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Abstract 

Speech coding is a method to reduce the amount of data needs to represent speech signals by exploiting the sta-
tistical properties of the speech signal. Recently, in the speech coding process, a neural network prediction 
model has gained attention as the reconstruction process of a nonlinear and nonstationary speech signal. This 
study proposes a novel approach to improve speech coding performance by using a gated recurrent unit (GRU)-
based adaptive differential pulse code modulation (ADPCM) system. This GRU predictor model is trained using 
a data set of speech samples from the DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus actual sample 
and the ADPCM fixed-predictor output speech sample. Our contribution lies in the development of an algorithm 
for training the GRU predictive model that can improve its performance in speech coding prediction and a new 
offline trained predictive model for speech decoder. The results indicate that the proposed system significantly 
improves the accuracy of speech prediction, demonstrating its potential for speech prediction applications. Overall, 
this work presents a unique application of the GRU predictive model with ADPCM decoding in speech signal com-
pression, providing a promising approach for future research in this field.

Keywords Speech coding, Gated recurrent unit, Nonlinear prediction, Waveform coding, Audio coding, Adaptive 
differential pulse code modulation, Speech compression

1 Introduction
Speech coding is the process of converting a speech sig-
nal into a more compressed form of digital data [1]. Then, 
it can be transmitted with fewer bits or saved and recon-
structed into the original speech signal [2, 3].

Speech coding studies have a number of specific goals 
such as low compression, quality, lower delay, stability, 
compatibility, complexity, and scalability. The quality of 

the decoded speech signals should be as close to the orig-
inal speech signals as possible.

Speech coding technologies can generally be divided 
into three main categories: waveform coding, vocoder 
coding [4], and hybrid coding [3, 5]. Waveform coding 
[6] is a technique used to represent and compress speech 
signals. This involves digitizing the analog speech wave-
form and encoding them into digital format to store or 
transmit them. Some commonly used waveform coding 
techniques include pulse code modulation (PCM) and 
adaptive differential pulse code modulation (ADPCM). 
ADPCM is a commonly used audio coding technique 
that achieves compression by predicting and quantiz-
ing the difference between consecutive samples. There 
exist several types of ADPCM, including IMA-ADPCM, 
Microsoft ADPCM, DVI4-ADPCM, Intel/DVI ADPCM, 
Yamaha ADPCM, Dialogic ADPCM, and others. 
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Additionally, there are several ITU-T standards such as 
G.726, G.727, G.723, G.723.1, among others.

In our study, we have used IMA ADPCM as the foun-
dational approach to improve the quality of audio cod-
ing. This improvement is achieved by integrating our 
proposed GRU predictive model into the IMA ADPCM 
framework. The selection of IMA ADPCM among the 
various ADPCM types and ITU-T standards due to its 
simplicity of use [7], low computational complexity [8], 
and suitability for real-time communication systems. 
And also IMA-ADPCM is widely used and compatible 
with our proposed integration strategy and incorporates 
adaptive quantization, enabling dynamic adjustment 
of the quantization step size to optimize coding perfor-
mance for a broad range of audio signals. Thus, IMA-
ADPCM aligns well with our objective of embedding or 
enhancing decoding predictive models for superior audio 
coding quality.

The IMA-ADPCM speech coding algorithm includes 
significant encoding and decoding processes. The algo-
rithm begins with the encoding process and ends with 
the decoding function. In the IMA-ADPCM encoding 
process, the algorithm takes a 16-bit PCM speech sample 
and compresses it to a 4-bit value [9, 10] using adaptive 
quantizer and fixed predictor. The difference between the 
current and previous sample is calculated and the data 
is quantized to a new sample value using a variable step 
size. The resulting ADPCM code is then encoded using 
the quantizer step size. The predicted speech sample and 
quantizer step size [11] from the previous iteration are 
restored. The encoder generates a 4-bit ADPCM code 
based on the difference sample and step size.

In the ADPCM decoding process, the 4-bit ADPCM 
code is received and used to generate a predicted speech 
sample [11]. The step size index is used to determine the 
quantizer step size from a table. The 4-bit code is inverse-
quantized, and the new speech sample value is computed 
by adding it to the previous predicted speech sample 
value. The step size index is updated on the basis of the 
modifications. The decoding system generates a new 
16-bit sample by adding the difference to the previous 
prediction.

