without sig-
nificant improvements in WER. The implementation of the algorithm and all associated experiments are available
under an open license, allowing for reproduction, adaptation, and reuse.

Keywords Subword tokens, Language modeling, Open vocabulary, Speech recognition, Morphological complexity,
Malayalam language

*Correspondence:
Kavya Manohar
sakhi.kavya@gmail.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13636-023-00313-7&domain=pdf
http://orcid.org/0000-0003-2402-5272

Page 2 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

1 Introduction
Automatic speech recognition (ASR) is the process of
converting speech acoustic signals into written text. This
involves several stages, where the acoustic features are
mapped to phonemes, which are the basic units of sound,
and then reconstructed into meaningful words and sen-
tences of the language under consideration.

Morphologically complex low-resource languages pose
a significant challenge to speech recognition [1]. Mor-
phologically complex languages exhibit productive word
formation through agglutination, inflection, and com-
pounding, resulting in very long words with phonetic
and orthographic changes at morpheme boundaries [2].
The presence of such lengthy and morphologically com-
plex words introduces difficulties in language modeling,
which subsequently affects the word error rate (WER) in
ASR tasks. This study aims to examine how different sub-
word tokenization algorithms affect the performance of
ASR models developed specifically for Malayalam.

1.1 Morphological complexity of Malayalam language
Malayalam is a morphologically complex language which
has seven nominal case forms (nominative, accusative,
dative, sociative, locative, instrumental, and genitive),
two nominal number forms (singular and plural) and
three gender forms (masculine, feminine, and neutral).
These forms are indicated as suffixes to the nouns. Verbs
in Malayalam get inflected based on tense (present, past,
and future), mood (imperative, compulsive, promissive,
optative, abilitative, purposive, permissive, precative,
irrealis, monitory, quotative, conditional, and satisfac-
tive), voice (active and passive), and aspect (habitual, iter-
ative, perfect) [3].

The inflecting suffix forms vary depending on the
final phonemes of the root words. Words agglutinate to
form new words depending on the context [4]. Table 1
gives examples of a few complex word formations in
Malayalam. It has been demonstrated in the literature
that the Malayalam language exhibits a high level of

morphological complexity than many other Indian and
European languages in terms of type-token ratio and
type-token growth rate [5, 6].

Figure 1 presents a comparison of the type-token
growth rate of Malayalam with that of other Indian
languages and English highlighting the notably higher
rate at which new words (types) are encountered in the
Malayalam corpus. This creates a large number of low-
frequency words and it is practically impossible to build
a pronunciation lexicon that covers all complex word
forms. Additionally, it introduces the problem of data
sparsity in language modeling [7].

1.2 Deep neural network–hidden Markov Model
(DNN‑HMM)‑based ASR architecture

The classical ASR decoder shown in Fig. 2 is composed
of an acoustic model (AM), a language model (LM), and
a pronunciation lexicon (PL). The AM captures the rela-
tionship between acoustic features and phonemes in the
language. The PL contains the phonemic representations
of all words to be decoded by the ASR system. The LM
establishes the statistical relationship between words in
the language. Word-level statistical modeling of mor-
phologically complex languages can not achieve the word
sequence prediction capabilities of simple morphol-
ogy languages [8, 9]. Additionally, the finite-sized word
vocabulary of a pronunciation lexicon does not cover
complex word forms and loan words that appear in a
real-world setting. As a result, there is difficulty in recov-
ering words that are not in the lexicon. [7].

The out-of-vocabulary (OOV) rate is the proportion of
words in a given speech sample that are not present in
the vocabulary of the ASR lexicon. OOV words can not
be recognized by a word-based ASR decoder. A large
number of OOV words and data sparsity are the natural
consequences of word-based language models in ASR
for morphologically complex languages [7]. Segmenting
words to appropriate subword tokens before process-
ing, and later reconstructing them to the whole words

Table 1 Complex morphological word formation in Malayalam

Malayalam word English translation Remark

In the box Nominal locative suffix to the word (box).

To the child Nominal sociative suffix to the word (child).

Baby elephant Compound word formed by agglutination of nouns
(elephant) and (baby)

To the baby elephants Nominal sociative suffix to the plural form of the compound word
 (baby elephant)

Do not stay awake Negative imperative mood of the verb (be awake)

Will be singing Future tense iterative aspect of the verb (to sing).

Page 3 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

is a viable approach to solve the issues of data sparsity
and OOV rates. When subword tokens are used for lan-
guage modeling, a dummy symbol is added to identify
the positions where the tokens can be glued together to
form words [10]. When subwords replace words, the ASR
vocabulary contains morphemes, syllables, or other char-
acter sequences that together can be used to create an
unlimited number of words [11, 12].

An alternate approach to developing ASR models is
the End to End (E2E) architecture, which is heavily data
intensive. In the context of our research on the morpho-
logically complex Malayalam language, we encountered a
significant challenge related to the limited availability of

annotated speech corpora under open licenses, making
it a low-resource language. With less than 75 h of anno-
tated data, training the E2E ASR system from scratch
proved to be less practical due to the poor accuracy
achieved with limited training data [13]. For improved
speech recognition accuracy, DNN-HMM methods are
best suited for languages with limited annotated speech
[14]. Also, when much more text data is available than
speech data, DNN-HMM models are the preferred
choice [15, 16] than the modern E2E approaches. Addi-
tionally, DNN-HMM ASR models offer the advantage of
easy integration into small hardware devices, enabling
fast on-device speech recognition [14].

Fig. 1 Comparing the type-token growth rate of Indian languages in comparison to English. Reproduced from [5]

Fig. 2 Block schematic representation of a DNN-HMM ASR system

Page 4 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

1.3 DNN‑HMM ASR with subword tokens
The ASR system illustrated in Fig. 3, which utilizes sub-
word tokens, differs from the conventional ASR system
depicted in Fig. 2 in terms of how the LM and the PL are
constructed. In the subword token-based ASR, the LM is
trained on a text corpus that is subword tokenized, and
the PL consists of pronunciation descriptions for sub-
words instead of the conventional word-based entries.
Subword ASR decoder requires an additional module to
reconstruct words from the decoded subword units as
shown in Fig. 3.

The reconstruction from subwords to words is facili-
tated by adding a dummy marker symbol [7]. In the
experiments we perform in this work, we use the con-
tinuity marker “+” to the right side of the subwords,
to indicate another subword has to follow it. In this
approach, reconstruction is straightforward, as the
marker indicates the positions for joining the following
subword. Table 2 illustrates the usage of continuity mark-
ers in our experiments.

For languages where space and punctuation marks act
as delimiters between words, segmenting the raw text
of the language into word tokens is pretty straightfor-
ward. However, to segment text to subword units, there
are data-driven as well as linguistically informed algo-
rithms [1, 7]. Morfessor [11, 17, 18], byte pair encoding
(BPE) [19, 20] and Unigram [21] are a few data driven

algorithms in popular use. These algorithms do not
ensure that subword tokenization happens at valid pro-
nunciation boundaries. This makes precise representa-
tion of its pronunciation as a sequence of phonemes
impossible.

For example, if the word SOPHIA is segmented
as SOP+ HIA, the pronunciation can not be segmented
in a valid way. Then what is viable is to represent the
subword tokens in the lexicon with their pronunciation
described as a grapheme sequence. Tables 3 and 4 indicate
how these entries would be represented in a phonemic
and graphemic lexicon respectively. In this work, we use
graphemic lexicons where graphemes would be mapped
to acoustic features during acoustic model training. Sub-
word tokens in lexicon entries have the continuity marker
“+" indicating it will be followed by another subword seg-
ment to complete a word.

In this paper, we propose a novel hybrid subword
tokenization algorithm, Syllable - byte pair encoding
(S-BPE), combining linguistic syllabification rules with
the data-driven tokenization method of BPE.

Fig. 3 Block schematic representation of DNN-HMM ASR system, with subword-based language model and pronunciation lexicon

Table 2 Subword tokenization illustrating the usage of
continuity marker symbol ‘+’

Original text

Subword tokenized text

Table 3 Phonemic Lexicon

Word Pronunciation

SOPHIA

Table 4 Graphemic Lexicon

Word/subword Pronunciation

SOPHIA S O P H I A

SOP+ S O P

HIA H I A

Page 5 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

1.4 Research objectives and key contributions
The objectives of this paper are (i) to provide an over-
view of existing subword tokenization algorithms in
Malayalam and to propose a hybrid algorithm of sub-
word tokenization named S-BPE; (ii) to perform an
analysis of the impact of different subword tokenization
for Malayalam ASR in terms of WER, OOV-WER1, and
model memory requirement; and (iii) to contribute to
the research on Malayalam ASR by publishing the source
codes of our experiments2 under permissive licenses to
reuse and reproduce the results. We design our experi-
ments to answer four related research questions (RQ).

• RQ1: Which subword tokenization method offers the
most effective language modeling?

• RQ2: Does the subword tokenization method that
exhibits the best language modeling complexity also
result in the lowest WER for ASR tasks?

• RQ3: How does subword tokenization impact ASR
performance concerning model memory require-
ments and OOV recovery rate in a morphologically
complex language?

• RQ4: How do the amount of audio and textual train-
ing data and the n-gram order of the language model
affect the effectiveness of subword token-based ASR
in a morphologically complex language?

To answer our research questions, we create subword
token-based n-gram language models using six tokeniza-
tion algorithms: Word, Morfessor, BPE, Unigram, Sylla-
ble, and S-BPE. We analyze the complexity of language
modeling using a modified perplexity metric (explained
in detail in Section 2.2). These language models are then
used to build DNN-HMM ASR models. We evaluate the
performance of these ASR models based on metrics such
as WER, OOV-WER, and the memory requirements of
the models. The main contributions and practical impli-
cations of this study can be summarized as follows.

1 We introduce a novel subword tokenization algo-
rithm, called S-BPE3, specifically designed for the
Malayalam language.

2 We investigate the impact of different subword
tokenization algorithms on the complexity of lan-
guage modeling. Our analysis reveals that tokeni-
zation algorithms resulting in a higher average
number of tokens per word tend to receive a sig-
nificant penalty in terms of the complexity evalua-
tion metric known as surprisal per sentence (SPS).

As a result, language models based on syllable-
level tokenization exhibit the highest complexity,
while word-level tokenization leads to the lowest
complexity.

3 We also found that the reduction in language mod-
eling complexity as measured by SPS does not neces-
sarily imply a reduction in WER for ASR in morpho-
logically complex languages.

4 With the proposed S-BPE tokenization algorithm,
we could achieve state-of-the-art (SOTA) results for
Malayalam ASR. The S-BPE model results in the best
WER (10.6%) and best OOV-WER (24.8%), which
is significantly better than the best baseline WER
(27.4%) and OOV-WER (100%).

5 Additionally, the S-BPE model demonstrates model
memory requirements comparable to other subword
tokens, but considerably lower than the baseline
word model. The significance of a smaller memory
requirement happens in small hardware scenarios. It
enables the efficient deployment of ASR models on
resource-constrained devices, facilitating seamless
on-device speech recognition.

6 Through a rigorous ablation study by varying the
n-gram order and the amount of textual data used for
language modeling and the amount of speech data
used for acoustic modeling, we present the influence
of these factors on ASR performance, providing valu-
able insights for optimizing ASR systems in the con-
text of subword tokenization.

7 We provide open licenses for all source codes and
models related to subword tokenization4 and the
resulting ASR models. This allows for public evalua-
tion and facilitates further research advancements in
the field.

