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Abstract 

This study focuses on exploring the acoustic differences between synthesized Guzheng pieces and real Guzheng 
performances, with the aim of improving the quality of synthesized Guzheng music. A dataset with consideration 
of generalizability with multiple sources and genres is constructed as the basis of analysis. Classification accuracy 
up to 93.30% with a single feature put forward the fact that although the synthesized Guzheng pieces in subjec-
tive perception evaluation are recognized by human listeners, there is a very significant difference to the performed 
Guzheng music. With features compensating to each other, a combination of only three features can achieve a nearly 
perfect classification accuracy of 99.73%, with the essential two features related to spectral flux and an auxiliary 
feature related to MFCC. The conclusion of this work points out a potential future improvement direction in Guzheng 
synthesized algorithms with spectral flux properties.
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1  Introduction
Music is an art of creativity, imagination, and aesthetic 
experience and plays a vital role in social life. MIR (Music 
Information Retrieval)  [1] is a discipline that studies 
how to use computer technology to analyze, extract, 
and organize musical information automatically. MIR’s 
research areas cover various aspects, including music 
signal processing [2], music feature extraction [3], music 
classification  [4] and annotation  [5], music retrieval  [6], 
music recommendation  [7], and music generation  [4]. 
Automatic musical instrument recognition plays a pivotal 
role as a critical subtask in the field of music information 

retrieval (MIR). Its primary objective is to identify vari-
ous types of instruments within raw music, specifically 
at different time intervals  [8]. In recent years, research-
ers have used different deep-learning methods for instru-
ment recognition. Zhong et al. [9] addressed hierarchical 
multi-label music tagging with joint training methods of 
a single DNN. Ashraf et al. [10] designed a hybrid CNN 
and RNN variant model for music classification. The pro-
posed hybrid architecture combining CNN and Bi-GRU, 
utilizing Mel-spectrogram, demonstrated a high accu-
racy of 89.30%, and the hybridization of CNN and LSTM, 
employing MFCC, achieved an accuracy of 76.40%. Gon-
zalez et al. [11] used the geometric distance to study the 
timbral similarity between audios of different sounds and 
instruments and proposed a machine learning algorithm 
to evaluate timbral similarities. Lekshmi and Rajeev [12] 
discovered that the architectural choice of CNN with 
score-level fusion on Mel-spectro/model-gram has merit 
in recognizing the predominant instruments. In MIR, 
music genre classification is an essential multimedia 
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research domain for classifying music databases. PMG-
Net  [13] is a deep neural network-based method that 
automatically classifies Persian music genres. The feature 
selection strategy designed by Jaishankar et al. [14] based 
on African Buffalo Optimization (ABO) can achieve a 
high average accuracy of 82% when used with a neural 
network classifier.

Although deep learning has achieved remarkable 
success in many areas, its limitations are also obvi-
ous [15]. Deep learning typically needs a large number 
of examples to learn a simple concept  [16], its models 
are less interpretable  [17], and the ability to general-
ize models to small samples of data or data outside the 
domain  [18] may be limited. There is still much room 
for improvement in the synthesis algorithm of tradi-
tional Chinese instruments. To address these chal-
lenges, we constructed a dataset with both performed 
and synthesized Guzheng samples for analysis to con-
duct parameter recognition.

The Guzheng is a traditional Chinese folk instrument 
with 21 nylon or steel strings [19], one of China’s unique 
and critical ethnic instruments, and it can be traced back 
to China’s Qin Dynasty (221-206 BC). In recent years, 
with the continuous development of electronic music 
synthesizer technology, synthesizers can emulate the tim-
bre characteristics of various instruments  [20], making 
them widely used as substitutes for traditional instrument 
performances. Currently, the mainstream synthesizers in 
the market use pulse code modulation technique, where 
instrument performances are sampled to obtain wave-
forms  [21]. Subsequently, the waveforms and their cor-
responding synthesis coefficients are encoded and stored 
in the electronic synthesizer’s read-only memory (ROM). 
Nonetheless, the Guzheng, a distinctive plucked instru-
ment, necessitates specific playing techniques musicians 
employ to convey their musical interpretation, resulting in 
a more intricate tonal structure inherent in Guzheng per-
formances. The existing synthetic algorithms fail to capture 
these playing techniques’ nuanced characteristics fully.

In this work, audio samples of performed Guzheng and 
synthesized Guzheng music were constructed first. Sec-
ond, a proper feature set was selected for feature extrac-
tion. Following that, Sequential Forward Selection (SFS) 
was chosen for feature selection. Finally, a random forest 
model was employed for a classification task. This study 
contributes to the preservation and evolution of tradi-
tional Chinese music in the era of AI music.

2 � Related work
This section presents a brief introduction regarding the 
studies of the Guzheng. The focus lies on developing the 
Guzheng research field and the significance of the work 
in music.

