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METHODOLOGY

Deep semantic learning for acoustic scene 
classification
Yun‑Fei Shao1,3, Xin‑Xin Ma2,4, Yong Ma2* and Wei‑Qiang Zhang1*   

Abstract 

Acoustic scene classification (ASC) is the process of identifying the acoustic environment or scene from which 
an audio signal is recorded. In this work, we propose an encoder‑decoder‑based approach to ASC, which is borrowed 
from the SegNet in image semantic segmentation tasks. We also propose a novel feature normalization method 
named Mixup Normalization, which combines channel‑wise instance normalization and the Mixup method to learn 
useful information for scene and discard specific information related to different devices. In addition, we propose 
an event extraction block, which can extract the accurate semantic segmentation region from the segmentation 
network, to imitate the effect of image segmentation on audio features. With four data augmentation techniques, 
our best single system achieved an average accuracy of 71.26% on different devices in the Detection and Classifica‑
tion of Acoustic Scenes and Events (DCASE) 2020 ASC Task 1A dataset. The result indicates a minimum margin of 17% 
against the DCASE 2020 challenge Task 1A baseline system. It has lower complexity and higher performance com‑
pared with other state‑of‑the‑art CNN models, without using any supplementary data other than the official chal‑
lenge dataset.

Keywords Acoustic scene classification, Audio semantic, Mini‑SegNet, Mixup Normalization, DCASE 2020

1 Introduction
“Acoustic scene” is the concept that humans commonly 
used to identify a particular acoustic environment. The 
task of sensing and understanding the environment 
where a sound is detected is known as Acoustic Scene 
Classification [1]. It aims to categorize the detected sound 
into one of the predefined classes such as a park, airport, 
or bus. In recent years, methods using CNNs have been 
widely studied, where the spectrum of the acoustic scene 

is used as image input, such that best practice image clas-
sification methods can be applied [2–4]. However, there 
are still many issues to address.

Firstly, the accuracy of similar audio scenes is low [5], 
such as airports and shopping malls. Both are indoor 
places with many people and contain many similar 
sounds, such as conversation, broadcasting, and person-
nel movement. The only difference is the airport con-
tains the roar of an aircraft engine. However, note that 
engine sound can also be much weakened when it comes 
to the airport interior; it is hard to recognize when the 
sound is weak all the time. Therefore, if the deep learn-
ing approach cannot learn the different features of similar 
scenes, it cannot recognize them correctly, because the 
proportion of similar parts of the scene is high.

Secondly, the generalization performance on unknown 
devices is poor [5]. Due to the different filtering proper-
ties of microphones in recording equipment, the record-
ing quality of different equipment will be uneven. The 
network structure will learn the characteristics of the 
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equipment when there are few recording devices. This 
will make the model parameters overfit to the known 
equipment. However, there are many kinds of recording 
equipment in practical applications. If the impact of the 
equipment cannot be eliminated, it will not be widely 
used.

Finally, the current network structure is very com-
plex, like the parameters of the top three networks in 
DCASE 2020 challenge Task 1A, the minimum number 
of parameters is 39 MB, and the maximum is 130 MB 
[5]. Although the use of larger models can achieve higher 
accuracy, the hardware requirements will also be higher, 
so that it cannot be used on lightweight hardware.

In order to solve the above problems, we aim to 
develop a CNN system with low complexity to improve 
recognition performance on unseen devices. We propose 
a concept of semantic segmentation for acoustic scene 
classification with multiple devices. Drawing on the expe-
rience of SegNet [6] networks of image semantic segmen-
tation, we proposed Audio-SegNet networks of audio 
semantic segmentation, which is an extension of our pre-
vious work [7]. In order to reduce the number of param-
eters and simplify the Audio-SegNet as much as possible, 
we have deleted some layers in the original SegNet net-
work. Compared with the original model using 26 layers 
of conventional convolution, our proposed network only 
has 6 layers of conventional convolutions. Moreover, we 
also change the convolution kernel size from 3× 3 to 
2× 3 to further reduce the number of parameters, which 
is an extension of our previously proposed Mini-SegNet 
architecture [8].

We then propose a novel feature normalization method 
which we termed Mixup Normalization. It can learn 
useful information from scene and discard unnecessary 
device-specific information. This normalization layer is 
added to the first convolution layer and the last convo-
lution layer. Compared with the BN [9], our normaliza-
tion layer can greatly improve the convergence speed and 
ensure the independence between features [10].

In addition, we also propose a new module which we 
termed as event extraction block. This module is added 
to the last layer of the decoder to get the semantic seg-
mentation area to improve the prediction of similar audio 
scenes.

Our main contributions are summarized as follows: 

1) Proposed an audio semantic segmentation system 
with as low complexity as possible without using 
model compression method.

2) Proposed a new event extraction block module to 
improve the recognition performance of similar 
audio scenes.

3) Proposed a novel normalization method, termed 
Mixup Normalization.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the development history of ASC and 
describe some acoustic scene classification methods and 
existing problems and the main idea of the proposed sys-
tem. In Section 3, we present the proposed ASC systems, 
including encoder-decoder architectures, event extrac-
tion block, data augmentation, and Mixup Normaliza-
tion. In Section 4, we show the database description and 
experiments setup. Experimental results obtained with 
our system are explained and analyzed. Finally, a sum-
mary and conclusion are presented in Section 5.