In the following sections, we describe the related works,
present the proposed algorithm, describe the experimen-
tal setup, and analyze the results which lead to answers to
the research questions posed in the earlier section.

2 Related works
In this section, we review various studies related to
subword tokenization in morphologically complex lan-
guages. We begin with different subword tokenization
algorithms and explore the possibility of employing them
for language modeling in the Malayalam language. We
then explore the use of subword token-based language
modeling on the DNN-HMM ASR task and discuss the
SOTA status of Malayalam ASR.

1 OOV-WER: The WER exclusively for OOV words
2 ASR Training script: https:// gitlab. com/ kavya manoh ar/ ml- subwo rd- asr
3 S-BPE Code Repo: https:// github. com/ kavya manoh ar/ subwo rd- syl- bpe- ml

4 Segmentation Models: https:// gitlab. com/ kavya manoh ar/ ml- subwo rd-
segme ntati on

https://gitlab.com/kavyamanohar/ml-subword-asr
https://github.com/kavyamanohar/subword-syl-bpe-ml
https://gitlab.com/kavyamanohar/ml-subword-segmentation
https://gitlab.com/kavyamanohar/ml-subword-segmentation

Page 6 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

2.1 Subword tokenization algorithms
Subword token-based language modeling has been pro-
posed for applications in speech recognition [7, 11,
12, 22, 23], statistical machine translation [24], neural
machine translations [20, 21] and handwriting recogni-
tion [25]. The choice of subword tokens used in language
modeling impacts the performance of the model on many
downstream tasks [26] including speech recognition [7].

A language model estimates the likelihood of word or
subword sequences to form a valid sentence. To estimate
this likelihood, the raw text of the language has to be
tokenized into words or subwords. This section explains
various tokenization algorithms proposed in the litera-
ture. The suitability of tokenization algorithms depends
on the task (speech recognition, machine translation,
text prediction, etc.) under consideration. Tokenization
techniques that could be adapted for the Malayalam lan-
guage are used in the ASR experiments performed in this
research work.

To perform tokenization that aligns with the Malay-
alam script, it is important to analyze the nature of the
grapheme inventory of Malayalam. The graphemes in
Malayalam script are classified as: (i) vowels; (ii) vowel
signs; (iii) regular consonants; (iv) special consonants:
anuswara, visarga, and chili; and (v) multi-functional
character: virama [4]. Vowel graphemes occur only at
word beginnings. Regular consonants inherently have
the vowel present in them. Vowel sounds at positions
other than word beginnings are represented by vowel
signs. Vowel signs modify the inherent vowel sound
of the consonants. A consonant cluster, also known as
a conjunct, in Malayalam is a sequence of consonants
separated by virama in between, where virama kills the
inherent vowel from the preceding consonant [4]. Chillus
are special consonants that do not have inherent vowels
associated with them. The characteristics of other special
consonants and virama are marked in Table 5. The four
types of syllable structures possible in Malayalam are
listed in Table 6 [27]. The syllable tokenization will make
use of these linguistic rules.

Several approaches for tokenizing Malayalam text
to meaningful morpheme units incorporating linguis-
tic knowledge are reported in the literature. But for the

reasons listed below, none of these could be used for the
language modeling task required for ASR. For Malay-
alam morphological tokenization, earlier studies have
used probabilistic, rule-based suffix-stripping, machine
learning, and dictionary-based approaches [28–31]. The
most recent deep learning technique uses Romanised
Malayalam text and requires annotated data for training
[32]. However, none of these research offers an applica-
tion program interface (API) that can be programmed
to perform morphological tokenization for use in down-
stream applications. The only tool with a programmable
interface that works with Malayalam script performs
morphological analysis5 and not morphological tokeni-
zation [3]. For example, we need the compound word

 to be tokenized as
, while its morphological analysis returns
<noun><plural>. Morphological analysis is not appro-
priate for an ASR task, as we expect to piece together the
original word from the morpheme tokens by concatena-
tion. For the ASR task, we, therefore, do not rely on any
knowledge-based morpheme tokenization in Malayalam.

The data-driven tokenization algorithms are designed
only based on word spellings and do not have access to
pronunciation information. It is therefore possible for
these algorithms to break a word sequence into units
that do not imply well-formed correspondence to pho-
netic units. Pronunciation-assisted subword modeling
(PASM) is an algorithm proposed to solve this issue by
using a pronunciation dictionary as an aligner to deter-
mine the positions for tokenization [23]. To perform this
task, PASM needs a pronunciation dictionary. PASM

Table 5 Special consonants and Virama sign in Malayalam

Character Properties

Anuswara Represents /m/ at syllable ends

Visarga Introduces aspirated glottal stop

Chillu Dead consonants with no inherent vowel

Virama Kills Inherent vowel in conjuncts

Inserts schwa at word ends.

Table 6 Syllable structure in Malayalam with examples

a Beginning of word

 b End of word

Type Syllable structure Example

1 <BoW>a + vowel

<BoW> + vowel + special consonant

2 Consonant

Consonant + special consonant

Consonant + vowel sign + special consonant

3 Conjunct

Conjunct + special consonant

Conjunct + vowel sign + special consonant

4 Consonant+ virama + <EoW>b

Conjunct + + virama +<EoW>

5 Mlmorph: https:// pypi. org/ proje ct/ mlmor ph/

https://pypi.org/project/mlmorph/

Page 7 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

implemented in the English language was reported in
[23] using the CMUDict pronunciation dictionary. But
many low-resource languages do not have a ready-to-use
pronunciation dictionary. In the comparative analysis
performed in this work, we use several tokenization algo-
rithms that break the pronunciation flow. So to be fair in
the comparison, we use only graphemic lexicons and not
phonemic ones. In this scenario, PASM for tokenization
is not used.

The tokenization techniques already reported in the lit-
erature and that could be adapted for the Malayalam lan-
guage and employed in the experiments reported in this
work are described in the following subsections.

2.1.1 Word tokens
In Malayalam, the technique of word tokenization is
simple. After removing punctuation, the raw text cor-
pus is divided up by spaces. Given a word of length
M, it requires no more splitting, and hence time com-
plexity of further tokenization of a word is a constant,
denoted by O(1).

2.1.2 Morpheme tokens
Morfessor is a language-independent, data-driven
method of subword tokenization. The Morfessor base-
line algorithm is based on the minimum description
length principle [17]. It is an unsupervised technique
in which frequently occurring sub-strings in several
different word forms from the training text corpus are
proposed as morphs (or morpheme-like units) and
the words are then represented as a concatenation of
morphs [11]. Its current version, Morfessor2.0, has
a Python interface that may be customized and it sup-
ports annotated training data as well [18]. The Morfes-
sor algorithm does not guarantee either tokenization at
appropriate pronunciation boundaries or tokenization
into meaningful units.

2.1.3 BPE tokens
BPE is a data-driven algorithm that determines the opti-
mal set of subword tokens through an iterative process.
It was originally proposed as a data compression algo-
rithm [19]. The BPE algorithm splits the training data
into characters and creates an initial vocabulary. During
further iterations, the most frequent character bigrams
are determined, merged into a single token, and added
to the vocabulary. The process is continued until a
desired number of merge operations are performed. The
final vocabulary size is the sum of the initial vocabulary
and the number of merge operations, which is a hyper-
parameter [20]. The time complexity in training the BPE
model is O(Nm) , where N is the corpus length and m the
number of merge operations [33].

The subword tokens in the learned vocabulary are later
used to segment any text. BPE ensures that the most
common words are represented in the pronunciation dic-
tionary as a single token while the rare words are broken
down into two or more subword tokens [20]. BPE tokeni-
zation algorithm available in subword-nmt Python
library is used in the experiments described in this work6.
The time complexity in tokenizing a word of length M
using BPE implementation in [20] is O(M2)7 [33].

2.1.4 Unigram tokens
Subword regularization with Unigram language model,
henceforth refrerred to as Unigram tokenization [21] is
a language-independent tokenization algorithm. It makes
the assumption that the probability of the occurrence of
subword tokens in the sentence is independent of one
another. The vocabulary of the desired size is built from
a heuristically large vocabulary by retaining only η% (say
η = 80) of the subwords in each iteration and discarding
the rest. The top 80% of subwords are obtained by rank-
ing all subwords according to the likelihood reduction of
removing them from the vocabulary. The most probable
tokenization of an input sentence is determined by the
Viterbi algorithm. The Unigram tokenization algorithm is
available in the open source Python library, sentence-
piece8, which is used in the experiments performed in
this work.

2.1.5 Syllable tokens
Orthographic syllable-based tokenization of text was
proposed by Kunchukuttan et al. for statistical machine
translation applications [24]. Splitting the tokens based
on vowels and adjacent consonants, named vowel seg-
mentation, was proposed by Adiga et al. and employed
in the context of Sanskrit speech recognition [22]. These
two methods segment text into syllable-like units at valid
pronunciation boundaries.

A syllabification algorithm tailored for Malayalam script
using finite state transducers has been proposed in [34].
The linguistic rules for syllable tokenization described
in Table 6 have been computationally implemented as in
Algorithm 1 and made available in the Mlphon Python
library9. The algorithm analyzes the input text sequence
and determines whether it falls into one of the four allow-
able categories of syllable structures in Malayalam. If
it falls into any of these categories, it inserts tags (

6 subword-nmt: https:// pypi. org/ proje ct/ subwo rd- nmt/
7 Byte Pair Encoding and Data Structures https:// guill aume- be. github. io/
2021- 09- 16/ byte_ pair_ encod ing
8 sentencepiece: https:// pypi. org/ proje ct/ sente ncepi ece/
9 https:// pypi. org/ proje ct/ mlphon/

https://pypi.org/project/subword-nmt/
https://guillaume-be.github.io/2021-09-16/byte_pair_encoding
https://guillaume-be.github.io/2021-09-16/byte_pair_encoding
https://pypi.org/project/sentencepiece/
https://pypi.org/project/mlphon/

Page 8 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

and) at the appropriate positions to indicate the
beginning and end of syllables. For a more comprehen-
sive understanding of this algorithm, please refer to [34].
This results in variable-length subword tokens where each
segment is a syllable with valid pronunciation. Since this
algorithm is implemented as a deterministic and mini-
mized finite state automaton, the time complexity for
the syllable tokenization process is O(M) , where M is the
number of characters in a word [35].

The perplexity, PPL(S), of a sentence, is the inverse
probability normalized by the number of tokens, N.
Normalization ensures, longer sentences are not heavily
penalised [8].

(3)PPL(S) =
1

P(S)

1
N

Algorithm 1 FST-based Syllabification Algorithm

2.2 Language modeling analysis
Tokenization can mitigate the effects of rich mor-
phology by breaking down highly inflected words into
smaller components [9]. Statistical n-grams serve as
a simple and powerful tool to capture language mod-
eling information. The order of n-gram needed to cap-
ture this information depends largely on the properties
of the tokens used. The tokenization algorithm deter-
mines the properties (the total number of tokens in the
text, the number of characters within each segment,
the number of tokens in a word, and the frequency of
tokens) of the subword tokenized language modeling
corpus.

Perplexity can be interpreted as the weighted average
branching factor of a language. The branching factor of
a language is the number of possible next words that can
follow any word. Higher perplexity is positively corre-
lated with difficulty in language modeling [36]. For a sen-
tence, S, formed by a sequence of N tokens S = s1, s2...sN ,
the probability P(S) of the sentence is given by the follow-
ing formula applying the chain rule of probability [36].