2.1 � Recent breakthroughs in Guzheng research
The essential elements of music are loudness, pitch, 
duration, and melody [19]. Guzheng music has a unique 
sound and performance technique with distinctive char-
acteristics. In 2020, Qi et al. [22] from Tsinghua Univer-
sity established connections between Guzheng notes and 
stimuli from other sensory modalities, offering insights 
into the perception of traditional Chinese music. Li 
et al. [23] of Fudan University introduced an end-to-end 
Guzheng playing technique detection system using Fully 
Convolutional Networks suitable for variable-length 
audio. Zhang [24] proposed a Guzheng music conver-
sion model based on Star generative adversarial networks 
(GAN) with effective conversion between similar music 
styles. In 2022, Chen [19] trained a Long Short-Term 
Memory network to generate realistic Guzheng music, 
a breakthrough in Guzheng music synthesis. This model 
generates Guzheng music with the characteristics of the 
technique labeled, including telekinesis, finger shake, 
yellow represents arpeggio, and pink represents big and 
small pinch.

2.2 � Previous studies on music instrument classification
There was a proliferation of survey methods for classify-
ing musical instruments, each with unique approaches 
and insights. In 2015, Masood et  al.  [25] ventured into 
this field with an innovative neural network-driven 
method, particularly emphasizing the classification of 
instruments such as the piano, flute, violin, drums, and 
guitar. In 2016, Bhalke et al. [26] brought a fresh perspec-
tive by introducing a novel feature extraction method 
for instrument classification, hinged on the MFCC fea-
tures grounded in the Fractional Fourier Transform. 
This momentum was carried forward when Nagawade 
et  al.  [27] delved deeper into the instrument identifica-
tion space, using Mel-frequency cepstral coefficients 
(MFCC) and showcasing how these features could nota-
bly enhance classification precision.

As research progressed, Avci et  al.  [28] conducted a 
classification study on distinguishing violin, and viola 
sounds for identical notes in 2018. To achieve this, they 
harnessed 16 statistical features from an extensive collec-
tion of 512 recordings per instrument and employed an 
array of classifiers such as LDA, k-NN, SVM, and RF. In 
2020, Racharla et al.  [29] focused on predominant musi-
cal instrument classification based on spectral features, 
utilizing the SVM classifier on the IRMAS dataset.

In 2021, Shah et al. [30] built machine-learning models 
and convolutional neural networks for genre-based music 
classification. The evolution of research in this domain 
culminated in 2022 with Solanki ’s  [31] groundbreak-
ing work on recognizing polyphonic instruments. Their 
approach utilized a state-of-the-art deep convolutional 
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neural network framework, further enriching this fasci-
nating field’s tapestry of methods and techniques.

These research advances in instrument classification 
have enriched the methodology and techniques, provid-
ing important references and insights into the study of 
Guzheng music.

2.3 � Comparative acoustic analysis in musical instruments
The acoustic analysis of musical instruments is rich in 
diverse methods, especially those aimed at understand-
ing and modeling the timbral properties of musical 
instruments. The acoustic properties of musical instru-
ments have been extensively analyzed in past studies. 
For instance, a comparative evaluation of interpolation 
methods for the directivity of sound sources such as 
speakers, singers, or musical instruments was con-
ducted in an anechoic environment [32]. The music sig-
nal processing field also employs many techniques and 
representations initially developed for speech signal 
processing that are now used in music analysis  [33]. In 
addition, evaluating musical instruments often involves 
determining the objectively measurable characteristics 
of a particular instrument that are closely related to the 
perceived timbre and playability as judged by the musi-
cian and then proposing ways to optimize those char-
acteristics  [34]. These studies shed light on the fact that 
methods and techniques for the acoustic analysis of 
musical instruments vary and evolve. They provide valu-
able background and frames of reference that enable us 
to understand better and evaluate synthesized Guzheng 
music’s acoustic characteristics.

3 � Method
This work’s automatic classification scheme of performed 
and synthesized Guzheng music includes dataset con-
struction, feature extraction, feature selection, and final 
classification. The flowchart of this scheme is shown in 
Fig. 1.

3.1 � Multiple source dataset construction
As the fundamental of a machine learning-based clas-
sification task, the first step is constructing a proper 
dataset. A multiple-source Guzheng dataset containing 
performed and synthesized samples is constructed for 
this purpose. The actual performed Guzheng samples 

are collected mainly in two ways, by amateurish players 
and professional players, respectively. Amateurish play-
ers come from our team, and the samples are recorded 
with an Audio Technica AT2020USB+ microphone. 
The professionally played samples are extracted from 
publicly accessible Guzheng music pieces online from 
14 different performers. The recording environments 
of the Internet professional Guzheng samples differ 
from each other. Aiming to distinguish the tone color 
of the performed or synthesized Guzheng sound, the 
music pieces are more comprehensive than the range 
of traditional Guzheng music works. Instead, five dis-
tinct genres were included in the dataset construction: 
traditional music, children’s songs, popular songs, folk 
songs, and film and television music. The data collec-
tion criteria as multiple sources and genres ensured the 
generalizability of the classification networks trained 
from this dataset by weakening the influence of recording 
conditions, playing level, and the specified music pieces.