2  Previous works
The first Detection and Classification of Acoustic Scene 
and Events 2013 challenge [11] was organized by the IEEE 
Audio and Acoustic Signal Processing (AASP) Technical 
Committee. It released open and established datasets and 
provided the scenario to evaluate and benchmark differ-
ent approaches for the acoustic scene.

In the ASC task in DCASE 2013, 2016, and 2017, the 
audio data of acoustic scene classification comes from a 
kind of high-quality acquisition equipment. In order to 
study acoustic scene classification more widely, DCASE 
2018 [12] and 2019 [13] proposed the mismatch task 
in different recording devices A, B, C, and D. In the 
DCASE2020 [14], ASC challenge Task 1A was Acous-
tic Scene Classification with Multiple Devices. This 
task includes 10 classes of sounds recorded on multiple 
devices. The dataset contains a fair number of examples 
from a high-quality device (referred to as A), as well as 
a limited number from the targeted low-quality devices 
(referred to as B and C) and simulated devices (referred 
to as S1–S6). A gap in the amount and quality of the 
recorded data causes overfitting on classification results. 
In particular, a part of the evaluation set is a compressed 
version of recorded audio data from device D and simu-
lated devices S7–S11. This not only brings ASC closer to 
real-world conditions but also presents a huge challenge.

In the early period, researchers studied acoustic char-
acteristics such as Zero Crossing Rate [15], Perceptual 
Linear Prediction [16], and Mel Frequency Coefficients 
[17] for the classification of the acoustic scenes. In recent 
years, mainly selected features are Constant-Q transform 
[18] and log-mel spectrogram [19]. However, there seems 
to be no general consensus on which features are best. 
Recently, Helin et al. [20] proposed several spectrogram 
processing fusion strategies to obtain more discrimina-
tive information for ASC, including log-Mel spectro-
gram, CQT, Gamma, and MFCC.
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After that, more and more CNN-based classifiers are 
designed [2–5, 21, 22]. In [23], the authors presented a 
localized (small) kernel CNN layer. Sequence correction 
and local spectral time information are used for parallel 
networks of CNN and LSTM [24]. Phaye et al. [25] devel-
oped a sub-spectrogram based on CNN architecture. 
McDonnell and Gao [26] proposed a two-path residual 
network, explicitly dividing the high and low frequencies 
of the spectrum into two parallel pathways within the 
same network.

In real life, the environmental sound is mostly col-
lected by different recording devices. Therefore, many 
data enhancement methods are used to reduce the 
impact caused by device characteristics between differ-
ent devices, such as SpecAugment++ [27], GAN [28, 
29], Mixup, Temporal crop, spectrum correction, pitch 
shift, speed change, adding random noise, and mixing 
audios [30]. Meanwhile, in order to get better recogni-
tion results, the network structure design is more com-
plex. For example, for ResNet [31, 32] and FCNN [30], 
although the recognition accuracy is currently state-of-
the-art, they may have several drawbacks. It should be 
noted that their network structure is highly complex and 
uses more data enhancement methods. Larger models 
may require better hardware for training and fine-tun-
ing, such as working on the Graphics Processing Unit. 
In addition, the hardware resources are limited in many 
real-world applications, such as smart wearable devices, 
Bluetooth earphones, and smart phones. Therefore, large 
models may also face deployment issues on a computa-
tionally limited platform [33]. So it is hard to use com-
plex networks widely. In the DCASE 2021 Task 1A [22], 
researchers need to solve not only the generalization 
problem that some devices only appear in the evalua-
tion dataset but also the model complexity limit of 128 
KB is set for the non-zero parameters. Therefore, some 
methods [34–36] to reduce the complexity of the model 
are used, such as pruning, quantization, and knowledge 
distillation. At the same time, Yang et al. [37] propose a 
novel neural model compression strategy, called Acous-
tic Lottery. Specifically, they use the Lottery Ticket 
Hypothesis [38] method to find a sub-network neu-
ral model associated with a small amount of non-zero 
model parameters in an advanced neural network. How-
ever, this method only reduces the number of non-zero 
parameters, and the total number of parameters does not 
decrease if we do not adopt the sparse representation.

Although the previous methods have greatly improved 
performance, there are still many basic problems worth 
exploring, such as confusion between similar scenes 
in terms of time and the difficulty of developing high-
performance systems due to the presence of overlap-
ping sound events, as well as the lack of distinguishing 

commonalities between different scene categories. Espe-
cially in the classification of acoustic scenes under differ-
ent devices, there is still a problem of inconsistent audio 
quality. To address these issues, semantic segmentation 
networks have had good classification effect in image 
recognition and can effectively distinguish acoustic seg-
ments in different scenes [39]. Examples of such net-
works include Fully Convolutional Networks (FCN) 
[40], SegNet [6], U-net [41], and DeepLab [42–44]. For 
audio classification tasks, encoder-decoder network-
based methods have been successfully applied for music 
source separation [45, 46]. For instance, Liu et  al. [47] 
used the U-net network with a self-attention method 
to separate voice and accompaniment in music. In their 
self-attention subnets, the same musical patterns can be 
reconstructed to achieve better source separation perfor-
mance. Moreover, Huang et  al. [48] proposed an RNN-
based Encoder-Decoder framework for pitch tracking. 
Then, the encoder part, as the pitch extractor, can be 
applied to a down-stream Mandarin tone classification 
task. Based on the aforementioned points, we believe that 
acoustic scenes are composed of some basic units (acous-
tic events) which contain certain semantic information. 
Therefore, we proposed audio semantic segmentation 
with event extraction block and Mixup Normalization for 
acoustic scene classification.