Based on the Markovian assumption of n-gram lan-
guage modeling, the probability of each word depends
only on the previous n− 1 words [36]. This makes the
sentence probability to be computed as

(1)
P(S) = P(s1, s2, ...sN)

= P(s1)P(s2|s1)...P(sN |sN−1, sN−2...s1)

(2)P(S) =

N
∏

i=1

P(si|si−1, si−2..si−(n−1))

Applying logarithm base 2 on the Eq. (3), we get

Since the number of tokens, N, in a sentence is largely
determined by the tokenization method, the perplex-
ity measure that is dependent on this parameter can not
be used to compare modeling complexity across differ-
ent tokenization algorithms [8]. The negative log-like-
lihood, NLL(S), of the sentence probability distribution,
effectively removes this dependency as described in the
following equation and is called the surprisal of that sen-
tence [9].

Based on Eq. (4), this can be rewritten as

By scaling down the NLL(S) by the number of characters,
M in a sentence, we obtain the character level surprisal,
NLLc(S) as in Eq. (7) [37]. The number of characters in a
sentence is a parameter independent of the tokenization
used. This metric can also be used to compare language
modeling complexity across tokenization algorithms.

Alternatively, word level surprisal, NLLw(S) , where
the scale factor is the number of words, W in a sen-
tence, can also be used for comparison across tokeniza-
tion algorithms [7, 12].

(4)log2 PPL(S) = −
1

N
log2 (P(S))

(5)NLL(S) = −log2 (P(S))

(6)NLL(S) = Nlog2 (PPL(S))

(7)NLLc(S) =
N

M
log2(PPL(S))

Page 9 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

The metric surprisal per sentence (SPS) is a measure
that quantifies the average surprisal of a corpus by divid-
ing the total surprisal of the corpus by the number of sen-
tences it contains. To calculate SPS, we follow these steps:

1 Compute surprisal: First, calculate the surprisal for
each sentence in the corpus. This involves using a
language model to estimate the probability of each
word or subword unit in the sentence given the pre-
ceding context.

2 Sum surprisal: Add up the surprisal values for all sen-
tences in the corpus to obtain the total surprisal.

3 Calculate SPS: Divide the total surprisal by the num-
ber of sentences k, to compute the SPS.

For language modeling complexity comparisons across
tokenization algorithms, SPS computation using NLL(S)
is employed in [9], NLLc is used in [37], and NLLw(S) is
used in [7].

2.3 Subword‑based ASR
Subword-level modeling has proved to be instrumental in
addressing the challenges posed by morphologically com-
plex languages. Language modeling on subword tokens
in ASR for morphologically complex languages has been
extensively studied [11, 38, 39] in the framework of DNN-
HMM ASR systems. Representation using subword units
allowed for a more granular representation of words.
Promising results have been achieved by applying Morfes-
sor-based tokenization to DNN-HMM ASR systems, lead-
ing to reduced WER and improved OOV word recovery in
languages such as Finnish, Arabic, Swedish, and English [7].

The introduction of subword units, such as morphemes
or BPE tokens, has shown improved performance in cap-
turing the morphological richness of Indian languages. An
analysis of data-driven subword tokenization algorithms
in Tamil and Kannada revealed significant reductions in
WER compared to baseline word-based ASR systems. Spe-
cifically, the study conducted by Pilar et al. [40] reported
an absolute WER reduction of 6.24% for Tamil and 6.63%
for Kannada. Alternately, by manually identifying word
classes and creating lists of prefixes, infixes, and suffixes
for subwords, a subword grammar model was developed
for Tamil and Kannada. This approach achieved even
greater improvements in ASR performance, with a maxi-
mum absolute WER reduction of 12.39% for Tamil and
13.56% for Kannada [41]. These findings demonstrate the

(8)NLLw(S) =
N

W
log2(PPL(S))

(9)SPS =
1

k

k
∑

i=1

NLL(Si)

effectiveness of subword-level modeling techniques in
Indian languages, highlighting their potential for enhanc-
ing ASR systems by effectively capturing the morphologi-
cal complexity present in the languages.

Open vocabulary speech recognition in the Malayalam
language has received limited exploration so far. To the
best of our knowledge, the only prior work in this area was
reported by Manghat et al. [12]. They proposed a tokeniza-
tion technique that ensures the inclusion of rare subwords
in the vocabulary, specifically focusing on Malayalam-
English code-switched ASR. Their study marked the first
attempt to employ subword-based language modeling for
this particular language pair. Unfortunately, as the algo-
rithmic implementation is not publicly available, we were
unable to incorporate it into our experiments for this study.

The current work presented in this paper builds upon
the initial findings presented in [42], which primarily
focused on investigating the impact of using syllables as
subword tokens in Malayalam ASR. While the previous
study served as an exploration of a single algorithm, the
present work represents a significant advancement. In the
current study, we have expanded the acoustic modeling
dataset size by five fold and conducted a thorough anal-
ysis of five different subword tokenization algorithms,
including Morfessor, BPE, Unigram, Syllable, and S-BPE
along with detailed ablation studies. These enhance-
ments provide a more comprehensive understanding of
subword-based approaches for ASR in the context of the
Malayalam language.

2.3.1 Comparison with other reported works
When comparing ASR models, it is reasonable when a
common benchmark dataset is used. Most of the works on
Malayalam ASR are evaluated either on private datasets or
the exact test data split is not published. Hence, we attempt
to compare our results with the previous work [42] which
was tested on the same test dataset as in the current work.

Notably, our SOTA results demonstrate remarkable
improvements in ASR performance. In the previous
work, the best WER achieved on a medium OOV test set
was 26%. However, through the advancements made in
the current study, we have achieved a significant reduc-
tion in WER. Specifically, by utilizing the proposed
S-BPE method, we have achieved a remarkable WER of
10.6%. These results underscore the substantial improve-
ments in ASR performance that can be achieved through
the utilization of subword-based modeling techniques for
the Malayalam language.

3 Proposed subword tokenization algorithm
In this section, we present the details of our proposed
subword tokenization algorithm. It is built on top of the
syllabification algorithm using finite state transducers

Page 10 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

(FST) explained in Section 2.1.5. This hybrid algorithm
combines the data-driven approach of BPE with the lin-
guistic information about syllables.

3.1 S‑BPE algorithm
S-BPE is a hybrid algorithm that takes into account sylla-
bles as irreducible units in the same way that BPE takes into
account characters. The traditional BPE algorithm oper-
ates at the character level, where it progressively merges
the most frequent pairs of characters into a single subword
unit [20]. However, in the context of S-BPE, the algorithm
operates on syllables instead of individual characters. The
pseudocode for the S-BPE training algorithm is described
in Algorithm 2. The S-BPE training begins by initializing
the vocabulary, V, with all individual syllables present in the
training data. It then iteratively applies the following steps:

1 Frequency calculation: The algorithm counts the fre-
quencies of all pairs of adjacent syllables (SL : The left
syllable and SR : The right syllable) in the training cor-
pus, C.

2 Pair merging: It identifies the most frequent pair of
syllables and merges them into a new subword unit,
Snew . This merged subword unit is then added to the
vocabulary.

3 Updating the corpus: The algorithm updates the cor-
pus by replacing occurrences of the merged pair with
the newly created subword unit, Snew.

4 Repeat: The algorithm continues to iterate, recalcu-
lating frequencies of pairs in the updated training
corpus, merging the most frequent pairs, and updat-
ing the vocabulary until a predefined number of
merges (k) is reached. The number of merge opera-
tions is set to k = 10, 000 , in our experiments.

Algorithm 2 S-BPE Training Algorithm

The algorithmic implementation10 has been adapted
from the original BPE algorithm in subword-nmt Python
library, and made available under MIT License [20].

The syllabification operation, being implemented as
an FST based regular expression [34], has a linear time
complexity, O(N) , where N is the number of characters
in the training data. The time complexity of BPE tain-
ing is documented as O(sm) in [33], where s represents
the length of the input string (measured in terms of the
number of syllables), and m denotes the number of merge
operations. The maximum possible number of syllables s
is equal to N, the corpus length in number of characters.
Thus the BPE portion of the algorithm may potentially
have a complexity of O(Nm) . To summarize, S-BPE algo-
rithm has an overall time complexity determined by the
dominant factor in O(N) and O(Nm) , which is O(Nm).

Once the training part is completed, the S-BPE model
is created with a model vocabulary. To segment words
using S-BPE, the algorithm compares the input text with
the learned vocabulary. First, the text is syllabified using
a specific syllabification algorithm tailored for the Malay-
alam script (Algorithm 1). It has a linear time complexity,
ie., syllabifying a word of M characters is O(M) . Then, for
every instance of the syllable sequence SL,SR in the text, the
algorithm replaces it with a newly created subword sym-
bol Snew . The replacements are performed in the order in
which the symbols were learned and added to the vocabu-
lary, as in the original BPE implementation in [20] and this
process has a time complexity of O(M2)11. The overall time
complexity of S-BPE-based syllabification is determined
by the dominant factor which is O(M2) . On a comparative
scale, the S-BPE algorithm has the same time complexity
as that of BPE, both during training and during tokeniza-
tion. However, tokenization is only a one-time process in
the training of ASR models discussed in this work.

The S-BPE algorithm ensures that the most common
words in the corpus are represented by a single symbol
in the vocabulary. On the other hand, rare words are
broken down into two or more subword tokens, while
maintaining valid pronunciation for each segment. This
combined process of knowledge-based syllabification and
data-driven BPE allows for effective subword tokeniza-
tion. While the syllabification algorithm is specifically
designed for the Malayalam script, the S-BPE algo-
rithm can be extended to other languages that can be
syllabified.

In summary, the S-BPE algorithm leverages both knowl-
edge-based syllabification and data-driven BPE techniques.
It creates a vocabulary of frequent syllable sequences dur-
ing training and uses this vocabulary to segment words into
subwords during tokenization, ensuring effective represen-
tation of both common and rare words in the language.

10 https:// github. com/ kavya manoh ar/ subwo rd- syl- bpe- ml/ tree/ sbpe
11 https:// guill aume- be. github. io/ 2021- 09- 16/ byte_ pair_ encod ing

https://github.com/kavyamanohar/subword-syl-bpe-ml/tree/sbpe
https://guillaume-be.github.io/2021-09-16/byte_pair_encoding

Page 11 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

4 Experimental setup
This section presents the details of our experiments12.
We begin with a description of the datasets followed
by the structure of the DNN-HMM ASR system. We
will describe in detail about the tokenization of the text
corpus for language modeling, the creation of subword-
tokenized pronunciation lexicons, and the process of
acoustic modeling.

4.1 Datasets
Obtaining an adequate training corpus for Malayalam
ASR is challenging due to the limited availability of
comprehensive speech datasets. Creating such datasets
involves resource-intensive tasks, including recruiting
diverse speakers, establishing recording environments,
and ensuring accurate transcription. While there is a vast
amount of multimedia content available online, we have
not attempted to use it for ASR training tasks mainly
because of the difficulty in obtaining high-quality, aligned
speech and text segments from the online content. To
address this limitation, we leveraged existing publicly
available open licensed speech datasets in Malayalam,
such as Indic TTS [43], Open SLR 63 [44], IMaSC [45],
MSC [46], and IIITH [47]. Among these, MSC has the
highest number of speakers but exhibits an imbalance in
the number of utterances per speaker. In contrast, Open
SLR 63 offers a more balanced distribution of utterances
among its 44 speakers, allowing for multi-speaker testing.
Consequently, we partitioned the Open SLR 63 dataset to
facilitate multi-speaker testing.