The synthesized part of the dataset is constructed with 
two different synthesis software on two different devices. 
The first one is the Guzheng synthesizer of GarageBand, 
which covers a series of different musical instruments on 
an iPhone, and the other is iGuzheng, specially designed 
for Guzheng, on an iPad. The synthesized Guzheng sam-
ples are collected by playing the virtual Guzhengs by an 
amateurish player who knows several different instru-
ments. The music pieces selection in the synthesized 
samples collection remains consistent with the per-
formed samples in the previously mentioned five genres.

The audio pieces, performed or synthesized, were seg-
mented into data samples with durations ranging from 5 
to 10 s, according to the borders of musical phrases. The 
final constructed dataset contains a total audio duration 
of 6960 s, which includes actual performed samples by 
amateurish players of 1680 s, from professional players of 
2880 s, synthesized samples from GarageBand of 1920 s, 
and from iGuzheng of 2400 s. The number of segmented 
samples of each genre is listed in Table 1.

Since different Guzheng playing techniques may affect 
auditory perception, we categorized Guzheng recordings 
with synthesizers by some playing technique, which are 
frequently used in classic Guzheng compositions. The 
number of segmented samples of each technique is listed 
in Table 2.

Fig. 1  Flowchart of automatic classification of performed and synthesized Guzheng music
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Glissando (guā zòu) is a right-hand playing technique, 
which means running the thumb or index finger rapidly 
across several strings to create a running sound effect, 
either away from or toward the player. Tremolo (yáo zhǐ) 
is another right-hand technique that involves “rocking” 
back and forth on the strings with the index finger or 
thumb of the right hand, plucking a string in rapid succes-
sion. Portamento (huá yīn) is a left-handed technique in 
which the strings are pressed with the left hand to change 
the pitch of the ringing tone to the desired pitch. Bend 
(àn yīn) is pressing a string with the left hand to raise the 
pitch of a string by a minor second or more before play-
ing. Since the bends and the glissando often occur in the 
same segment and both change pitch, we categorize them 
together as one category. We also recorded each sound 
of the string according to the pluck methods of sounding 
the strings, each lasting 1–2 s. Pluck is simply plucking 
the strings with fingers, including gōu, tuō, mǒ, and dǎ.

3.2 � Feature extraction
One of the goals of this work is to clarify what kinds of 
acoustic features can distinguish the actual performed 
and synthesized Guzheng sound, thus providing a pos-
sible improvement direction in future synthesis algo-
rithms. Since the Guzheng dataset constructed in this 
work contains only 1452 samples in both classes (per-
formed as positive samples and synthesized as negative 
samples), too many features in objective analyzing will 
cause problems such as overfitting. Thus, a small-scaled 
feature set, The Geneva Minimalistic Acoustic Param-
eter Set (GeMAPS)  [35], is selected in this work. This 
dataset can be extracted with an audio feature extraction 
toolkit, OpenSmile  [36], with the “sv02” configuration. 
This feature set has been previously employed in music 
identification-related works  [35]. There are 88 acoustic 
parameters provided by this set, including a standard 

parameter set with 62 parameters and an extended 
parameter set with 26 parameters.

The parameters provided in this set are mainly sorted 
as frequency-related parameters, including pitch, jit-
ter, and formant (not applicable for Guzheng music); 
energy/amplitude-related parameters, including shim-
mer, loudness, harmonics-to-noise ratio (HNR); and 
spectral parameters, including alpha ratio, Hammarberg 
index, spectral slope, spectral flux, and MFCCs. The fea-
tures calculated from statistics of the above parameters 
can reflect the intrinsic characteristics of audio signals. 
They thus can be used to distinguish the subtle difference 
between performed and synthesized Guzheng sound.

3.3 � Wrapper‑based feature selection
As the feature set applied in this work is a standard usage 
feature set for audio signals, initially proposed for affec-
tive computing, only some of the features in this set are 
suitable for our task of performing and synthesizing Guz-
heng music classification. Thus, a feature selection sec-
tion is essential to clarify which parameters lead to the 
subtle tone color difference.

In order to make the classification more accurate, the 
Sequential Forward Selection (SFS) based method, which 
is a wrapper approach method, is chosen [37]. SFS is 
designed to iteratively build a feature subset by progres-
sively adding the most informative features to improve 
classification performance. The SFS process begins with 
an empty feature set, and it adds one feature at each iter-
ation by evaluating the performance of a specified classi-
fier with the best performance. SFS terminates when the 
desired number of selected features or desired classifica-
tion performance is reached.