During the encoding and decoding procedures, the 
ADPCM algorithm adjusts the quantizer step size based 
on the previous ADPCM value. This adjustment is cal-
culated using a step size calculation equation and imple-
mented using lookup tables. The quantizer adaptation 
process ensures that the appropriate step size is used for 
each sample, taking into account the magnitude of the 
ADPCM code.

Speech coding prediction is a means of using some or 
all past speech samples to predict the present sample 
[12]. It is widely used in speech coding approaches such 

as ADPCM, LPC, and CELP. The speech coding predic-
tion approaches are classified as linear or nonlinear pre-
diction models.

The linear predictive technique [13] is well known and 
well understood, making simulation and implementation 
easy. But it is likely to be less powerful than a nonlinear 
prediction model. However, nonlinear speech prediction 
has recently attracted a lot of attention since the genera-
tion of the speech signal is a nonlinear and nonstationary 
process [12]. So far, the most commonly used nonlinear 
methods for nonlinear and nonstationary speech predic-
tion have been classified into two categories: neural net-
works and polynomial filters.

1.1  Neural network‑based speech coding
Neural network-based speech coding methods has seen 
significant advancements in recent years, with applica-
tions of deep neural networks (DNNs) and other neu-
ral architectures. These methods offer the advantage of 
learning relevant patterns automatically from large data-
sets, leading to improvements in speech quality, com-
pression efficiency, and computational complexity.

WaveNet [14, 15], a deep generative model based on 
autoregressive CNNs, achieves high speech quality but 
suffers from high computational complexity and long 
inference times, limiting its real-time applications. Wav-
eRNN [16], combining RNNs with ResNet, maintains 
high-quality speech synthesis with lower complexity than 
WaveNet. LPCNet [17], a combination of linear predic-
tive coding (LPC) and WaveRNN, excels at low bit-rate 
speech coding, making it suitable for limited bandwidth 
applications. WaveGlow [18], a flow-based generative 
model, offers faster synthesis times than autoregressive 
models but may sacrifice fine-grained speech details. Par-
allel WaveGAN [19], employing inverse autoregressive 
flow (IAF), provides real-time generation with improved 
computational efficiency and good speech quality.

Parametric-based NN speech coding methods rep-
resent speech using parametric features rather than 
directly encoding waveforms. DNN-HMM [20] hybrid 
systems combine DNNs with HMMs for improved mod-
eling capabilities and long-term dependencies in speech. 
Variational autoencoders (VAE) [21, 22] aim to learn 
a latent space representation of speech, striking a bal-
ance between speech quality and compression efficiency. 
GANs [23, 24] have been explored for speech coding, 
offering potential for high-quality speech reconstruction 
and improved modeling of speech parameters.

Encodec [25] and Soundstream [26] are notable neural 
network-based audio codec methods. Encodec utilizes a 
hierarchical generative model with VAE for high-fidelity 
audio coding, while Soundstream combines RNN with an 



Page 3 of 17Sheferaw et al. EURASIP Journal on Audio, Speech, and Music Processing          (2024) 2024:6  

autoregressive model for efficient audio coding at low bit 
rates.

Waveform-based methods directly model and recon-
struct speech waveforms, achieving high fidelity and nat-
uralness. Parametric-based methods, on the other hand, 
focus on modeling and coding underlying speech param-
eters, offering advantages in compression efficiency and 
manipulation of speech characteristics. However, they 
may struggle to capture fine details and accurately rep-
resent certain speech characteristics, leading to potential 
artifacts and reduced speech quality.

In general, NN-based speech coding methods have 
demonstrated remarkable progress, each with its own 
strengths and limitations. The choice of method depends 
on specific application requirements, balancing speech 
quality, compression efficiency, and computational 
complexity.