Each audio recording in the dataset is paired with a
corresponding textual transcript written in the Malay-
alam script. The recordings are provided as wav files,
with a sampling rate of either 16 or 48 kHz and 16-bit
precision for each sample. For consistency during acous-
tic model training, the higher sampling rate of 48 kHz is
downsampled to 16 kHz.

The speech dataset content is predominantly non-
conversational in nature, with one dataset [46] recorded
in natural environments. By including diverse speech
samples from natural settings, we aim to enhance the
robustness and generalizability of our findings. We divide
the available speech into train and test datasets, ensur-
ing zero speaker overlap. The train datasets described in
Table 7 are combined to get approximately 69 h of audio
for acoustic modeling. The ASR models are tested on a
subset of the multi-speaker Open SLR 63 [44] dataset.

To create the language model, we use the sentences
from the speech transcripts and combine it with the
curated collection of text corpus published by SMC [48].
The resulting text corpus contains 227,686 sentences,
1,425,504 word types, and 364,170 unique word tokens.

4.2 DNN‑HMM ASR system
The DNN-HMM ASR decoder consists of three modules
as described in Fig. 2. The functions of these modules are
listed below:

1 Acoustic model: It predicts the posterior likelihood
p(P|X) of phone states P = p0, p1, ...pK given the
acoustic feature frames X = x0, x1, ..., xN trained with
deep neural networks based on the frame level align-
ment of audio and phoneme labels obtained from a
previously trained GMM-HMM acoustic model [49].

2 Pronunciation lexicon: It maps words into a sequence of
phonemes. The acoustic model training module would
need to look up the pronunciation lexicon to convert
the word-level transcripts into phoneme sequences.

3 Language model: It predicts the conditional likeli-
hood p(wi+1|w0,w1, ...wi) of the next word wi+1
given the previous words.

In the ASR decoder, all these components are composed
into a weighted finite-state transducer framework [50]
and the most likely word sequence is retrieved using
graph search methods. This word-based system would
serve as the baseline for our experiments. In a subword
ASR system described in Fig. 3, the pronunciation lexicon
and the language model are subword based.

Table 7 Details of speech datasets used in our experiments

Corpus #Speakers #Utterances Duration (hours) Environment Usage

Indic TTS, IITM [43] 2 8601 14 Studio Training

Open SLR 63 - Train [44] 37 3346 5 Studio Training

IMaSC [45] 8 34,473 49 Studio Training

MSC [46] 75 1541 1 Natural Training

IIITH [47] 1 1000 1 Studio Development

Open SLR 63 - Test [44] 7 679 1 Studio Testing

12 The Kaldi Experimental Setup: https:// gitlab. com/ kavya manoh ar/ ml-
subwo rd- asr

https://gitlab.com/kavyamanohar/ml-subword-asr
https://gitlab.com/kavyamanohar/ml-subword-asr

Page 12 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

The creation of an acoustic model, a subword-tokenized
text corpus for subword language model training, and the
creation of subword-tokenized pronunciation lexicons
are explained in the following subsections.

4.3 Acoustic modeling
Acoustic modeling in speech recognition begins with
extracting relevant features from the raw audio signal.
This process involves dividing the audio into frames of a
fixed size using overlapping windows. To ensure smooth
transitions at the frame borders and to avoid frequency
artifacts, a Hamming window [51] is applied. In our
experiments, we use a window size of 25 ms with a 10 ms
overlap with the previous frame.

Once the speech signal is windowed, a fast Fourier trans-
form (FFT) is applied to convert the signal from the time
domain to the frequency domain. The resulting spectrum
is then transformed logarithmically to obtain the log-
magnitude representation. To capture the spectral charac-
teristics relevant to speech recognition, the energy within
specific Mel frequency ranges is computed. These energy
values are typically represented as Mel frequency cepstral
coefficients (MFCC), which provide a compact represen-
tation of the speech signal’s spectral content [52]. MFCCs
are commonly used as features in acoustic modeling due to
their effectiveness in capturing the phonetic information
necessary for speech recognition tasks [53].

In addition to MFCCs, the inclusion of i-vectors as
features in the acoustic model training process is cru-
cial [54]. These i-vectors play a vital role in effectively
modeling and addressing speaker variability, resulting in
improved recognition accuracy, especially in scenarios
involving multiple speakers or unknown speakers. By
capturing and incorporating speaker-specific informa-
tion, i-vectors enable the system to adapt and account for
individual speaker characteristics, ultimately enhancing
the robustness of the acoustic model.

The training of the DNN-HMM model begins with the
creation of a traditional HMM acoustic model, followed
by utilizing the HMM state labels for each frame to train
the time delay neural network (TDNN) acoustic model
[55]. This two-step process facilitates the incorporation
of both the conventional HMM framework and the pow-
erful representation learning capabilities of the TDNN,
resulting in an enhanced acoustic model for improved
speech recognition performance.

Acoustic features used in TDNN training are (i)
40-dimensional MFCCs extracted from frames of 25 ms
length and 10 ms shift and (ii) 100-dimensional i-vectors
[56] computed from chunks of 150 consecutive frames.
Three consecutive MFCC vectors (3× 40 dimension) and
the i-vector corresponding to a chunk (100 dimension) are

concatenated, obtaining a 220-dimensional feature vector
for a frame [14].

There are 16 layers of TDNNs, each working with dif-
ferent temporal contexts. Each layer is a succession of
typical DNN operations, such as affine transforms, ReLU
activations, and batch normalizations. Layers 2 to 13 use
factored form of TDNN with the subsampled connection
between layers. No subsampling is used in the remaining
layers. All other hidden layers of the TDNN are trained in
parallel. A declining learning rate was used, with an initial
αinitial = 0.0015 and a final αfinal = 0.00015 . This acous-
tic model is trained simultaneously with two discrimina-
tive training criteria, one based on cross-entropy loss and
the other based on maximum mutual information [57].
The dimension of the output layer is determined auto-
matically, based on the number of tied phoneme states.
The model is trained for 5 epochs where every layer uses
L2 regularization to avoid overfitting. To achieve opti-
mal WER, we made parameter adjustments motivated by
improvements in WER on a development speech corpus,
accounting for the interplay between the acoustic model,
pronunciation lexicon, and language model. The model is
trained on a single Nvidia Tesla T4 GPU.

4.4 Creating subword tokenized text corpora
Subword-based ASR, as shown in Fig. 3, is very much
like a word-based ASR system, except that (i) the lan-
guage model represents the conditional probability of
subword sequences, instead of words and (ii) the pronun-
ciation lexicon is composed of subword tokens. The word
boundary marker is chosen so that the predicted subword
tokens can be easily concatenated to form words. We use
the tokenization algorithms described in Sections 2.1
and 3.1, and compare them with the baseline word-based
ASR to answer the research questions.

Data-driven and hybrid tokenization algorithms
require a training corpus for learning the model param-
eters, which is then applied to the target text to obtain
a subword tokenized text corpus. Morfessor, BPE, and
Unigram are data-driven tokenization algorithms while
S-BPE is a hybrid one that additionally relies on linguistic
knowledge. As the training corpus, we set aside a subset
of the entire text corpus (7.5k sentences).

1 Words are separated by spaces in the text corpus and
are thus already segmented.

2 Morfessor model is trained using the morfes-
sor python library [18]. The training stops when
the decrease in the model cost of the last iteration
is smaller than finish_threshold value of 0.005.
The trained model is applied to create the mor-
pheme-tokenized text corpus.

Page 13 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

3 BPE [20] learns the vocabulary from the train-
ing dataset. The initial vocabulary is formed by the
Malayalam characters in the training dataset. The
number of merge operations is set to 10,000. This
results in a BPE model which is used to obtain the
BPE tokenized text corpus.

4 Unigram [21] model is trained by the sentence
piece library using the training dataset with a
vocabulary of 15,000. The trained Unigram model is
used to get the Unigram tokenized text corpus.

5 Being a rule-based algorithm, the syllabifier requires
no training. Algorithm 1 is directly applied to the text
corpus to obtain syllable tokenized corpus.

6 The S-BPE model is trained using the Algorithm 2 so
that the vocabulary is learned. The initial vocabulary
is formed by the Malayalam syllables present in the
training dataset. The number of merge operations is
set to 10,000. This results in a model which is used to
obtain S-BPE tokenized text corpus.

Samples of text tokenized using these methods are pre-
sented in Table 8. These examples indicate how the num-
ber of tokens per sentence varies with the method of
tokenization.

4.5 Language modeling
In the experiments performed in this work, we report
SPS computed on NLL(S) for measuring language mod-
eling complexity. Statistical n-gram language modeling is
performed on the subword tokenized text corpus. SRILM
toolkit is used for the training and evaluation of lan-
guage models [58]. To avoid zero probability assignment
to unseen word sequences, the probability weights are
redistributed by a process known as smoothing. We use

the modified Kneser-Ney smoothing algorithm [59] to
create n-gram language models of orders 2 to 6 for every
tokenization algorithm. The models are trained to pre-
dict the next segment based on the previous n-gram con-
text. The SRILM toolkit can evaluate the test dataset and
return the log-likelihood values with respect to base 10
logarithms and the perplexity. Surprisal values are com-
puted by converting these values to base 2 logarithms.

4.6 Creating subword tokenized lexicons
The graphemic lexicon describes the pronunciation using
the language’s native alphabets, or graphemes. Since BPE,
Unigram, and Morfessor tokenization algorithms in our
experiments do not have access to pronunciation informa-
tion, the tokenization can happen at locations that break the
pronunciation flow. So, it was decided to use a graphemic
pronunciation lexicon, instead of a phonemic one [7] for all
the tokenization algorithms to ensure fair comparison.

For the baseline ASR, the word pronunciation lexicon
is prepared by using all the words in the text corpus with
at least three occurrences. It is then expanded to include
all the words in the training speech transcript. This word
lexicon is referred to as PLword and has 79,947 entries.
Subword lexicons are obtained by segmenting every word
entry in PLword as per the tokenization algorithm under
consideration and choosing the list of unique tokens as
described in Algorithm 3. This involves the following
steps.

1 Initialize an empty list to store the subword tokens.
2 Iterate over each word in the input word lexicon.
3 Tokenize the current word into subword units.
4 Add these to the list of subword tokens.
5 Repeat this process for all words in the input lexicon.
6 Make the list of subword tokens unique by removing

duplicates.
7 Generate pronunciations for each unique subword

token.

Algorithm 3 Subword Lexicon from Word Lexicon

Table 8 Examples for different tokenization algorithms. Space
is used as delimiter between tokens. Number of tokens per
sentence is also tabulated

Method Example Segment
count

Word 3

Morfessor 6

BPE 6

Unigram 5

Syllable 9

S-BPE 4

Page 14 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

The number of entries in these lexicons is described
in Table 9.

4.7 Summary of experimental investigations
The acoustic models are built and combined with lan-
guage models and pronunciation lexicons using the
Kaldi toolkit [60]. From six ways (word, morfessor,
BPE, unigram, syllable, S-BPE) tokenized text corpus,
we construct language models with n-gram orders of
2 to 6. The language modeling effectiveness is then
measured using corpus level and information theo-
retic metrics. Keeping the Kaldi-based TDNN acous-
tic model fixed across tokenization algorithms, we use
subword tokenized lexicons and corresponding lan-
guage models to create 30 (1 acoustic model × 6 sub-
word tokenized lexicons × 5 n-gram orders) different
ASR decoders. These decoders are then tested on a
multispeaker test dataset described in Table 7.