A slight modification is introduced into the SFS pro-
cess in our feature selection. First, individual features 
are evaluated by classification accuracy using only a 
single feature, and some “good” features are kept as a 
feature subset pool for further evaluation. As the whole 
feature set contains only 88 features, and the number 
of features in the kept subset pool can be even less, 
instead of combining each of the other features with the 
best one in the second iteration, we evaluate all the pos-
sible combinations of two features in the subset pool, to 
find out the best pair of features with the minor influ-
ence of redundancy information between two similar 

Table 1  Number of pieces of different types of music

Traditional Children’s Popular Folk Film/TV Total

Performed 227 76 190 197 74 764

Synthesized 167 86 174 181 80 688

Table 2  Number of pieces of different Guzheng techniques

Glissando Tremolo Portamento/
Bends

Total

Performed 59 117 78 254

Synthesized 62 77 75 214
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features. From the third iteration, each remaining fea-
ture is added to the best combination of the previous 
iteration, as normal SFS does.

3.4 � Classification with random forest
One of the critical links for a classification task is the 
selection of a classifier. In this work, the investiga-
tion between the performed and synthesized Guzheng 
music is carried out on a relatively small-scaled dataset, 
and we aim to point out the powerful distinguishable 
features between the two considered types, which can 
provide good generalizability and regardless of influ-
ence factors such as recording conditions. Based on 
these situations, a random forest is chosen as the classi-
fier for this task.

As a method of ensemble learning, a random forest 
consists of multiple decision trees, and each decision tree 
is trained independently with different random samples 
and features. The random sampling strategy in construct-
ing individual trees in the random forest helps reduce 
the model’s overfitting tendency in the case of the small 
dataset and improves the generalizability. Although the 
random forest also provides a feature selection scheme 
in building the trees, we need to find the most efficient 
features explicitly. Thus, the feature selection property 
of the random forest is neglected in this work, while the 
features are screened with the wrapper method, as men-
tioned in the Section 3.3.

In the process of building the decision trees, the 
best parameters of the decision tree nodes are decided 
by measuring the heterogeneity index of the output  
variables [38], such as information entropy, as shown in 
Eq. (1):

where pk denotes the probability that the sample belongs 
to the kth category, k = 1 for performed samples, k = 2 
for synthesized samples, and D refers to the whole 
dataset.

4 � Experiment and results
In this section, an objective evaluation, as an automatic 
classification of performed and synthesized Guzheng 
music based on a random forest model, is taken out to 
find out the most compelling features in this task and 
to prove the performance of these features. For com-
parison purposes, a subjective perception evaluation by 
human listeners is also conducted before the objective 
evaluation.

(1)Ent(D) = −

|Y |

k=1

pk log2pk

4.1 � Subjective evaluation
As a task concerning the difference between the tone 
colors of similar but differently generated audio signals, 
the automatic classification will be valuable if human lis-
teners do not distinguish the two kinds of audio signals. 
Before the objective automatic classification, we evaluate 
the performed and synthesized Guzheng music by sub-
jective perception evaluation.

We compared participants with a musical background 
or learning experience versus those without a musi-
cal background. We also selected college students with 
amateur Guzheng experience because they may be more 
sensitive to the characteristics of Guzheng music, includ-
ing timbre, intonation, and string effects, to increase 
the credibility of the assessment results. To avoid selec-
tion bias, we randomly selected 25 college students with 
majors in science, engineering, business, and liberal arts. 
All participants possessed normal perceptual abilities, 
verified during their college entrance physicals. The par-
ticipants can be divided into three groups. The first group 
consisted of 6 people who had yet to learn music. The 
second group consisted of 11 people with some experi-
ence in music learning, including singing, piano, guitar, 
and violin, but they had yet to be exposed to any Guz-
heng learning. The third group consisted of 8 people with 
amateur-level proficiency playing the Guzheng.

In the subjective evaluations, firstly, each participant 
was asked to listen to 20 randomly selected audio sam-
ples, which consisted of 10 performed samples and ten 
synthesized samples, played in random order. The partic-
ipants needed to point out the type of each heard sample 
(performed or synthesized).

The distribution of the subjective perceived accuracies 
is shown in Fig. 2.

 The average accuracy of all 25 participants is 62.00%, 
only a little higher than the chance level of 50% for the 
binary classification task, with a wide accuracy range 
from 40% to 85%. This result indicates that the current 
Guzheng synthesizers perform relatively well in imi-
tating actual Guzheng tone color, and human listeners 
cannot recognize the difference between them. The aver-
age accuracies for the three groups of participants are 
59.16%, 55.00%, and 73.75%, respectively. Listeners with 
a general, amateur learning experience of music present 
only advance to those with a music background, present-
ing even lower ability in perceptive of synthesized Guz-
heng. The average accuracy of the third group is 73.75%, 
which is significantly higher than other listeners. This 
result indicates that the training experience of Guzheng 
may improve the sensitivity to the Guzheng tone color.