3  Network architecture
This section introduces an efficient model design for 
acoustic scene classification with multiple devices. It also 
describes the details involved in the processing flow and 
model architecture.

The diagram of the ASC classifiers used in our pro-
posed SegNet approach is illustrated in Fig. 1. The moti-
vation of our method is to extract fine-grained features 
from acoustic events by convolutional encoder-decoder. 
Our system consists of two important stages. Firstly, 
mono audio signals are converted to time-frequency 
representations, with zero mean and unit variance nor-
malization. Secondly, the log-mel feature is fed to Mini-
SegNet models for feature learning. The output layer 
includes a dense layer of K classes and a softmax function 
for classification.

3.1  Proposed Mini‑SegNet system
In the realm of ASC, CNNs have become the preferred 
method [34, 49] for classifying log-Mel spectrograms [5, 
22]. Specifically, a 2D time-frequency representation is 
initially extracted from a given audio clip. Subsequently, 
the neural network can perform feature extraction 
and dimensionality reduction through operations such 
as convolution and pooling [50], resulting in a deep 
representation.



Page 4 of 15Shao et al. EURASIP Journal on Audio, Speech, and Music Processing          (2024) 2024:1 

We think that the acoustic scene is composed of some 
basic units (acoustic events), just as language governs 
the syntax of phonemes and words. As we all know, bird 
chirping is recorded in the park, and the sound of air-
craft engines is recorded in the airport. Bird chirping and 
aircraft engines are what we call acoustic events. These 
acoustic events contain some semantic information, 
which has a certain internal relationship with the dis-
crimination of acoustic scenes. Therefore, we proposed 
audio semantic segmentation with event extraction block 
for acoustic scene classification. In the field of image seg-
mentation, the SegNet network has achieved encourag-
ing results [6]. This is primarily because maxpooling and 
subsampling reduce feature map resolution, using multi-
scale feature mapping to improve segmentation perfor-
mance. CNN-based models have been widely utilized 
to encode complicated scene utterances into high-level 
semantic representations [50]. SegNet arises from this 
need to map low resolution features to input resolution 
for pixel-wise classification [6]. Inspired by SegNet net-
work, the encoder-decoder network Audio-SegNet and 
the event extraction block are designed to capture the 
temporal and spatial information of an audio feature for 
acoustic scene classification.

The main idea of this paper is to use an encoder-
decoder architecture to learn the acoustic scene for pre-
cise semantics mapping. Therefore, we verify the idea of 
Audio-SegNet, using pooling indices to inform the up-
sampling layers and extracting acoustic features from the 
pooling layers in the encoding process. This makes it eas-
ier for the decoder to get precise semantic segmentation 
in frequency. This paper conducts a more in-depth study 
based on our previous work on Mini-SegNet [8].

In our work, we proposed the Audio-SegNet to extract 
the multi-granularity abstract features, as shown in Fig. 1. 

In the encoder module, convolution and pooling are used 
to extract features and reduce dimensions. In the decod-
ing process, the position and frequency band informa-
tion are recovered by convolution of the corresponding 
encoding module sampled on Upsampling2D to make up 
for the missing pixel information. This method makes full 
use of the semantic information of sound events in the 
acoustic scene through the encoding and decoding pro-
cess and uses the rules of “acoustic scene based on sound 
events” to provide a preliminary basis for future work.

The details of Mini-SegNet are shown in Fig. 2. In this 
network, we use a simpler and smaller convolution/up-
convolution and maxpooling/upsampling. In image seg-
mentation, better performance can be achieved by only 
using the information from the last feature map [6]. 
But in our case, its performance is not satisfactory. In 
the ASC, it is an overall classification task and does not 
need predicting labels for each spatial output like Image-
SegNet [6]. But, we can get more refined semantic seg-
mentation through upsampling and then get an accurate 
proportion of events through the event extraction block 
as shown in Fig.  2. Meanwhile, we add a global aver-
age pooling layer or an event extraction block after the 
decoder of the network. The high dimensional feature 
representation at the output of the final decoder is fed 
to a trainable softmax classifier. In Image-SegNet, this 
softmax classifies each pixel independently [6]. In order 
to realize ASC, we modify it in Audio-SegNet. The out-
put of softmax classifiers is a K number of acoustic scene 
classes.

The design of Audio-SegNet represents the first tech-
nical contribution to this task. In order to analyze the 
performance of Audio-SegNet, we constructed sev-
eral Audio-SegNet networks with different convolution 
network depth and convolution kernel size to classify 

Fig. 1 Block diagram of the Mini‑SegNet for the acoustic scene classification
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acoustic scenes. In our work, the Base-Mini-SegNet is 
the most robust and performs best.