5 Results
In this section, we present the findings from our experi-
ments. We first perform a corpus linguistic analysis on
the subword tokenized corpora. After that, we analyze
the language model. This is done in terms of the metric
SPS, which roughly indicate the complexity, and the over-
all difficulty that the model has in predicting sentences
[8]. Finally, we analyze the ASR results. The WER, OOV-
WER, lexicon size, and overall model size are used to
measure this.

5.1 Corpus linguistic analysis of the LM
Words can be broken down into smaller pieces that are
likely to convey similar meanings in different contexts
by segmenting them into subwords, which can lessen
the impact of rich morphology. We analyze the linguistic
properties of these tokens in this section.

5.1.1 Linguistic validity of tokens
The tokens given by different methods, as exemplified
in Table 8, do not necessarily comply with linguistic

correctness. The word tokens are orthographically
and phonetically valid linguistic units. The tokeniza-
tion given by the Morfessor tool is not true morpheme
tokens. The Morfessor tokens break the orthographic
flow as in being subword tokenized as

. In the second segment, the vowel
sign , occurs without a consonant preceding it, which
is an invalid orthographic usage. Similar invalid ortho-
graphic usages can be observed in BPE and Unigram
tokenization algorithms too.

Syllable tokenization method, by its design, always
gives orthographically valid subword units. The S-BPE
method also gives orthographically valid subword units,
which are longer than syllable tokens. But none of the
methods are capable of providing linguistically meaning-
ful subword tokens. However, unlike machine transla-
tion applications, this is not an essential requirement for
building an ASR system.

5.1.2 Mean length of tokens
The mean length of tokens is the average number of charac-
ters in a token and it depends on the tokenization algorithm.
The distribution of token lengths, in the form of box plots is
shown in Fig. 4. It is the highest for words (8.3) as expected
and the smallest is for syllables (2.2). The mean token length
for Morfessor, Unigram, BPE, and S-BPE tokenization algo-
rithms are 3.9, 4.3, 4.5, and 4.8, respectively.

A comparatively smaller box for syllables indicates
the length is distributed closely about the median value,
with very few outliers. However, for word tokenization,
the length of the box plot is larger, indicating the seg-
ment lengths vary widely.

5.1.3 Token count per word and per sentence
The distribution of the number of tokens per word in
the test dataset is illustrated in Fig. 5. Word tokeniza-
tion does not break down the words, resulting in a
single bar graph. In BPE, Unigram, and S-BPE tokeni-
zation algorithms, more than 50% of the words remain
unsegmented, followed by words being tokenized into
two subwords. In Morfessor tokenization, the distribu-
tion shows more than half the words are tokenized into
two, followed by words remaining unsegmented. The
percentage of words that get segmented into more than
two tokens is rare in all these methods. However, in syl-
lable tokenization, about 28% and 24% of words get seg-
mented into two and three subwords respectively. The
token length per word is more broadly distributed in
syllable tokenization.

On analyzing the tokenization statistics over sen-
tences, we get the values reported in Table 10. It

Table 9 Lexicon Sizes of different tokenization algorithms

Segmentation Lexicon size

Word 79,947

Morfessor 10,545

BPE 9986

Unigram 19,564

Syllable 6279

S-BPE 15,926

Page 15 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

describes the minimum, maximum, and mean number
of tokens per sentence. Syllable tokenized sentences
contain on average 19.9 subword tokens, which is the
highest count of all. Sentences that contain a large
number of tokens would need a longer n-gram lan-
guage model context to guide the decoding [7]. We will
analyze its impact on ASR later in this section.

5.2 Information theoretic analysis of the LM
The complexity of a language model is related to its dif-
ficulty in determining the next segment from the previ-
ous n-gram context. The higher order n-grams extract
more context for the occurrence of a segment and gen-
erally reduce language modeling complexity and hence
perplexity and surprisal. However, raising the n-gram
order beyond a limit reintroduces the data sparsity prob-
lem, resulting in unimproved perplexity and surprisal val-
ues [37]. Subword language models require higher-order
n-grams to capture the context than word-based ones [40].
In our experiments, we create language models of orders
n=2 to 6 and analyze their complexity in terms of SPS.

The SPS values obtained in our experiments are shown
in Table 11. For every tokenization method, with the
increase in n-gram order, the SPS reduces initially and
then stabilises. The best set of SPS values are obtained for
the word segment-based language model. Our investiga-
tion demonstrates that tokenization algorithms yielding a
greater average number of tokens per sentence are asso-
ciated with a notable increase in the complexity evalua-
tion metric SPS. Consequently, language models utilizing

syllable-level tokenization demonstrate the highest com-
plexity, whereas word-level tokenization yields the lowest
complexity. Syllable tokens of lower n-gram orders show
higher SPS values than all other tokenization algorithms.

The impact of subword token-based language mode-
ling on the ASR decoder needs to be evaluated in terms
of its ability to recover OOV words and a correspond-
ing reduction in WER, which is attempted in the fol-
lowing section. However, lowering the language model
complexity does not always ensure an improvement in
automatic speech recognition accuracy [7, 61].

5.3 WER for each tokenization algorithm
To begin with, we present the ASR error rate which is
computed as WER. It is based on the number of words
inserted (I), deleted (D), and substituted (S) in the pre-
dicted speech transcript when compared to the ground
truth transcript according to Eq. (10), where N repre-
sents the total number of words in ground truth tran-
script [62].

The evaluation is performed on a multi-speaker studio
recorded dataset. About 14% of words in this test dataset
are OOV words, which can not be recovered by word-
based ASR. According to [63], it has been shown that
the presence of an OOV word in the test set can result in
approximately two errors during ASR decoding.

(10)WER =
(I + D + S)× 100

(N)

Fig. 4 Distribution of token length

Page 16 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

Figure 6 presents the best set of WER obtained for dif-
ferent tokenization algorithms. To study the performance
of subword-based ASR compared to the baseline word
model on OOV recovery, we compute the WER, specifi-
cally for OOV words. The OOV words in the test set are
determined with respect to the word-level lexicon. To
analyze the extent of OOV-WER in subword token-based

ASR, we use the texterrors Python library[64]. Pro-
viding the list of OOV words in the test set along with the
true speech transcripts, this library computes the OOV-
WER of the subword ASR model.

The baseline method, using words as the tokenization
units, achieves a WER of 27.4% but suffers from a high
OOV-WER of 100.0%, indicating that it struggles with
words not present in the pronunciation lexicon. Among
the alternative tokenization algorithms, Morfessor
achieves a WER of 12.8% and significantly reduces the
OOV-WER to 26.6%. BPE and Unigram tokenization also
show competitive performance with WERs of 11.0% and
11.9% respectively, but their OOV-WERs remain close to
that of Morfessor.

Syllable tokenization, while having a relatively higher
WER of 13.5%, manages to achieve a lower OOV-WER of
24.8% compared to other methods. This is because syllables
being the most granular of all tokenization algorithms, pro-
vide more opportunities for partial matching with available

Fig. 5 Distribution of the number of tokens per word in the text corpus

Table 10 Sentence length statistics in terms of the number of
tokens per sentence

Tokenization Minimum Maximum Mean

Word 5 14 6.4

Morfessor 6 29 11.7

BPE 5 26 8.5

Unigram 5 29 10.1

Syllable 8 49 19.9

S-BPE 5 25 8.1

Page 17 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

lexical units, enabling better recovery of OOV words in
ASR systems. However, this same property also makes syl-
lable token-based ASR less suitable for general words, as it
requires the decoder to recover a higher number of tokens
per sentence, increasing the likelihood of errors.

Notably, the proposed hybrid S-BPE tokenization
outperforms all other methods with the lowest WER of
10.6% and an OOV-WER of 24.8%, demonstrating its
effectiveness in improving ASR performance. While
both S-BPE and syllable tokenization exhibit compa-
rable OOV-WER, S-BPE holds the added advantage of
superior performance on non-OOV words. This is due
to its ability to strike a balance between granularity and
coverage. Overall, the results indicate that alternative
tokenization algorithms offer improvements over the
baseline word tokenization in terms of both WER and

OOV-WER, with S-BPE yielding the best performance in
this evaluation.

6 Ablation studies
In the preceding section, we presented the optimal WER
achieved for each tokenization algorithm, leveraging 69
h of speech data for acoustic modeling and 227,686 sen-
tences of textual data for language modeling, employing
an n-gram order of n = 6 . In this section, we investi-
gate the influence of various tokenization algorithms by
altering the n-gram order and adjusting the quantity of
speech and textual training data used in the experiments.
Our aim is to gain deeper insights into how these factors
impact ASR performance and identify the most effec-
tive combination of tokenization and n-gram order to

Table 11 Language modeling complexity in terms of SPS. Lower SPS implies lower complexity

a Morfessor

 b Unigram

 c Syllable

n‑gram Word Morf.a BPE Uni.b Syl.c S‑BPE
SPS

2 45 88 82 108 157 78

3 42 68 64 84 109 62

4 42 63 61 79 93 60

5 42 62 61 78 85 60

6 42 62 61 79 82 60

Fig. 6 The best WER for each tokenization method and the corresponding OOV-WER

Page 18 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

optimize the accuracy and memory efficiency of the ASR
system.

6.1 Impact of n‑gram order on WER for different
tokenization algorithms

In this analysis, we investigate the impact of the
n-gram order on the WER for different tokenization
algorithms utilized in subword token-based ASR. The
results are illustrated in Fig. 7. For ASR systems based
on word tokens, the n-gram order shows little or no
effect on the WER. However, in other subword token-
based ASR models, we observe a significant reduc-
tion in WER, by at least 4%, when the n-gram order
increases from n = 2 to n = 3 . Further increases in the
n-gram order beyond n = 3 result in only marginal
improvements in WER.

Compared to the baseline word token-based ASR, all
subword token-based ASR models perform better at all
n-gram orders, except for the syllable token-based ASR
at n = 2 . Particularly, the S-BPE token-based ASR out-
performs other tokens at corresponding n-gram orders.

Overall, this analysis offers valuable insights into how
the n-gram order impacts WER for various tokenization
algorithms in subword token-based ASR. It highlights
the superiority of subword token-based approaches,
especially S-BPE tokenization, and underscores the

importance of choosing the right n-gram order to opti-
mize ASR accuracy effectively.

6.2 Impact of n‑gram Order on ASR model memory
requirement for different Tokenization algorithms

The order of the n-gram impacts the memory require-
ment of the ASR model. To study the model memory
requirement, we computed the size of the weighted
FST graph (HCLG.fst) used for decoding. HCLG.
fst is composed of four FSTs namely, H.fst, C.fst,
L.fst, and G.fst. The H.fst and C.fst together
form the acoustic model, L.fst the phonetic lexicon,
and G.fst the grammar of the language model. Thus
the total memory includes the model size for both the
acoustic model and the language model combined.

The bar plot in Fig. 8 illustrates the impact of n-gram
orders on the model memory requirement of dif-
ferent ASR models employing various tokenization
algorithms. The x-axis represents the tokenization algo-
rithms and the y-axis shows the ASR model memory
requirement in Megabytes (MB).

From the plot, we observe that the n-gram order sig-
nificantly affects the memory requirement of ASR mod-
els for most tokenization algorithms. As the n-gram
order increases, the model memory requirement gen-
erally tends to rise across all tokenization algorithms.