Then, each participant was asked to listen to 30 ran-
domly selected audio samples, with 10 recordings of each 
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playing technique. The participants needed to point out the 
type of each heard sample (performed or synthesized) as 
before. The accuracies of classification for recordings con-
taining different playing techniques are shown in Table 3.

The overall accuracies of all 25 participants regarding 
the three playing techniques are 62.40%, 61.60%, and 
58.40%, ranging from 58.40 to 62.40%, only a little higher 
than the chance level of 50% for the binary classifica-
tion task. This result indicates that synthesized Guzheng 
music is very realistic in terms of playing techniques, so 
it is difficult for people to distinguish between the per-
formed and synthesized Guzheng recordings. The accu-
racy of the first two groups regarding Glissando and 
Tremolo could have been higher, suggesting that the 
synthesized Guzheng music realistically mimics basic 
Guzheng playing techniques. It is worth noting that the 
accuracy of the first two groups regarding Portamento/
Bend is only 66.67% and 45.45%, indicating that the syn-
thesized Guzheng music already imitates the delicate 
playing technique of Portamento/Bend very well. Moreo-
ver, the accuracy of the second group with a basic knowl-
edge of music was lower than that of the first group in 
all three classification tasks. However, the accuracy of 
the third group with amateur experience in Guzheng 

learning was approximately 70% in all three playing 
techniques, where the accuracy of Portamento/Bend is 
slightly lower than any of the other two techniques. As 
a result, the technique of playing synthesized Guzheng 
music has yet to be able to trick people with Guzheng 
experience. The technique of synthesized Guzheng music 
is still some way from being perfect.

In order to get a more specific view of the degree of 
specialization of the participants who had experience 
with the Guzheng, another test was conducted. The third 
group was asked to listen to 20 recordings each about the 
four methods of sound production and then to deter-
mine which method of plucking the strings produced the 
sounds heard. Consequently, accuracy was less than 30% 
for each of them. The explanations for this result are as 
follows. First, although they had some amateur Guzheng 
experience, they had a lower training level than profes-
sional Guzheng players. They did not receive sufficiently 
in-depth training to distinguish subtle differences in 
technique. Second, amateurs of Guzheng may need more 
aural experience to recognize different methods of string 
plucking, and they may be more focused on the perfor-
mance of the Guzheng piece as a whole. Third, the audio 
of the plucking is recorded from a cell phone, and the 
audio quality may need to be improved to present the 
nuances of the plucking method.

In summary, the subjective evaluation of the con-
structed dataset shows that ordinary human listeners 
cannot accurately distinguish the performed and syn-
thesized Guzheng music. Synthesized Guzheng music 
already mimics the playing technique well, but it is still 
far from perfection. Automatic approaches present better 
performance on this task.

Fig. 2  Accuracy distribution in the subjective evaluation by human listeners

Table 3  Accuracies of different playing techniques

Accuracy Glissando Tremolo Portamento/Bend

Group 1 65.00% 56.67% 66.67%

Group 2 54.54% 56.36% 45.45%

Group 3 71.25% 72.50% 70.00%

All 62.40% 61.60% 58.40%
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4.2 � Objective experiment
The purposes of the objective experiment are twofold. 
First, we aim to verify whether acoustic features-based 
machine learning approaches can yield better perfor-
mance in distinguishing performed and synthesized Guz-
heng music than human listeners do. Second, we aim to 
find the most efficient features that characterize the dif-
ference between the two kinds of music, thus navigat-
ing Guzheng synthesizer algorithms to a further natural 
level. The classifier in this evaluation is chosen as a ran-
dom forest.

First, the individual features provided in the 
GeMAPS feature set are evaluated and separated upon 
the classification accuracies with every feature. For 
this binary classification task, features with accura-
cies higher than 50% can contain information of differ-
ence to some degree and form a potential feature pool 
for further analysis. Ten features, with the lowest sin-
gle feature accuracy at 53.69%, are kept in this feature 
pool and listed in Table 4.

From Table  4, we can see two significant features, 
both related to spectral flux, present single feature 
classification accuracies up to higher than 93%, which 
are already higher than the best human perceived 
accuracy in our subjective evaluation. This result 
means that upon current Guzheng synthesis algo-
rithms, there still exists a pronounced discrepancy 
in spectral, which might need to be more perceptible 
by the human auditory system. Other features related 
to MFCCs, Alpha Ratio, or jitter, also carry different 
information between the performed and synthesized 
Guzheng music and present a similar accuracy level to 
human perception.

The histograms of several features selected from the 
potential pool are shown in Fig. 3. Figure 3a shows the 
best single feature, “spectralFlux_sma3_amean,” with a 
classification accuracy of 93.30%. The histograms of the 

two types (performed and synthesized) are separate. 
Figure  3b and c are features with moderate classifica-
tion accuracies of 73.60% and 66.83%, and both present 
a large part of overlap between the two types. Figure 3d 
corresponds to a feature with a classification rate as 
low as 53.69%. The accuracy close to the chance level 
accords with the almost complete overlap between the 
two types.