Neural network model-based various standards of 
ADPCM speech coding systems have been developed in 
recent years [12, 14, 27–31], but they have some limita-
tions. These limitations include the following: (1) simple 
neural network topologies, (2) lack of neural network 
training via backpropagation, (3) most studies on neu-
ral network-based ADPCM systems were focused on 
online streaming applications only, and (4) high encod-
ing computational cost due to online learning encod-
ing. Of course, online learning predictive models are 
able to adapt to new data, which can be useful in situa-
tions where data is constantly changing or streaming in 
dynamic environments. However, compared to the offline 
learning predictive model, online learning models also 
have overfitting and lack stability drawbacks [32]. The 
overfitting, as online models continuously encounter new 
data, making them more prone to adapting quickly to 
noise or outliers. This tendency can result in a decrease 
in the model’s ability to generalize well beyond the train-
ing data. Additionally, lack stability online learning mod-
els, due to their continuous adjustment to new data. Even 
slight changes in the data distribution can significantly 
impact the model performance. These limitations, spe-
cifically overfitting and lack of stability, can result in a 
lack of generalization, ultimately impacting the quality 
and performance of speech coding. Therefore, it is crucial 
to address these issues to improve the overall quality and 
performance of speech coding. The high computational 
cost of encoding for online learning neural network-
based ADPCM speech codecs is an additional drawback.

On the other hand, currently, there are several stud-
ies on waveform-based recurrent neural network (RNN) 
prediction models that could be learned from training 
data by backpropagation, such as [12, 33–38]. Further-
more, the recent RNN architecture-based waveform 
speech prediction training models [12, 39] and waveform 

speech generation models [40–42] are clearly and suc-
cessfully presented. These RNN architecture-based pre-
dictor models which were mentioned above are trained 
using offline stored speech data and offline training 
approaches.

However, to the best of the researchers’ knowledge, no 
studies have applied or integrated the ADPCM speech 
coding system based on the RNN architecture predictor 
model for stored speech (audio) data to improve predic-
tion performance. Considering the gated recurrent unit 
(GRU) predictor model has the ability to manage both 
the short-term and long-term predictors of speech sam-
ple recall, we are motivated to propose a GRU predictor 
model-based ADPCM speech coding system for stored 
speech (audio) data to enhance prediction performance 
and computational cost.

The rest of the paper is structured as follows. Section 2 
describes the methods used in the study. The results and 
discussion of the experiments were presented in Sec-
tion 3. Finally, in Section 4, conclusions of the study were 
presented.

2  Methods
In this section, in order to achieve the proposed research 
objective, the major activities are performed as the fol-
lowing steps. First, data pre-processing was performed to 
prepare the training and testing speech signal data sets. 
Second, GRU predictor model was embedded with the 
ADPCM system. This combined the two technologies, 
making it possible to effectively train the model. Third, 
the GRU predictor model was trained using the ADPCM 
fixed predictor output and the actual PCM speech signal 
samples. The trained model was then evaluated by test 
set from the output of ADPCM fixed predictor speech 
signal samples that was not used for training of the 
model. Finally, the model that could show high degree of 
accuracy is integrated with ADPCM decoder system; see 
the process in Fig. 1.

2.1  PCM speech signal dataset
This research explored GRU predictor model-based 
ADPCM speech coding. A dataset from the DARPA 
TIMIT Acoustic-Phonetic Continuous Speech Corpus 
[43, 44] was used to train and test the model. This cor-
pus contained 6300 sentences, 10 each from 630 speak-
ers from 8 dialect regions of the USA. Each speech signal 
dataset was stored as an uncompressed digitized audio 
file, with a “.wav” file extension and a single-channel sig-
nal. Each sentence in the TIMIT dataset was originally 
sampled at a rate of 16 kHz per second. In this study, 
according to the objective of the study, the data sets were 
prepared from the entire TIMIT Acoustic-Phonetic Con-
tinuous Speech Corpus. The waveform speech signal data 
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set was broken down into separate training and testing 
data sets, depicting the percentage distribution in Fig. 2.

We have chosen a total of 40 speakers, comprising 20 
females and 20 males. Each speaker produced five sen-
tences, resulting in a combined total of 200 sentences. 
The training set encompassed 80% of the data, consist-
ing of 32 speakers (16 women and 16 men) and 160 sen-
tences. The remaining 20% of the data formed the test 
set, which included 8 speakers (4 men and 4 women) and 
40 sentences.

The duration of the speech signals used for train-
ing amounted to 526 s, equivalent to 8 min and 46 s. 
The overall duration of the testing signals was 136 s or 
2 min and 16 s. The TIMIT Acoustic Phonetic Continu-
ous Speech Corpus was digitized using waveform speech 
with a uniform PCM sampling rate of 16,000 samples per 
second. Consequently, the training dataset comprised 
8,443,764 samples, while the testing dataset consisted of 
2,187,074 samples.