Fig. 7 WER comparison for different tokenization algorithms in ASR with varying n-gram order

Page 19 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

This is expected as higher n-gram orders lead to larger
language models, which require more memory to store
the increased contextual information.

Notably, the word token-based ASR (baseline) shows rel-
atively consistent memory requirements regardless of the
n-gram order. However, other subword token-based ASR
models, experience notable increases in memory require-
ment with higher n-gram orders. For n-gram orders ≤ 3,
the syllable tokenization method exhibits the lowest mem-
ory requirement while S-BPE tokenization requires the
most memory among the subword token-based models.

Based on the discussions about the WER and the
model memory requirement, we find that higher n-gram
orders, which lead to improved WER, come at the cost
of increased model memory requirement. There exists a
trade-off between achieving better ASR accuracy through
more extensive context capture (higher n-gram order)
and the computational resources needed to accommo-
date the larger language model in memory.

6.3 Trade‑off between WER and model memory
requirement

Through our investigation, we have observed that
subword tokens of n-gram orders ≤ 3, exhibit a con-
siderably smaller WER compared to the correspond-
ing word-based models while having a lower model

memory requirement. For n-gram orders above 4,
the model size increases substantially without much
improvement in WER and hence is not recommended.
A comparative analysis of the WER and model size is
presented in Table 12, for n-gram = 3.

In the trade-off diagram shown in Fig. 9, the model
size of the word-based baseline ASR model does not
change significantly with the model size. However, the
error rate of the word-based baseline model is higher
than all subword-based models, except for the syllable
bigram ASR. Although the syllable bigram ASR has the
smallest model size, its error rate is so high that it is not
practical to use it.

Fig. 8 Size of ASR model (MB) for different tokenization algorithms in ASR with varying n-gram order

Table 12 Comparing the WER and model size of each subword
tokenization method, at n-gram = 3. The relative reduction with
respect to the baseline word model is also shown in percentage

Segmentation WER (%) Model size (MB)

Word (baseline) 27.4 123

Morfessor 11.7 ↓ 57% 104 ↓ 15%

BPE 13.7 ↓ 50% 90 ↓ 26%

Unigram 12.6 ↓ 54% 108 ↓ 12%

Syllable 14.7 ↓ 46% 94 ↓ 23%

S-BPE 11.4 ↓ 58% 110 ↓ 11%

Page 20 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

The performance of all subword models is better than
the baseline, except for the bigram syllable language
model. Syllables with the smallest mean length of tokens
among all tokenization algorithms, require more n-gram
context to make a reasonable prediction about the next
subword segment. But once it has enough context, the
predictions become more reliable as exemplified in the
WER reduction in Fig. 9. The subword token-based ASRs
show consistent improvement in WER with the increase
in n-gram order. But the relative improvement dimin-
ishes with the n-gram order.

Researchers and practitioners need to strike a balance
between n-gram order selection, WER performance,
and available computational resources to design effi-
cient and effective ASR systems. This involves consider-
ing the desired ASR accuracy, memory constraints, and
computational capabilities when making decisions about
n-gram order and other language modeling parameters
to optimize ASR performance.

6.4 Impact of LM training data on WER for different
tokenization algorithms

To investigate the influence of LM training data on the
WER of the ASR model, we conducted experiments by
creating language models using varying amounts of tex-
tual data, ranging from 12.5 to 100% of available 227,686

sentences utilizing an n-gram order of 3. The choice of
n-gram was based on the fact that beyond n-gram=3,
there would be a significant increase in model memory
requirement without much improvement in WER. These
language models were then combined with acoustic
models built using the entire available audio corpora of
about 69 h.

The plot in Fig. 10 depicts the relationship between
WER and the percentage of available text corpora used
for LM training. As the percentage of LM training data
increases, there is a consistent reduction in WER for all
tokenization algorithms. This demonstrates that more
extensive LM training data leads to improved ASR accu-
racy, regardless of the tokenization approach used.

In the analysis, we observe that each tokenization algo-
rithm exhibits distinct WER performance across different
amounts of LM training data. Initially, when LM training
data usage is low, all subword tokenizations demonstrate
comparable performance. However, as the percentage of
LM training data increases, the WER for these tokeni-
zations starts to diverge. Morfessor, BPE, and Unigram
tokenizations show competitive performance compared
to the S-BPE tokenization, especially at lower levels of
LM training data usage. However, with the increase in
LM training data, the S-BPE tokenization consistently
outperforms the others, showcasing the most robust
WER reduction across all data sizes above 25%.

However, as the amount of LM training data increases,
syllable tokenization, which initially showed competi-
tiveness at lower data usage, gradually loses its competi-
tive edge compared to other subword tokenizations. Its
WER performance does not improve at the same rate as
the other subword tokenizations, making it less favorable
when utilizing the full available training data. In contrast,
the word tokenization approach exhibits the highest
WER among all algorithms, indicating its limitation in
capturing the complexities of the language, especially in
morphologically rich languages.

6.5 Impact of AM training data on WER for different
tokenization algorithms

To investigate the influence of audio training data on the
WER of ASR model, we conducted experiments by cre-
ating acoustic models using varying amounts of speech
data, ranging from 4.5 to 69 h. These acoustic models
were then combined with language models built using
the entire available text corpora, utilizing an n-gram
order of 3. The choice of n-gram was based on the fact
that beyond n-gram=3, there would be a significant
increase in model memory requirement without much
improvement in WER (Fig. 11).

As the amount of training data increases, all tokeni-
zation algorithms show a clear reduction in WER. This

Fig. 9 Trade-off between ASR WER and Memory requirement. The
n-gram order is indicated as labels within the circles

Page 21 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

finding depicted in Fig. 11 indicates that more extensive
and diverse training data leads to improved ASR accu-
racy across all subword tokenization approaches.

Every subword tokenization algorithm maintains its
relative position in terms of WER at all levels of available
training data. This is because the tokenization algorithms
directly impact the LM modeling and not the acoustic
modeling and our LM model is constant thought out this
experimental investigation. Among the analyzed tokeni-
zation algorithms, the S-BPE consistently exhibits the
lowest WER.

7 Analysis and discussions
Based on our detailed experimental investigations on
developing subword-based DNN-HMM ASR models for
Malayalam, we have reached answers to our research
questions posed in Section 1.4.
RQ1: Subword and word token-based language models

were compared based on their complexity using the SPS
metric. The results showed that all subword tokeniza-
tions resulted in a higher number of tokens per sentence
compared to word-based tokenization. Consequently, the
subword token-based language models exhibited higher
values for SPS, indicating higher complexity compared
to word token-based LMs. Syllable tokens demonstrated
the highest values, suggesting that their higher granu-
larity and token count adversely impacted the overall

complexity of the language models. This shows the sub-
word tokenization did not improve the LM modeling effi-
ciency when evaluated using the SPS metric.
RQ2: The WER and LM complexity measured by the

SPS metric were found to be uncorrelated. While sub-
word tokenization did not significantly improve the
intrinsic LM complexity metric, it indeed led to improved
ASR performance compared to word tokenization. This
is because ASR involves additional complexities related
to acoustics, pronunciation variations, and OOV words.
These factors influence WER independently of the LM
complexity. Thus the subword tokenization method that
exhibits the best language modeling complexity does not
lead to the lowest WER for ASR tasks.
RQ3: Subword token-based ASR models exhibit

reduced WER and decreased model memory require-
ments, especially when the n-gram order is less than
n = 4 when compared to the baseline word token-based
ASR. This finding suggests that subword tokenization can
be highly beneficial for ASR tasks, particularly in mor-
phologically complex languages or datasets with a large
vocabulary. The hybrid method of S-BPE tokenization
proposed in this work exhibited the lowest WER over
diverse n-gram orders and AM and LM training data
usage. Both S-BPE and Syllable token-based ASR could
recover many OOV words resulting in the lowest OOV-
WER of 24.8%.

Fig. 10 WER vs. amount of textual data as a percentage of total available text corpora

Page 22 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

RQ4: The n-gram order significantly influences WER and
ASR model size, with limited WER improvements beyond
n-gram = 3, but higher orders increase model memory
significantly. The optimal trade-off between WER and
memory requires careful consideration of n-gram selection.
Additionally, increasing the amount of AM training data
generally leads to improved WER across all tokenization
algorithms. On the other hand, the impact of increased LM
training data varies for different tokenization algorithms.
Some subword tokenizations (Morfessor, BPE, Unigram,
and S-BPE) benefit more from additional LM training data,
while others (word and syllable) did not show significant
improvements. This underscores the importance of consid-
ering the interaction between tokenization algorithms and
the amount of training data, both for LM and AM, to opti-
mize ASR accuracy effectively. In all these ablation studies,
S-BPE stood out with the best WER.

8 Conclusions
The presented study holds significant importance as it
represents the first comprehensive investigation into
improving speech recognition systems for the morpho-
logically complex Malayalam language using subword
language modeling techniques. By exploring various
subword tokenization algorithms, we have conducted a
detailed analysis of statistical n-gram language models’
usage in the context of a hybrid ASR task.

The results of our study have demonstrated the excep-
tional performance of the proposed hybrid S-BPE tokens,

achieving a remarkable 10.6% WER, which represents a
16.8% improvement over the baseline word-level ASR.
While the linguistically informed syllable tokenization
approach yielded a WER of 13.5%, it was unable to sur-
pass the WER performance of other data-driven tokeni-
zation algorithms.

The comprehensive ablation study highlights that
increasing the n-gram order of the language model
beyond n = 3 offers little benefit, as it leads to sig-
nificant model size growth without substantial WER
improvement. On the other hand, augmenting the
acoustic model training data consistently enhances
WER across all tokenization algorithms. However, for
data-driven tokenizations, increasing the LM train-
ing data proves especially beneficial, outperform-
ing word and syllable tokenizations in terms of WER
improvement.

In conclusion, the adoption of S-BPE subword
tokens offers the advantage of reduced model memory
requirements. It enables the efficient deployment of
ASR models on memory-constrained devices, facilitat-
ing on-device speech recognition. Additionally, S-BPE
and syllable subwords exhibit the lowest error rate for
out-of-vocabulary words, effectively identifying more
than 75% of these words, with an OOV-WER of 24.8%.
The findings highlight the benefits of subword tokeni-
zation, including decreased model memory demands
and improved accuracy, thereby greatly benefiting lan-
guages with complex morphology like Malayalam.

Fig. 11 WER vs. Amount of training data in hours

Page 23 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

By addressing the challenges specific to Malayalam
and offering valuable insights into subword tokeniza-
tion techniques, our research makes a significant con-
tribution to the field of speech recognition and lays the
foundation for further advancements in ASR systems
for morphologically rich languages.

Abbreviations
AM Acoustic model
API Application program interface
ASR Automatic speech recognition
BPE Byte pair encoding
DNN Deep neural network
E2E End to End
FFT Fast Fourier transform
FST Finite state transducers
HMM Hidden Markov model
LM Language model
MB Megabytes
MFCC Mel frequency cepstral coefficients
OOV Out of vocabulary
PASM Pronunciation-assisted subword modeling
PL Pronunciation lexicon
RQ Research questions
S-BPE Syllable - byte pair encoding
SOTA State of the art
SPS Surprisal per sentence
TDNN Time delay neural network
WER Word error rate

Acknowledgements
We would like to acknowledge the publishers of all datasets and the authors of all
open-source toolkits and libraries that made this research possible. We also thank
the anonymous reviewers for helping shape this manuscript in its current form.