As shown in Fig.  2, it is a simple encoder-decoder 
architecture. It is mainly composed of encoder and 
decoder modules. First, considering the amount of data, 
we reduce the number of network layers to maximize the 
ability of deep learning. Secondly, we modify the origi-
nal 3 × 3 convolution kernel to 2 × 3 and get better per-
formance in our experiment. The number maps in the 
encoder are 64, 128. The number of feature maps in the 
decoder are 128, 64. The encoder module, consists of 
two Conv blocks. In the first Conv_block 1, it contains a 
2D Convolution layer whose kernel size is 2 × 3, and the 
number of filters is 64, then followed by a normalization, 
a ReLU non-linearity, and a maxpooling whose pool size 
is 2 × 3. The second is Conv_block 2, which is a 2D Convo-
lution layer with kernel size is 2 × 3 and 128 filters with a 
batch normalization and a ReLU non-linearity. After that, 
the corresponding convolution, batch normalization, and 
activation were performed again. In maxpooling layer, 
the key part of the feature is retained and other weak fea-
tures are discarded. For each sample, the indices of max 
locations computed during pooling are stored and passed 
to the decoder.

The output of the encoder is taken as the input of the 
decoder module. A decoder upsamples its input using the 
transferred pool indices from its encoder to produce a 
sparse feature map. It then performs convolution with a 
trainable filter bank to densify the feature map. The final 
decoder output feature maps are fed to a softmax clas-
sifier for classification. The decoder module is similar to 
the encoder and consists of two DeConv blocks. In each 

block, upsampling 2D with size of 2 × 3 is performed first, 
then followed by convolutional layers, normalization, 
and ReLU. Finally, the global average pooling layer or 
the event extraction block is used. Two dense layers with 
dropout are used to output the final prediction.

3.2  Event extraction block
In this work, we designed an event extractor and applied 
it to the mini SegNet network structure, as shown in 
Fig. 2. In the semantic segmentation network, the seman-
tics of this point is represented by calculating the maxi-
mum value of the same position of each different channel 
layer [6]. It can be seen that different channel layers rep-
resent different semantic regions. We believe the differ-
ent semantic segmentation regions in the whole feature 
graph represent different events. Suppose x ∈ R

N×F×T×C 
is the input feature, where N, F, T, and C represent batch 
size, frequency dimension, time dimension, and the num-
ber of channel, respectively.

We first obtain the semantic segmentation ten-
sor S ∈ Z

N×F×T , which is the indices of the maxi-
mum values of input feature along the channel axis 
c ∈ {0, 1, . . . ,C − 1}:

Then, we extract top-k semantic segmentation regions:

where modek(·) is top-k mode, i.e., top-k numbers that 
appears the most of S. Y ∈ {0, 1, . . . ,C − 1}N×k , where 
N  and C represent batch size and number of channels, 

(1)S = arg
C−1
max
c=0

(x)

(2)Y = modek(S)

Fig. 2 Details of the Mini‑SegNet model and Event Extraction Block
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respectively. In our experiment, the best choice of k is 
4. At the same time, we find that normalized Y performs 
better, so we normalize the values of Y by the number of 
channels so that there will be no large deviation in subse-
quent learning as below.

Second, the output feature of the final decoder will be 
fed to the global average pooling layer at the same time. 
Then, the output feature of the global average pooling 
layer along the channel axis is concatenated with Ỹ  as the 
output tensor of the event extraction block. The tensor 
has shape (N ,C + k).

Finally, the event extraction block output will be fed to 
a trainable softmax classifier which consists of an affine 
transformation followed by the softmax function.

We think that the audio scene is also composed of a 
variety of audio events, so obtaining the audio events in 
the audio scene through event extraction block can be 
used to distinguish similar audio scenes.

3.3  Data augmentation
Data augmentation is an efficient way to avoid overfit-
ting and enhance the model’s generalization in deep neu-
ral network [51]. We use mixup, ImageDataGenerator, 
Specaugment, and cropping for data augmentation. We 
do not use any additional data and train the model from 
scratch. In our work, data augmentation does improve 
performance, and we make a detailed comparison in the 
next section.

Mixup [51] is performed at a mini-batch level: two data 
batches, along with corresponding labels, are randomly 
mixed in each training step. Mixup creates a new training 
sample by mixing a pair of two training samples. It gener-
ate a new training sample (x, y) from the data and label 
pair (x1, y1) (x2, y2) by the following Eq. (4).

Here, � ∈ [0, 1] is acquired by sampling from the beta 
distribution Beta(α,α) , and α is a hyper parameter. 
Besides the data x1 and x2 , it is characteristic to mix the 
labels y1 and y2.

In addition, we tried to use ImageDataGenerator [52] 
in this task. It is an image generator, mainly used in image 
classification. At the same time, it can also enhance 
the data in batches, expand the size of the data set, and 
enhance the generalization ability of the model. In our 
work, it is implemented with width shift, height shift.

We additionally used crop augmentation [26] in 
the temporal axis: each of the two samples combined 

(3)Ỹ = Y /C

(4)
x = �x1 + (1− �)x2
y = �y1 + (1− �)y2

using mixup was first cropped independently and ran-
domly. Then, we applied Specaugment [53] at a mini-
batch level. For a batch of data in the training step, each 
feature map is randomly masked in both time and fre-
quency axes.