Fig. 1 Embedding and training of GRU predictor model with ADPCM system

Fig. 2 Training and testing dataset percentage distribution ratio
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2.2  Waveform‑based speech signal predictive analysis
Consider a speech signal with x(t), x(t-1), x(t-2),..., x(t-n) 
samples. In the waveform-based speech prediction pro-
cess, the current speech sample is estimated as a linear or 
nonlinear function of a fixed number of previous consec-
utive speech samples, that is, the prediction of a speech 
sample at time t is as shown in Eq. 1:

where f is the linear or nonlinear function used for pre-
diction, and p is the number of previous consecutive 
speech samples used in the prediction.

A discrete signal x(t) is simply a sequence of numbers 
corresponding to the signal samples, which is sampled 
uniformly at an arbitrary sampling rate (shown in Fig. 3). 
The usual sampling rate for speech recognition applica-
tions is 16 kHz. This is essentially the information we find 
in a PCM-encoded WAV file.

Speech is continuous signal, which means that consecu-
tive samples of the signal are correlated (see Fig. 3). So, if 

(1)
x̂(t) = f (x(t − 1), x(t − 2), x(t − 3), . . . , x(t − p)).....

we have the previous sample, x(t-1), then we can predict 
the next sample, x̂(t) , based on the previous sample, x(t-1), 
and it should be roughly equivalent to x(t). Furthermore, if 
we utilize more prior samples, we can gain additional data, 
which will help us make a better prediction. Furthermore, if 
we utilize more prior samples, we can gain additional data 
which will assist in making a better prediction. Explicitly, 
we can set up a predictor that utilizes P prior samples to 
predict the present sample x(t), as demonstrated in Fig. 4.

2.3  Proposed GRU predictive model with ADPCM speech 
coding architecture

In this proposed model, the GRU predictive model is 
integrated with the ADPCM speech encoder system to 
train the proposed system. During the training phase, the 
GRU model is fed with the PCM speech samples, x(t) and 
the corresponding ADPCM fixed predictor output, x̄(t) , 
shown in Fig.  5. It learns to predict future values based 
on this input data. Once the GRU model is trained, it is 
saved and evaluated to assess its performance and accu-
racy in predicting future speech samples. After training 

Fig. 3 Sequences of samples representing speech signal

Fig. 4 A neuron network employing non-linearity and weighted sum of previous components to predict the current one
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the GRU model, the conventional ADPCM encoder is 
continued without the GRU predictor. And then, the 
trained GRU model should be saved and evaluated. The 
trained GRU model is deployed in the ADPCM speech 
decoder system, as illustrated in Fig.  6. The decoder 
system utilizes the GRU model’s predictive capabili-
ties to reconstruct the original speech samples from the 
ADPCM-encoded data. The goal of this integration is to 
train a more effective GRU predictive model by incorpo-
rating the ADPCM speech encoder system and utilizing 
it for training the ADPCM speech decoder system.

2.3.1  GRU predictive model training with ADPCM system
Our study presents a novel approach to integrating 
the GRU predictive model with the ADPCM codec for 
speech signal prediction. Our contribution includes 
the development of a training algorithm for the GRU 
predictive model that uses a data set of original PCM 

speech samples and the ADPCM fixed predictor out-
put, represented as a set of x(t) and x̄(t) . The dataset 
is normalized and modified to be compatible with the 
GRU predictive model, with input in the format of 
( ̄xtrain ) and ( xtrain ) for training the model, as shown in 
Table  1. Additionally, we utilize the GRU gate, which 
controls the flow of information between the current 
and previous time steps in the GRU neural network, 
composed of the update and reset gates, to improve the 
accuracy of the model. In general, our work presents 
a unique application of the GRU predictive model and 
the ADPCM codec in the prediction of speech signals.

The equations of (2) and (3) for this GRU predictive 
would be as follows.

Ideally, the reconstructed speech sample should 
closely look like the original speech sample.

x̄(t) = f (x̄(t − 1), x̄(t − 2), . . . , x̄(t − p))

Fig. 5 GRU predictive model with ADPCM speech encoder training process

Fig. 6 GRU predictive model-based ADPCM decoder system
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where f represents the function of the GRU predictive 
model; the model takes a sequence of previous ADPCM 
fixed predictor speech samples (x̄(t)) and predicts the 
next original speech sample (x(t)). The input dimen-
sions are p by 1, and the output dimensions are 1 by 1, as 
shown in Table 1.