Authors’ contributions
Kavya Manohar is responsible for the experimental design, implementation
and interpretation of the results. Kavya Manohar drafted the manuscript and
A. R. Jayan and Rajeev Rajan revised it critically for intellectual content. All
authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The experiments in this work use open-licensed, publicly available speech and
text datasets described in Section 4.1.
 The source code for implementing the proposed subword tokenization algo-
rithm is presented in this repos itory. All other subword tokenizations rely on
open-licensed libraries: Morfessor (Morfe ssor Python Library), BPE (Subwo rd
NMTPython Library), Unigram (Sente nce Piece Python Library) and Malayalam
Syllabifier (Mlphon Python Library).
 The acoustic model was created using Kaldi speec h recog nitio n toolk it. Its
training requires a GPU. Statistical language model was created using SRILM
toolkit. The acoustic model, the language model and the pronunciation
lexicon are combined to form the ASR decoder using Kaldi. We have made the
experimental script available in this repos itory.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 College of Engineering Trivandrum, Thiruvananthapuram, 695 016 Kerala,
India. 2 APJ Abdul Kalam Technological University, Thiruvananthapuram, Kerala,
India. 3 Government Engineering College, Thrissur, Kerala, India.

Received: 27 January 2023 Accepted: 12 October 2023

References
 1. L. Besacier, E. Barnard, A. Karpov, T. Schultz, Automatic Speech Recogni-

tion for Under-resourced Languages: A Survey. Speech Commun. 56,
85–100 (2014). https:// doi. org/ 10. 1016/j. specom. 2013. 07. 008

 2. M. Baerman, D. Brown, G.G. Corbett, Understanding and measuring
morphological complexity (Oxford University Press, USA, 2015)

 3. S. Thottingal, in Proceedings of the 2nd Workshop on Technologies for MT
of Low Resource Languages. Finite State Transducer based Morphology
analysis for Malayalam Language (European Association for Machine
Translation, Dublin, 2019), pp. 1–5. https:// aclan tholo gy. org/ W19- 6801.
Accessed 4 Sept 2023.

 4. R.E. Asher, T.C. Kumari, Malayalam (Descriptive grammars) (Routledge,
London and New York, 1997)

 5. G.B. Kumar, K.N. Murthy, B. Chaudhuri, Statistical Analyses of Telugu
Text Corpora. IJDL. Int. J. Dravidian Linguist. 36(2), 71–99 (2007)

 6. K. Manohar, A. Jayan, R. Rajan, in International Conference on Text,
Speech, and Dialogue. Quantitative Analysis of the Morphological Com-
plexity of Malayalam Language (Springer, 2020), pp. 71–78. https:// doi.
org/ 10. 1007/ 978-3- 030- 58323-1_7

 7. P. Smit, S. Virpioja, M. Kurimo, Advances in Subword-Based HMM-DNN
Speech Recognition Across Languages. Comput Speech Lang. 66,
101158 (2021). https:// doi. org/ 10. 1016/j. csl. 2020. 101158

 8. S.J. Mielke, R. Cotterell, K. Gorman, B. Roark, J. Eisner, in Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics.
What Kind of Language Is Hard to Language-Model? (Association for
Computational Linguistics, Florence, 2019), pp. 4975–4989. https:// doi.
org/ 10. 18653/ v1/ P19- 1491

 9. H.H. Park, K.J. Zhang, C. Haley, K. Steimel, H. Liu, L. Schwartz, Morphol-
ogy Matters: A Multilingual Language Modeling Analysis. Trans. Assoc.
Comput. Linguist. 9, 261–276 (2021). https:// doi. org/ 10. 1162/ tacl_a_
00365

 10. P. Smit, S. Virpioja, M. Kurimo, in Proc. Interspeech 2017. Improved
Subword Modeling for WFST-Based Speech Recognition (2017), pp.
2551–2555. https:// doi. org/ 10. 21437/ Inter speech. 2017- 103

 11. M. Creutz, T. Hirsimäki, M. Kurimo, A. Puurula, J. Pylkkönen, V. Siivola, M.
Varjokallio, E. Arisoy, M. Saraçlar, A. Stolcke, Morph-Based Speech Rec-
ognition and Modeling of out-of-Vocabulary Words across Languages.
ACM Trans. Speech Lang. Process. 5(1) (2007). https:// doi. org/ 10. 1145/
13223 91. 13223 94

 12. S. Manghat, S. Manghat, T. Schultz, in ICASSP 2022 - 2022 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP).
Hybrid Sub-word Segmentation for Handling Long Tail in Morphologi-
cally Rich Low Resource Languages (2022), pp. 6122–6126. https:// doi.
org/ 10. 1109/ ICASS P43922. 2022. 97466 52

 13. H.S. Chadha, A. Gupta, P. Shah, N. Chhimwal, A. Dhuriya, R. Gaur, V.
Raghavan, Vakyansh: Asr toolkit for low resource indic languages. arXiv
preprint arXiv: 2203. 16512 (2022)

 14. A.L. Georgescu, A. Pappalardo, H. Cucu, M. Blott, Performance vs. Hard-
ware Requirements in State-of-the-art Automatic Speech Recognition.
EURASIP J. Audio Speech Music. Process. 2021(1), 1–30 (2021). https://
doi. org/ 10. 1186/ s13636- 021- 00217-4

 15. S.P. Bayerl, K. Riedhammer, in Text, Speech, and Dialogue, ed. by K.
Ekštein. A Comparison of Hybrid and End-to-End Models for Syllable
Recognition (Springer International Publishing, Cham, 2019), pp.
352–360. https:// doi. org/ 10. 1007/ 978-3- 030- 27947-9_ 30

 16. A. Rouhe, A. Van Camp, M. Singh, H. Van Hamme, M. Kurimo, in Speech
and Computer, ed. by A. Karpov, R. Potapova. An Equal Data Setting
for Attention-Based Encoder-Decoder and HMM/DNN Models: A Case
Study in Finnish ASR (Springer International Publishing, Cham, 2021),
pp. 602–613

 17. M. Creutz, K. Lagus, in Proceedings of the ACL-02 Workshop on Mor-
phological and Phonological Learning. Unsupervised Discovery of
Morphemes (2002), pp. 21–30

 18. S. Virpioja, P. Smit, S.A. Grönroos, M. Kurimo, et al., Morfessor 2.0: Python
Implementation and Extensions for Morfessor Baseline. (Aalto Univer-
sity, 2013), pp. 38. http:// urn. fi/ URN: ISBN: 978- 952- 60- 5501-5

https://github.com/kavyamanohar/subword-syl-bpe-ml
https://pypi.org/project/Morfessor/
https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt
https://github.com/google/sentencepiece
https://gitlab.com/smc/mlphon
http://kaldi-asr.org/
https://www.sri.com/platform/srilm/
https://gitlab.com/kavyamanohar/ml-subword-asr
https://doi.org/10.1016/j.specom.2013.07.008
https://aclanthology.org/W19-6801
https://doi.org/10.1007/978-3-030-58323-1_7
https://doi.org/10.1007/978-3-030-58323-1_7
https://doi.org/10.1016/j.csl.2020.101158
https://doi.org/10.18653/v1/P19-1491
https://doi.org/10.18653/v1/P19-1491
https://doi.org/10.1162/tacl_a_00365
https://doi.org/10.1162/tacl_a_00365
https://doi.org/10.21437/Interspeech.2017-103
https://doi.org/10.1145/1322391.1322394
https://doi.org/10.1145/1322391.1322394
https://doi.org/10.1109/ICASSP43922.2022.9746652
https://doi.org/10.1109/ICASSP43922.2022.9746652
http://arxiv.org/abs/2203.16512
https://doi.org/10.1186/s13636-021-00217-4
https://doi.org/10.1186/s13636-021-00217-4
https://doi.org/10.1007/978-3-030-27947-9_30
http://urn.fi/URN:ISBN:978-952-60-5501-5

Page 24 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

 19. P. Gage, A New Algorithm for Data Compression. C Users J. 12(2), 23–38
(1994)

 20. R. Sennrich, B. Haddow, A. Birch, in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Neural Machine Translation of Rare Words with Subword
Units (Association for Computational Linguistics, Berlin, 2016), pp.
1715–1725. https:// doi. org/ 10. 18653/ v1/ P16- 1162

 21. T. Kudo, in Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Subword Regulari-
zation: Improving Neural Network Translation Models with Multiple
Subword Candidates (Association for Computational Linguistics,
Melbourne, 2018), pp. 66–75. https:// doi. org/ 10. 18653/ v1/ P18- 1007

 22. Adiga, Devaraja and Kumar, Rishabh and Krishna, Amrith and Jyothi,
Preethi and Ramakrishnan, Ganesh and Goyal, Pawan, in Findings of the
Association for Computational Linguistics: ACL-IJCNLP 2021. Automatic
Speech Recognition in Sanskrit: A New Speech Corpus and Modelling
Insights (2021). https:// doi. org/ 10. 18653/ v1/ 2021. findi ngs- acl. 447

 23. H. Xu, S. Ding, S. Watanabe, in ICASSP 2019 - 2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). Improving End-to-
end Speech Recognition with Pronunciation-assisted Sub-word Modeling
(2019), pp. 7110–7114. https:// doi. org/ 10. 1109/ ICASSP. 2019. 86824 94

 24. A. Kunchukuttan, P. Bhattacharyya, in Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing. Orthographic Syl-
lable as basic unit for SMT between Related Languages (Association for
Computational Linguistics, Austin, 2016), pp. 1912–1917. https:// doi.
org/ 10. 18653/ v1/ D16- 1196

 25. H. Singh, R.K. Sharma, V. Singh, Online Handwriting Recognition Sys-
tems for Indic and non-Indic scripts: A Review. Artif. Intell. Rev. 54(2),
1525–1579 (2021). https:// doi. org/ 10. 1007/ s10462- 020- 09886-7

 26. C. Toraman, E.H. Yilmaz, F. Şahïnuç, O. Ozcelik, Impact of tokenization on
language models: An analysis for turkish. ACM Trans. Asian Low-Resour.
Lang. Inf. Process. 22(4) (2023). https:// doi. org/ 10. 1145/ 35787 07

 27. V.R.P. Nair, Introduction to
Linguistics (MaluBen Publications, Thiruvananthapuram, 2016)

 28. R. Rajeev, E. Sherly, in Proceedings of 20th Kerala Science Congress. A suffix
Stripping based Morph Analyser for Malayalam Language (Kerala State
Council for Science, Technology and Environment, Thriruvananthapuram,
2007), pp. 482–484

 29. O. Rinju, R. Rajeev, P.R. Raj, E. Sherly, Morphological Analyzer for Malay-
alam: Probabilistic Method vs Rule based Method. Int. J. Comput. Linguist.
Nat. Lang. Process. 2(10), 502–507 (2013)

 30. P. Antony, K. Soman, Computational Morphology and Natural Language
Parsing for Indian Languages: A Literature Survey. Int. J. Sci. Eng. Res. 3,
136-146 (2012)

 31. V. Abeera, S. Aparna, R. Rekha, M. Anand Kumar, V. Dhanalakshmi, K.
Soman, S. Rajendran, in International Conference on Data Engineering
and Management. Morphological analyzer for Malayalam using Machine
Learning (Springer, 2010), pp. 252–254

 32. B. Premjith, K.P. Soman, M.A. Kumar, A Deep Learning Approach for
Malayalam Morphological Analysis at Character Level. Procedia Comput.
Sci. 132, 47–54 (2018). https:// doi. org/ 10. 1016/j. procs. 2018. 05. 058