Considering the possible information redundancy 
and complementary among the features, mixing fea-
tures according to the performance sequence may not 
necessarily lead to the best accuracy. To reduce the 
computation burden, we combined all the other fea-
tures with the best two features (with accuracies higher 
than 93%). The complementary properties of the fea-
tures cause further improvement than the best two 
features. Fourteen combinations of feature pairs reach 
classification accuracy higher than 95%, which are listed 
in Table 5.

The best two pairs of features reach classifica-
tion accuracies over 99%, and both pairs contain the 
same feature, “spectralFluxV_sma3nz_ stddevNorm,” 
which is also a spectral flux-related feature as the 
best two individual features. This phenomenon again 
proved that the spectral flux represents the most sig-
nificant defect in the state-of-the-art Guzheng syn-
thesize algorithm. The almost perfect classification 
in this approach shows there is still improving space 
in Guzheng synthesized algorithms. It is worth notic-
ing that the combination of the best two individual 
features, indexed as 1 and 2, only presents an accu-
racy of 95.35%, slightly better than the single feature 
cases. This result is because the two features are highly 
redundant to each other.

Following the SFS manner, feature combinations 
of 3 features are evaluated, with the features in the 
potential pool combined with the best two pairs, as 
shown in Table  6. Further improvement in compari-
son to the two feature cases is obtained. All the com-
binations of three features with better performance 
than the best two features case (99.45%) are listed in 
Table  6. Although features 1 and 2 presented similar 
performances as a single feature, in three feature com-
binations, feature 2 is always better than feature 1. 
The third feature in the best combination is surpris-
ingly feature 9, “mfcc3V_sma3nz_stddevNorm,” which 
only has 54.10% accuracy on itself. However, it is an 
MFCC-related feature that can carry auditory percep-
tual information. Adding other features to the combi-
nation of features 2, 5, and 9 into combinations of 4 
features does not yield further improvement in clas-
sification accuracy. Thus, the analysis terminated with 
the three features combination. The accuracy with all 

Table 4  Accuracies of single parameters selected in the potential 
pool (%)

Parameters Accuracy

(1) spectralFlux_sma3_amean 93.30

(2) spectralFluxV_sma3nz_amean 93.09

(3) slopeV500-1500_sma3nz_amean 73.60

(4) mfcc1V_sma3nz_stddevNorm 66.83

(5) spectralFluxV_sma3nz_stddevNorm 63.54

(6) F2amplitudeLogRelF0_sma3nz_stddevNorm 62.93

(7) alphaRatioUV_sma3nz_amean 60.67

(8) F3frequency_sma3nz_stddevNorm 56.57

(9) mfcc3V_sma3nz_stddevNorm 54.10

(10) jitterLocal_sma3nz_stddevNorm 53.69
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ten features in the potential pool is only 99.52, which is 
lower than the best accuracy with only three features. 
The redundancy and information conflict between the 
features may cause this result.

5 � Discussions
In the discussion, we first explain the experimental meth-
odology of this paper and then explore in detail two fea-
tures that have been shown to be effective in classification 
tasks, followed by our validation of the experimental 
methodology of this paper using LSTM models. Finally, we 
discuss the broader contributions of this study and reflect 
on its scalability to other research areas.

5.1 � Human and technical evaluations of synthesized 
Guzheng music

To distinguish synthesized Guzheng music from actual 
performed Guzheng music, subjective and objective eval-
uations are carried out in this work.

Upon the result of subjective evaluation, the human 
perception accuracy ranges from 40.00 to 80.00%, 
with an average of 57.75%, confirming that the current 
applied Guzheng synthesis algorithms are good enough 
to “deceive” human ears of most ordinary people. How-
ever, two listeners are amateur Guzheng players who 
gave more accurate judgment, up to 80.00%, indicating 
that people more familiar with the Guzheng instrument 

Fig. 3  Histograms of selected features, with different levels of accuracies: a spectralFlux_sma3_amean. b slopeV500-1500_sma3nz_amean. c 
mfcc1V_sma3nz_stddevNorm. d jitterLocal_sma3nz_stddevNorms
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can perceive more subtle cues lost in the synthesis. Thus, 
there is still improvement space for Guzheng synthesized 
algorithms.

In order to make it clear how to improve the Guz-
heng synthesized algorithms, acoustic feature-based 
analysis, with the evaluation criterion of classification 
accuracy, is conducted as objective evaluations. Oppo-
site to the results in subjective evaluation, the accuracy 
in automatic classification of performed and syn-
thesized Guzheng music can reach as high as 99.73% 
with only three features, and the best single feature 
can also provide high accuracies up to 93.30%, which 
is far better than the best human perceptual accuracy. 
The most crucial features presenting the defect in the 
Guzheng synthesizer are spectral flux-based features, 
which measure the spectral change between two suc-
cessive frames. Features 2 and 5 (as indexed in Table 5) 

are proved to compensate for each other, representing 
the spectral flux in means of mean value and standard 
deviations.