3.4  Mixup Normalization
We found that instance normalization (IN) had a good 
performance in image style transfer [54]. Its function is 
equivalent to unifying different pictures into one style. 
In short, IN can learn domain difference from chan-
nel mean and variance in the image domain for bet-
ter domain style transfer [55, 56]. The audio device ID 
(A-S3) of official data set differences is revealed along 
different dimensions of concatenation of mean and 
standard deviations of the output layer of the Mini-Seg-
Net encoder as shown in 2D Fig. 3. So we use instance 
normalization to get audio device generalized features 
in channel dimension as below.

where,

Here, µuc , σnc ∈ R
N×C , are mean and standard devia-

tion of the input feature x ∈ R
N×F×T×C , where, N, F, T, 

and C represent batch size, frequency dimension, time 
dimension, and number of channel, respectively. ǫ is a 
small number added to σ to avoid division by zero.

As far as we know, direct use of IN can only learn 
the style information and lose of useful information for 
classification. In order to compensate the classification 
information and reduce the influence of excessive IN, 
we add a hyperparameter � learned from the Mixup 
method; we can use the hyperparameter � to balance 
the weights on both sides. This normalization method 
named Mixup Normalization (MixupNorm) is below.

We apply MixupNorm for the first encoder layer and 
last decoder layer in Fig. 2. There are a total of two Mix-
upNorm modules in the Mini-SegNet network.

(5)IN(x) =
x − µnc
√

σ 2
nc + ǫ

(6)µuc =
1

FT

F
∑

f=1

T
∑

t=1

xnftc

(7)σ 2
nc =

1

FT

F
∑

f=1

T
∑

t=1

(xnftc − µuf )
2

(8)MixupNorm(x) = �x + (1− �)IN(x)
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4  Experiment set up and results
4.1  Dataset
To evaluate our system, we use the Task 1A acoustic 
scene classification data from the official data set of the 
TAU Urban Acoustic Scene 2020 Mobile Development 
dataset [14]. The dataset consists of 10 acoustic scenes: 
airport, bus, metro, metro_station, park, public_square, 

shopping_mall, street_pedestrian, street_traffic, tram. 
The development set contains data from 10 cities and 9 
devices, 3 real devices (A, B, C), and 6 simulated devices 
(S1–S6). Most of the experimental data were collected 
from high-quality recording device A. The other devices 
are commonly available customer devices: device B is a 
Samsung Galaxy S7, device C is iPhone SE, and device 

Fig. 3 2D visualization of feature maps of mean and standard deviations. Top: frequency‑wise. Bottom: channel‑wise
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D is a GoPro Hero5 Session. The simulated data are syn-
thesized by processing the data of device A with various 
impulse responses and dynamic range compression.

The development dataset comprises 40 h of data from 
device A, and smaller amounts from the other devices. 
Audio is provided in single-channel 44.1 kHz 24-bit for-
mat and was split into 10-s segments that are provided in 
individual files. The organizer of the challenge provides 
basic meta data of train/test split consisting of 13,965 
samples in the training set and 2970 samples in the test 
set. As shown in Table 1, some devices (S4, S5, S6) appear 
only in the test subset. So the device-specific information 
of S4–S6 cannot be learned in training.

4.2  Experiment setup
We train our models on GPU, with a batch size of 64, and 
with stochastic gradient descent with a momentum of 
0.9 for the optimizer. At the same time, we use a warm 
restart learning rate schedule [57]; it gets to maximum 
value of 0.1 after 11, 31, 71, 151, and 311 epochs and then 
decays according to a cosine pattern to 1× 10−5 . In our 
work, we transformed audio data into a power spectro-
gram by skipping every 1024 samples with 2048 length 
Hanning window. A spectrum of 431 frames was yielded 
from 10-s audio file, and each spectrum was compressed 
into 256 bins of mel frequency scale. Additionally, deltas 
and delta-deltas were calculated from the log Mel spec-
trogram and stacked into the channel axis. The number 
of frames of the input feature was cropped by the length 
of the delta-delta channel so that the final shape becomes 
[256 × 423 × 3]. And each network was trained for 310 
epochs. During the training stage, the different data aug-
mentation methods for the dataset for Mini-SegNet are 
used, and the parameters are set as Mixup with α = 0.3, 
ImageDataGenerator with width_shift_range = 0.6 and 
height_shift_range = 3, and Specaugment with a tempo-
ral mask and two frequency masks with mask parameters 
of 80 and 30, respectively. The input data is randomly 
cropped into a fixed-length along the time axis. In our 
experiments, the input data with the size of [ 256 × 423 × 

3 ] was cropped into [ 256 × 400 × 3 ] input feature map. 
We used MixupNorm with � = 0.1 and � = 0 for compar-
ison on unseen devices.

For the train-test split, we adopt the official recom-
mended way to split the development material. There 
are 13,965 train audio clips and 2970 test audio clips. 
The training set includes audio from devices A, B, C, and 
S1–S3. The test set covers data from those six devices 
and extra data from unseen devices S4, S5, and S6. And 
we applied data augmentation to increase the diversity 
of data distribution. The augmented data was generated 
from each mini-batch consisting of 64 samples during 
the training process in real-time. Experiments show that 
this method can improve the accuracy of acoustic scene 
classification.