 33. V. Zouhar, C. Meister, J. Gastaldi, L. Du, T. Vieira, M. Sachan, R. Cotterell, in
Findings of the Association for Computational Linguistics: ACL 2023. A formal
perspective on byte-pair encoding (Association for Computational Lin-
guistics, Toronto, 2023), pp. 598–614. https:// doi. org/ 10. 18653/ v1/ 2023.
findi ngs- acl. 38

 34. K. Manohar, A.R. Jayan, R. Rajan, Mlphon: A Multifunctional Grapheme-
Phoneme Conversion Tool Using Finite State Transducers. IEEE Access 10,
97555–97575 (2022). https:// doi. org/ 10. 1109/ ACCESS. 2022. 32044 03

 35. G. Berry, R. Sethi, From regular expressions to deterministic automata.
Theor. Comput. Sci. 48, 117–126 (1986)

 36. D. Jurafsky, J.H. Martin, Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics, and Speech
Recognition (Pearson, India, 2009)

 37. A.I.E.D. Mousa, Sub-word based language modeling of morphologically
rich languages for lvcsr. Ph.D. thesis, RWTH Aachen University (2014)

 38. T. Hirsimäki, M. Creutz, V. Siivola, M. Kurimo, S. Virpioja, J. Pylkkönen,
Unlimited Vocabulary Speech Recognition with Morph Language Models
Applied to Finnish. Comput. Speech Lang. 20(4), 515–541 (2006). https://
doi. org/ 10. 1016/j. csl. 2005. 07. 002

 39. G. Choueiter, D. Povey, S. Chen, G. Zweig, in 2006 IEEE International Confer-
ence on Acoustics Speech and Signal Processing Proceedings. Morpheme-
Based Language Modeling for Arabic LVCSR, vol. 1 (2006), pp. I–I. https://
doi. org/ 10. 1109/ ICASSP. 2006. 16602 05

 40. B. Pilar, et al., Subword Dictionary Learning and Segmentation Techniques
for Automatic Speech Recognition in Tamil and Kannada. arXiv preprint
arXiv: 2207. 13331 (2022)

 41. B. Pilar, et al., Knowledge-driven subword grammar modeling for auto-
matic speech recognition in tamil and kannada. arXiv preprint arXiv: 2207.
13333 (2022)

 42. K. Manohar, A.R. Jayan, R. Rajan, in Proceedings of the Third International
Workshop on NLP Solutions for Under Resourced Languages (NSURL 2022)
co-located with ICNLSP 2022. Syllable subword tokens for open vocabulary
speech recognition in Malayalam (Association for Computational Linguis-
tics, Trento, 2022), pp. 1–7. https:// aclan tholo gy. org/ 2022. nsurl-1.1

 43. A. Baby, A.L. Thomas, N. Nishanthi, T. Consortium, et al., in Proceedings
of Text, Speech and Dialogue. Resources for Indian languages (Springer,
Cham, 2016)

 44. F. He, S.H.C. Chu, O. Kjartansson, C. Rivera, A. Katanova, A. Gutkin, I. Demir-
sahin, C. Johny, M. Jansche, S. Sarin, K. Pipatsrisawat, in Proceedings of The
12th Language Resources and Evaluation Conference (LREC). Open-source
Multi-speaker Speech Corpora for Building Gujarati, Kannada, Malay-
alam, Marathi, Tamil and Telugu Speech Synthesis Systems (European
Language Resources Association (ELRA), Marseille, 2020), pp. 6494–6503.
https:// www. aclweb. org/ antho logy/ 2020. lrec-1. 800

 45. D.P. Gopinath, V.V. Nair, et al., Imasc–icfoss malayalam speech corpus.
arXiv preprint arXiv: 2211. 12796 (2022)

 46. K. Manohar. Releasing Malayalam speech corpus. (2020). https:// blog.
smc. org. in/ malay alam- speech- corpus/. Accessed 1 Sept 2023

 47. K. Prahallad, E.N. Kumar, V. Keri, S. Rajendran, A.W. Black, in Thirteenth
annual conference of the international speech communication association.
The IIIT-H Indic speech databases (ISCA, Portland, 2012)

 48. S.M. Computing. Malayalam text corpora (Swathanthra Malayalam
Computing, Kerala, 2020). https:// gitlab. com/ smc/ corpus. Retrieved
on Spetember 01, 2023

 49. P. Żelasko, S. Feng, L. Moro Velázquez, A. Abavisani, S. Bhati, O. Scharen-
borg, M. Hasegawa-Johnson, N. Dehak, Discovering Phonetic Inventories
with Crosslingual Automatic Speech Recognition. Comput. Speech Lang.
74(C) (2022). https:// doi. org/ 10. 1016/j. csl. 2022. 101358

 50. M. Mohri, F. Pereira, M. Riley, Weighted Finite-state Transducers in Speech
Recognition. Comput. Speech Lang. 16(1), 69–88 (2002). https:// doi. org/
10. 1006/ csla. 2001. 0184

 51. R.W. Hamming, Digital filters (Courier Corporation, USA, 1998)
 52. S. Davis, P. Mermelstein, Comparison of parametric representations for

monosyllabic word recognition in continuously spoken sentences. IEEE
Trans. Acoust. Speech Signal Process. 28(4), 357–366 (1980)

 53. S.S. Stevens, J. Volkmann, E.B. Newman, A scale for the measurement of the
psychological magnitude pitch. J. Acoust. Soc. Am. 8(3), 185–190 (1937)

 54. N. Dehak, P.J. Kenny, R. Dehak, P. Dumouchel, P. Ouellet, Front-end factor
analysis for speaker verification. IEEE Trans. Audio Speech Lang. Process.
19(4), 788–798 (2010)

 55. V. Peddinti, D. Povey, S. Khudanpur, in Sixteenth annual conference of the
international speech communication association. A time delay neural net-
work architecture for efficient modeling of long temporal contexts (ISCA,
Dresden, 2015)

 56. G. Saon, H. Soltau, D. Nahamoo, M. Picheny, in 2013 IEEE Workshop on
Automatic Speech Recognition and Understanding. Speaker adaptation of
neural network acoustic models using i-vectors (IEEE, Olomouc, 2013),
pp. 55–59

 57. D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar, X. Na, Y. Wang,
S. Khudanpur, in Interspeech. Purely sequence-trained neural networks for
asr based on lattice-free mmi. (2016), pp. 2751–2755

 58. A. Stolcke, in Seventh international conference on spoken language process-
ing. SRILM-an extensible language modeling toolkit (ISCA, Denver, 2002)

 59. R. Kneser, H. Ney, in 1995 International Conference on Acoustics, Speech, and
Signal Processing. Improved backing-off for m-gram language modeling,
vol. 1 (1995), pp. 181–184. https:// doi. org/ 10. 1109/ ICASSP. 1995. 479394

 60. D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M.
Hannemann, P. Motlicek, Y. Qian, P. Schwarz, et al., in IEEE 2011 workshop
on automatic speech recognition and understanding. The Kaldi speech
recognition toolkit (IEEE, Columbia, 2011), CONF

https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/2021.findings-acl.447
https://doi.org/10.1109/ICASSP.2019.8682494
https://doi.org/10.18653/v1/D16-1196
https://doi.org/10.18653/v1/D16-1196
https://doi.org/10.1007/s10462-020-09886-7
https://doi.org/10.1145/3578707
https://doi.org/10.1016/j.procs.2018.05.058
https://doi.org/10.18653/v1/2023.findings-acl.38
https://doi.org/10.18653/v1/2023.findings-acl.38
https://doi.org/10.1109/ACCESS.2022.3204403
https://doi.org/10.1016/j.csl.2005.07.002
https://doi.org/10.1016/j.csl.2005.07.002
https://doi.org/10.1109/ICASSP.2006.1660205
https://doi.org/10.1109/ICASSP.2006.1660205
http://arxiv.org/abs/2207.13331
http://arxiv.org/abs/2207.13333
http://arxiv.org/abs/2207.13333
https://aclanthology.org/2022.nsurl-1.1
https://www.aclweb.org/anthology/2020.lrec-1.800
http://arxiv.org/abs/2211.12796
https://blog.smc.org.in/malayalam-speech-corpus/
https://blog.smc.org.in/malayalam-speech-corpus/
https://gitlab.com/smc/corpus
https://doi.org/10.1016/j.csl.2022.101358
https://doi.org/10.1006/csla.2001.0184
https://doi.org/10.1006/csla.2001.0184
https://doi.org/10.1109/ICASSP.1995.479394

Page 25 of 25Manohar et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:47

 61. P. Kłosowski, Statistical analysis of orthographic and phonemic language
corpus for word-based and phoneme-based polish language modelling.
EURASIP J. Audio Speech Music Process. 2017(1), 1–16 (2017)

 62. J. Benesty, M.M. Sondhi, Y. Huang et al., Springer handbook of speech
processing, vol. 1 (Springer, Berlin, 2008)

 63. M. Bisani, H. Ney, in Proc. Interspeech 2005. Open vocabulary speech
recognition with flat hybrid models (2005), pp. 725–728. https:// doi. org/
10. 21437/ Inter speech. 2005- 11

 64. R.A. Braun, S. Madikeri, P. Motlicek, in ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). A Com-
parison of Methods for OOV-Word Recognition on a New Public Dataset
(IEEE, 2021), pp. 5979–5983. https:// doi. org/ 10. 1109/ ICASS P39728. 2021.
94151 24

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.21437/Interspeech.2005-11
https://doi.org/10.21437/Interspeech.2005-11
https://doi.org/10.1109/ICASSP39728.2021.9415124
https://doi.org/10.1109/ICASSP39728.2021.9415124

	Improving speech recognition systems for the morphologically complex Malayalam language using subword tokens for language modeling
	Abstract
	1 Introduction
	1.1 Morphological complexity of Malayalam language
	1.2 Deep neural network–hidden Markov Model (DNN-HMM)-based ASR architecture
	1.3 DNN-HMM ASR with subword tokens
	1.4 Research objectives and key contributions

	2 Related works
	2.1 Subword tokenization algorithms
	2.1.1 Word tokens
	2.1.2 Morpheme tokens
	2.1.3 BPE tokens
	2.1.4 Unigram tokens
	2.1.5 Syllable tokens

	2.2 Language modeling analysis
	2.3 Subword-based ASR
	2.3.1 Comparison with other reported works

	3 Proposed subword tokenization algorithm
	3.1 S-BPE algorithm

	4 Experimental setup
	4.1 Datasets
	4.2 DNN-HMM ASR system
	4.3 Acoustic modeling
	4.4 Creating subword tokenized text corpora
	4.5 Language modeling
	4.6 Creating subword tokenized lexicons
	4.7 Summary of experimental investigations

	5 Results
	5.1 Corpus linguistic analysis of the LM
	5.1.1 Linguistic validity of tokens
	5.1.2 Mean length of tokens
	5.1.3 Token count per word and per sentence

	5.2 Information theoretic analysis of the LM
	5.3 WER for each tokenization algorithm

	6 Ablation studies
	6.1 Impact of n-gram order on WER for different tokenization algorithms
	6.2 Impact of n-gram Order on ASR model memory requirement for different Tokenization algorithms
	6.3 Trade-off between WER and model memory requirement
	6.4 Impact of LM training data on WER for different tokenization algorithms
	6.5 Impact of AM training data on WER for different tokenization algorithms

	7 Analysis and discussions
	8 Conclusions
	Acknowledgements
	References