This study used an acoustic feature-based approach 
to assess the differences between Guzheng synthesized 
music and real Guzheng performances. This approach 
was chosen for a variety of reasons. First, acoustic fea-
tures provide a clear and intuitive way to identify and 
explain specific differences between the two. This is par-
ticularly important in music, especially for a complex tra-
ditional instrument such as the Guzheng, as we wanted 
to provide clear, actionable feedback to the synthesis 
algorithm.

5.2 � Potential causes for timbral discrepancies 
in synthesized Guzheng

This part constitutes one of the revision suggestions for 
the paper on Guzheng and synthesizer timbre recog-
nition. Several potential reasons for the observed dif-
ferences in spectral flux and Mel-frequency cepstral 
coefficients (MFCC) between synthesized and real sam-
ples can be outlined as follows.

5.2.1 � Synthesizer parameter settings
The parameter settings of the synthesizer may sig-
nificantly influence the spectral characteristics of the 
synthesized sound. For instance, specific filtering or 
modulation techniques employed by the synthesizer [39] 
can impact the numerical values of spectral flux and 
MFCC.

Filter types and characteristics: The synthesizer may 
utilize diverse filter types and characteristics to emulate 
the sound spectrum. Parameters like passband, stopband, 
and center frequency in these filters affect the spectral 
shape of the synthesized sound [40], thus influencing the 
computation of spectral flux and MFCC.

Modulation methods: The synthesizer might employ 
various modulation methods, such as amplitude or 
frequency modulation. These modulation techniques 
introduce extra spectral components, altering the 
spectral features of the synthesized sound and, con-
sequently, impacting the computation of spectral flux 
and MFCC.

5.2.2 � Theoretical foundations of synthesizer
The synthesis process might be grounded in a particular 
theoretical model [41], while the physical properties of a 
real instrument govern the Guzheng sound. Disparities 
in this theoretical foundation could manifest as differ-
ences in observed spectral flux and MFCC.

This result is because synthesizers generate audio through 
mathematical models, and their theoretical foundation 

Table 5  Accuracy of combinations of two parameters

Parameter combinations Accuracy

(2) (5) 99.45

(1) (5) 99.38

(2) (4) 97.67

(1) (4) 97.26

(2) (8) 96.44

(1) (8) 96.31

(2) (6) 96.16

(2) (10) 96.03

(1) (6) 96.03

(2) (3) 95.83

(1) (3) 95.49

(1) (10) 95.42

(1) (2) 95.35

(2) (9) 95.08

Table 6  Accuracy of combinations of three parameters

Parameter combinations Accuracy

(2) (5) (9) 99.73

(2) (5) (7) 99.66

(2) (5) (8) 99.66

(2) (5) (10) 99.59

(2) (5) (6) 99.59

(2) (5) (3) 99.59

(2) (5) (4) 99.59

(1) (5) (2) 99.59

(1) (5) (3) 99.52

(1) (5) (4) 99.45
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depends on the algorithms and models used. These models 
are often idealized and differ from real instruments’ physical 
vibrations and resonances. The physical structure and vibra-
tion patterns of actual instruments determine real sound 
sources. Therefore, the theoretical disparities between syn-
thesizers and real sound sources manifest as differences in 
acoustic characteristics, subsequently influencing observed 
variations in spectral flux and MFCC, among other acoustic 
features.

5.2.3 � Sampling rate and bit depth
Discrepancies in sampling rate and bit depth between the 
synthesizer and Guzheng sound sources may contribute 
to variations in frequency domain features [42].

These differences can affect the number of samples and 
the precision of representation per sample, influencing 
frequency domain features. Higher sampling rates and 
bit depths capture audio signal details and dynamic range 
more accurately. Therefore, distinctions in these param-
eters between the synthesizer and Guzheng sound source 
may contribute to observed variations in frequency 
domain features, such as spectral flux and MFCC. The 
two features, spectral flux, and MFCC, could play a role 
in facilitating the improvement of algorithms for synthe-
sizing Guzheng music.

5.3 � Enhanced evaluation using LSTM
Since our data samples are audio compositions split into 
pieces with a duration of 5 to 10 s, we employed a Long 
Short-Term Memory (LSTM) neural network model to 
enhance the evaluation of our proposed method. LSTM 
excels at capturing and modeling dynamic features in 
time-series data, allowing us to understand feature infor-
mation in audio data better. The experimental steps were 
as follows.

Firstly, we loaded the dataset from a CSV file contain-
ing audio feature representations and respective instru-
ment labels. Then, we applied label coding to convert 
textual instrument labels into numerical values and then 
divided 70% of the dataset into a training set and 30% 
into a test set.