For the multi-class classification tasks, cross-entropy 
(CE) is generally used as the loss function:

where  p is the model’s estimated probability, y is a 
ground-truth class label (one-hot vector), and  j repre-
sents the jth class. We adopt the CE loss as the loss func-
tion for the proposed model.

4.3  Results and discussion
To illustrate the properties and performance of Audio-
SegNet proposed in this paper, we adopt the official 
recommended way to split the train set and test set on 
Acoustic Scene 2020 Mobile Development dataset as 
shown in Table  1. We compared and analyzed various 
versions of Audio-SegNet, which have different con-
volution layers and kernel sizes. We also verify the per-
formance of the Mixup Normalization and the event 
extraction block methods for unseen devices (ID S4-S6 in 
test) recognition.

4.3.1  Validation results of Mini‑SegNet
The DCASE2020 Task 1A challenge [14] is evaluated 
by the average of the class-wise accuracy, also known 
as “macro-average accuracy.” All the work in this paper 
is tested on the challenge dataset, because the datasets 
come from different devices and the train/test setup. Our 
experimental results are mainly shown by the average 
accuracy, that is, the average accuracy of scene classifica-
tion under various devices.

As shown in Table 2, different Audio-SegNet networks 
have different performances, such as the amount of train-
ing parameters, training time, and training accuracy. In 
our work, according to the structure of Image-SegNet, 
we first constructed the Audio-SegNet for ASC. In our 
experiments, we term SegNet-L, which means it is a 

(9)CE(p, y) = −

K
∑

j=0

yj log(pj)

Table 1 TAU Urban Acoustic Scenes 2020 Mobile Development 
dataset

Device Total Train Test (not used 
in train/test 
split)

A 14,400 10,215 330 3855

B, C 1080 2×750 2×330 —

S1, S2, S3 1080 3×750 3×330 —

S4, S5, S6 1080 — 3×330 750

Total 23,040 13,965 2970 —
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larger Audio-SegNet with more convolution layers and 
larger kernel size. In Table 2, 64 × 2 represents two con-
volution layers with 64 output mappings. In the SegNet-
L, each encoder network has a corresponding decoder 
layer and hence the encoder network has 13 convolu-
tional layers. The number of parameters is 31,880,650, 
and the training time of each epoch is 328 s. The all-accu-
racy is 93.86% on the train set and 59.06% on the test set. 
The results show that its performance is poor, especially 
in the training set and test set there is a large gap. The 
main reason is that SegNet-L architecture has a deep 
network, and when our data is limited, it cannot be fully 
utilized. Therefore, the final classification accuracy has a 
great problem of overfitting.

The simplest way to prevent overfitting is to reduce 
the model size, that is, to reduce the number of learn-
able parameters in the model, which is determined by 
the number of layers and the number of units in each 
layer. Therefore, we have made many attempts to mod-
ify the depth of the network. SegNet-M, compared to 
SegNet-L, not only has a smaller convolution layer but 
also the training parameters are reduced by an order of 
magnitude. The training time is obviously reduced, and 
the accuracy of the test set is improved. But there is still 
overfitting phenomenon. Then, we further try to reduce 
the number of network layers and construct two kinds 
of networks, SegNet-S and Mini-SegNet. Mini-SegNet 
has better performance, less parameters, and shorter 
training time. At the same time, overfitting has also 
been alleviated. In our work, our acoustic scene clas-
sification is limited by the amount of data and cannot 
use deep networks like image segmentation. Therefore, 

after the analysis and test, we build the acoustic 
scene classification system based on the Mini-SegNet 
network.

A convolution kernel can be regarded as the weighted 
summation of a certain part; it corresponds to local 
perception. Its principle is that when we observe an 
object, we can neither observe each pixel nor observe 
the whole at once, but start to understand from the 
local, which corresponds to convolution. In the same 
receptive field, the smaller the convolution kernel, the 
smaller the parameters and computational complexity. 
In order to extract local features more fully, we com-
pare the recognition performance of several different 
convolution kernel sizes.

Table  3 shows the accuracy of different kernel sizes, 
maxpooling size, and upsampling size on the basis of 
the Mini-SegNet network. In our work, we initially kept 
the original Image-SegNet kernel size configuration. 
However, there is still overfitting phenomenon in Mini-
SegNet. Therefore, we analyze and test the different 
sizes of the convolution kernels. From Table 3, we can 
see that the problem of overfitting can be improved by 
reducing the kernel size to a certain extent. When the 
kernel size is equal to 2 × 3, the classification perfor-
mance of the system is the best.

The accuracy on the training set is 80.49%, and that 
on the test set is 71.26%. At this time, overfitting prob-
lems can be ignored. Compared with the 3 × 3 kernel, 
the overall performance, such as the amount of train-
ing parameters, training time, and accuracy, has been 
improved. However, if we further reduce the convo-
lution kernel size to 1 × 2, the accuracy is very poor. 
In Fig.  4, we analyzed the characteristic maps of fre-
quency-wise and channel-wise of the Mini-SegNet 
encoder output. We found that the 2 × 3 kennel size for 
the channel-wise of frequency would be better between 
80 and 100 than 3 × 3. Compared with the 3 × 3 kernel 
size, the 2 × 3 kernel size has higher spectral density at 
channel dimensions 80 to 100. Therefore, when the fea-
ture maps of the decoder output are pooled using the 

Table 2 Results (all‑accuracy: %, train/test) of various versions of 
Audio‑SegNet network (kernel_size: 3 × 3, maxpooling_size: 2 × 2, 
upsampling_size: 2 × 2. 64 × 2 represents 2 convolution layers 
with 64 output mappings)

Audio‑SegNet SegNet‑L SegNet‑M SegNet‑S Mini‑SegNet

Encoder 64 × 2 64 × 2 64 × 2 64 × 1

128 × 2 128 × 2 128 × 2 128 × 2

256 × 3 196 × 2

512 × 3

512 × 3

Decoder 512 × 3 196 × 2 128 × 2 128 × 2

512 × 3 128 × 2 64 × 2 64 × 1

256 × 3 64 × 2

128 × 2

64 × 2

Train params 31,880,650 2,051,050 707,338 670,282

Time(s)/Epoch 328 215 206 195

All‑accuracy 93.86/59.06 90.84/63.44 85.32/65.35 83.45/66.46

Table 3 Mini‑SegNet: performance with different kernel size, 
maxpooling size, and upsampling size on Mini‑SegNet (all‑
accuracy: %, train/test)

Mini‑SegNet

Kernel size (3,3) (2,3) (1,2)

Maxpooling size (2,2) (2,3) (1,2)

Upsampling size (2,2) (2,3) (1,2)

Train params 670,282 478,218 210,186

All‑accuracy 83.45/66.46 80.49/71.26 50.31/47.54
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global average pooling layer along the channel axis, the 
distinction of 2 × 3 features will be higher than 3 × 3. 
So our acoustic scene classification system is a Mini-
SegNet network with convolution kernel size of 2 × 3. 
Finally, the average classification accuracy is 71.26%. 
The total training parameters are 478,218, and the aver-
age training time is 173 s under 310 epochs.

Meanwhile, we use a variety of data enhancement 
methods to further improve the classification accuracy, 
without using additional data. Table  4 shows results for 
Mini-SegNet trained in various configurations using the 
official test-train split. Every configuration was tested on 
both architectures.

In [58], mixup data augmentation on acoustic scene 
classification has been fully verified. Therefore, we 
use mixup directly in our work. Then, we try and 
analyze the methods of temporal crop, Specaugment, 
and ImageDataGenerator respectively. The results in 

Table  4 show that temporal crop, Specaugment, and 
ImageDataGenerator improve performance in acous-
tic scene classification. It not only improves the overall 
classification accuracy, but also alleviates the problem 
of overfitting. In our parameter set, we set the width_
shift_range as 0.6, which is divided by the total width. 
And the height_shift_range is 3, that is, the amplitude 
of random vertical offset of the image when the data 
is raised. To a certain extent, it shows that the sound 
signal contains more information in the frequency 
domain, and the experimental results also prove that. 
In general, ImageDataGenerator method based on 
image data augmentation can also be well applied to 
acoustic scene classification. As shown in Fig.  5, the 
proposed system with a warm restart learning rate 
schedule achieves better performance in the develop-
ment set than simpler linear learning rate schedule.

4.3.2  Mixup Normalization and event extraction block
We test the Mixup Normalization and the event extrac-
tion block methods in the Mini-SegNet network struc-
ture and compare them with batch normalization (BN). 
The baseline is Mini-SegNet, and as shown in Fig. 2, we 
only used a global average pooling instead of the event 
extraction block when it is omitted. The results are 
shown in Table 5.

In Table 5, the average accuracy (A-S6) of mini-Seg-
Net is 65.93% with BN, 69.82% with IN, 70.11% with 
MixupNorm, and 70.97% with MixupNorm and event 

Fig. 4 Compare the performance of kernel size 2× 3 and 3× 3 in channel‑wise 80 to 100. Left: the feature map with 3× 3 kennel size 
of the Mini‑SegNet encoder output. Right:the feature map with 2× 3 kennel size of the Mini‑SegNet encoder output

Table 4 All‑accuracy (%) under various data enhancement 
methods

Mixup Yes Yes Yes Yes

ImageDtaeGen‑
erator

Yes No Yes Yes

Temporal crop Yes Yes No Yes

Specaugment Yes Yes Yes No

All‑accuracy(train/
test)

80.49/71.26 90.51/69.27 77.56/67.34 85.56/68.32
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extraction block. The result of IN is 3.89% better than 
BN, and MixupNorm is 4.18% improvements com-
pared to BN. For the unseen device (ID S4–S6) on the 

test set, “S4–S6” had an average accuracy of 67.11% 
using MixupNorm, which is more than 7% and 1% bet-
ter than BN and IN, respectively. The MixupNorm is 

Fig. 5 Accuracy of proposed system (310 epochs). Top: with warm restart learning rate schedule. Bottom: without warm restart learning rate 
schedule