Our LSTM architecture comprises two layers, each 
housing 100 hidden neurons. After the LSTM layers, a 
dedicated classification layer was introduced, complete 
with dropout regularization, fully connected layers, and a 
sigmoid activation function. In the model training phase, 
we used the Adam optimizer to precisely optimize the 
model parameters, choosing a learning rate of 0.001 and 
adopting cross-entropy loss as the loss function.

The model underwent extensive training over 100 
epochs. Finally, the LSTM-based model achieved an out-
standing accuracy rate of 99.54%, validating our method’s 

effectiveness and demonstrating the high quality of the 
dataset we created.

It is worth noting that although LSTM, a deep learn-
ing model, achieves about the same high accuracy as 
random forests in our task, it takes much longer to com-
plete the training, and it needs to be more interpret-
able. This paper’s random forest model is more efficient 
than LSTM. It does not require a lot of computational 
resources and time and requires minimal data volume so 
that it can be applied to a broader range of tasks.

5.4 � Contribution and extensibility to other research
There are several reasons for choosing the Guzheng as 
the primary research object. Firstly, Guzheng is one of 
China’s oldest traditional musical instruments and has 
great cultural significance. The timbre of Guzheng is 
unique and distinctly different from that of other instru-
ments, thus presenting an intriguing challenge for tim-
bre classification studies. In addition, in recent years, the 
integration of Guzheng music into modern music crea-
tion has been increasing. Therefore, illuminating the dif-
ferences between synthesized Guzheng music and real 
performance of Guzheng music is of practical signifi-
cance to music makers. Guzheng is musically expressive 
and contains a variety of plucking techniques and musi-
cal structures, which poses challenges for timbre classi-
fication and synthesis techniques. There are few detailed 
studies of specific timbre attributes of the guzheng in the 
existing literature; therefore, our study attempts to fill 
this gap to some extent.

This study reveals acoustic differences between synthe-
sized and real Guzheng performances, providing valuable 
insights with far-reaching implications for broader cat-
egorization efforts. The coexistence of subjective human 
assessment juxtaposed with objective machine learn-
ing highlights the ability of computational methods to 
reveal complex patterns that are usually undetectable to 
humans. Furthermore, the methods and insights gained 
from the Guzheng can be generalized to other tradi-
tional musical instruments, especially those with similar 
cultures, thus highlighting the versatility of the methods 
employed. This study reveals key differences between 
synthesized and real performances, assisting in improv-
ing synthesizer algorithms that could contribute to the 
advancement of the field of digital music synthesis.

The research methods used in this paper are highly 
extensible. The Random Forest model we use has the 
distinct advantage of being highly robust and accurate 
and has inherent feature selection capabilities that help 
focus on the most relevant acoustic features in different 
musical instruments. However, for some instruments, 
further discretion may still be required to introduce or 
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exclude specific features to capture their unique acous-
tic characteristics. For example, the guitar or violin may 
have a unique harmonic structure requiring additional 
features to characterize.

The construction and preprocessing of datasets may 
require different approaches for different instruments, 
as the differences between synthesized and real music 
for other instruments may be more difficult to capture 
than for the Guzheng, which may require more data or 
more sophisticated data enhancement techniques. For 
different instruments, the parameters of the random 
forest may need to be tuned for optimal performance. 
In addition, some instruments may have more complex 
acoustic properties, which may require more elaborate 
feature extraction strategies.

In conclusion, although our approach is designed for 
the Guzheng, its core ideas and techniques provide a 
solid foundation that can be adapted and optimized to 
the needs of different instruments, providing valuable 
insights for instrumental, cross-cultural research in 
music classification and synthesis techniques.

6 � Conclusion
This paper analyzes the difference between the acoustic 
properties of actual performed and synthesized Guz-
heng music, aiming at the potential improvement direc-
tion in Guzheng synthesizing algorithms. A dataset 
with both performed and synthesized Guzheng samples 
is constructed for analysis. Multiple sources and genres 
are emphasized in constructing the dataset to ensure 
generalizability. Subjective evaluation of this dataset 
proved two facts. First, the state-of-the-art algorithms 
can be seen with adequate performance facing ordi-
nary people; second, they need further improvement 
concerning people who are more familiar and sensitive 
to Guzheng music. Acoustic feature analysis according 
to accuracies on random forest proved that the cur-
rent synthesized Guzheng music can be nearly per-
fectly separated from actual performed music with as 
few as three features up to the accuracy of 99.73%. The 
most efficient features, which are also the key points in 
improving the synthesized algorithms, are focused on 
spectral flux properties.

Upon the findings in this paper, we clarified the most 
essential “defect” in current Guzheng synthesized algo-
rithms, and the next step of our work is to add this key 
finding into the next generation of Guzheng synthesiz-
ers and hope to be able to create more natural Guzheng 
music anywhere without must having such a non-portable 
instrument at hand.
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MIR	� Music Information Retrieval
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