Table 5 Experimental results on Task 1A. Mixup Normalization and event extraction block are efficient on unseen devices (S4–S6) on 
TAU Urban AcousticScenes 2020 Mobile, Development dataset

Devices

Method A B C S1 S2 S3 S4 S5 S6 Overall

Mini‑SegNet+BN 74.24 71.43 74.77 63.93 66.36 66.66 63.33 63.63 55.45 65.93±0.7

Mini‑SegNet+IN 78.48 72.64 71.73 70.30 67.27 73.94 67.27 65.15 65.45 69.82±0.4

Mini‑SegNet +MixupNorm 78.27 72.82 72.03 68.45 68.18 74.24 68.45 66.52 66.36 70.11±0.3

Mini‑SegNet +MixupNorm 
+EventExtractionBlock

76.67 71.34 74.47 70.61 69.39 71.52 69.70 69.70 67.85 70.97±0.3
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IN when the hyperparameter � is 0 in Eq.  8. In addi-
tion, the event extraction block is effective on unseen 
devices.

We chose the average accuracy for various record-
ing devices (all-accuracy) as the main performance 
because the task targets generalization properties of 
systems across a number of different devices. The con-
fusion matrix of acoustic scene classification results 
under all devices is shown in Fig. 6a. From this figure, 
it can be seen that the generalization ability on some 
classes is better, with an accuracy of up to 85% in the 
recognition of acoustic scenes such as bus, park, and 
street_traffic. Comparing Fig. 6a and b, we found that 
the event extraction block effectively reduces the error 
rate of mutual recognition of similar scenes, such as 
airport and shopping_mall, street_pedestrian, and 
public_square. As shown in Table  6, we performed 
ablation experiments for the hyperparameter � of the 
Mixup Normalization method. The performance is the 
best when the parameter � is set to 0.1.

4.3.3  Comparison with recent state‑of‑the‑art systems
Table  7  compares our proposed Mini-SegNet network 
with current state-of-the-art systems without apply-
ing ensemble techniques. Compared with systems in 
DCASE2020 Task 1A challenge, our proposed system 
has comparable performance and lower complexity. On 

Fig. 6 The confusion matrix of average classification results (all‑accuracy) under various devices in Mini‑SegNet network. a With event extraction 
block. b Without event extraction block

Table 6 The Effects of hyperparameter � of Mixup Normalization 
on TAU Urban AcousticScenes 2020 Mobile, Development 
dataset

Hyperparameter 
�

0.05 0.1 0.2 0.5

All‑accuracy 80.19/70.13 80.49/71.26 83.70/69.70 85.25/68.53

Table 7 Comparison with recent state‑of‑the‑art systems 
using the performance of individual systems without a score‑
level ensemble. The third to seventh rows list the top five best‑
performing systems on the DCASE2020 Task 1A challenge. The 
ninth to 13th rows list the top five best‑performing systems on 
the DCASE2021 Task 1A challenge

System Acc(%) #Params Compression methods

Proposed method 71.26 478K ‑

DCASE2020 Baseline [5] 54.1 5M ‑

Suh et al. [31] 73.7 13M ‑

Hu et al. [30] 76.9 130M ‑

Gao et al. [32] 71.8 4M ‑

Liu et al. [59] 72.1 3M ‑

Koutini et al. [60] 71.8 225M ‑

DCASE2021 Baseline [22] 46.9 46K Quantization

Kim et al. [34] 76.3 315K Quantization/pruning/
knowledge distillation

Yang et al. [37] 78.3 3.6K LTH/knowledge distil‑
lation

Koutini et al. [35] 69.5 631K Sparsify/quantization

Heo et al. [36] 70.5 65K Knowledge distillation

Liu et al. [61] 68.2 648K Quantization
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DCASE2021 Task 1A challenge, the model complex-
ity limit of 128 KB was set for the non-zero parameters. 
Therefore, many model compression methods were used 
or proposed by researchers, such as knowledge distil-
lation and LTH [37, 38]. Compared with the top five 
best-performing systems on the DCASE2021 Task 1A 
challenge, the proposed system does not use any com-
pression method, so we do not need additional resources 
and time to train a complex network and then compress 
the model, such as knowledge distillation. The proposed 
system still has comparable performance on systems with 
similar parameters.

The acoustic scene classification system proposed in 
this paper takes log-mel spectrum as the acoustic feature 
and Mini-SegNet as the classifier. Our proposed system 
achieved 71.26% on the different devices on the develop-
ment dataset.

5  Conclusions
In this paper, we proposed a new method of audio 
semantic segmentation for acoustic scene classifica-
tion with multiple devices. Based on the paradigm of 
encoder-decoder, we introduced a method for extract-
ing multi-granularity features of sound events in acoustic 
scenes. We explored several architectures of Audio-Seg-
Net for the audio scene classification. The best result was 
achieved on Mini-SenNet with event extraction block 
and Mixup Normalization network. The experimental 
results showed encouraging findings that audio seman-
tic segmentation with event extraction block and Mixup 
Normalization can be effective in extracting features for 
recognition of acoustic scenes. The proposed method has 
lower complexity and higher accuracy compared with 
other classic CNN models using the public DCASE 2020 
Task 1A database.
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