2.3.2  GRU structure and speech signal prediction
The GRU architecture allows for the preservation of 
information from earlier parts of a sequence while 
also being able to handle dependencies in large data 
sequences. This is achieved by using gates that determine 
which information to keep or discard at each time step. 
Our analysis revealed how previous speech samples are 

(2)x̄(t) ≈ x(t)

(3)x̄(t) = f (x̄(t − 1), x̄(t − 2), . . . , x̄(t − p)) ≈ x(t)

processed within the gates and how the current sample is 
predicted, as illustrated in Fig. 7.

Update gate
The update gate is responsible for collecting data that 

can be used to determine the amount and type of infor-
mation required.

The current input speech sample, x̄(t) , is multi-
plied with its update weight input, Wz , and added to 
the multiplication of the previous hidden state, ht−1 , 
and the previous hidden weight, Uz . Both outputs are 
processed together and multiplied by a sigmoid func-
tion, σ , which produces the update gate zt , with a value 
between 0 and 1.

Reset gate
The input sample, x(t), is multiplied by the reset weight, 

Wr , and added to the previous hidden state, ht−1 and the 
reset weight of the hidden state, Ur , in the reset gate. 
Then, a sigmoid function is applied to scale the output 
between 0 and 1.

The reset gate determines the amount of data to be 
erased, along with the unwanted data being reset.

The important information that needs to be remem-
bered is conveyed to the reset gate through ht which is the 

(4)zt = σ(Wz · x̄(t)+Uz · ht−1)

(5)rt = σ(Wr · x̄(t)+ Ur · ht−1)

(6)h′t = tanh(W · x̄(t)+ rt ·Uht−1)

Table 1 GRU predictive model sample input and output 
dimensions for model training

x̄(t) x(t)

x̄(t − 1), x̄(t − 2), x̄(t − 3), . . . , x̄(t − p) x(p)

x̄(t − 2), x̄(t − 3), x̄(t − 4), . . . , x̄(t − (p+ 1)) x(p+ 1)

x̄(t − 3), x̄(t − 4), x̄(t − 5), . . . , x̄(t − (p+ 2)) x(p+ 2)

x̄(t − 4), x̄(t − 5), x̄(t − 6), . . . , x̄(t − (p+ 3)) x(p+ 3)

. . . . . .

Fig. 7 Structure of the GRU speech signal predictive model
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following: the result of zt and ht−1 was element wise added, 
and the result of (1− zt) and h′t was element-wise added as 
well.

After being trained according to Table  1 and using 
the predictive model of GRU with ADPCM, to predict 
the current sample based on the previous context, the 
GRU passes the previous context through a set of dis-
tinct gates. The reset gate helps to make the network 
forget outdated information while the update gate 
helps the network to remember important informa-
tion. The input gate then allows the network to update 
its memory based on the current input. Finally, the 
output gate allows the network to generate the pre-
dicted output. Thus, ht is the predicted GRU output 
sample.

2.4  GRU predictive model evaluation
After the GRU predictive model has been trained using 
the ADPCM encoder, it should be evaluated by run-
ning test sets before being deployed on the ADPCM 
decoder side.

In this study, the signal-to-noise ratio (SNR) method was 
used to evaluate the GRU predictor model of speech cod-
ing quality. SNR [45, 46] was used as a measure to deter-
mine the quality of the predicted speech. In this measure, 
original PCM speech signal and the predicted speech sig-
nal predicted by the GRU with ADPCM system were com-
pared to identify any differences, which would indicate the 
presence of noise.

To determine SNR, consider a collection of real speech 
signal samples, x(t), and a predicted noise signal, x̂(t) . 
The difference between x(t) and x̂(t) is known as the 
error e(t), which encompasses both noise and distortion. 
The objective is to compute the ratio of the power of the 
signal to the power of the noise in order to estimate the 
quality of the signal.

We are now able to calculate the power level of the 
speech signals, measured in decibel(dB), referred to as 
Psignal.

To find the noise, we first calculate the power of the 
actual input speech signal, referred to as Pi , and the 
power of the predicted speech signal, referred to as Po . 

(7)ht = zt · ht−1 + (1− zt) · h
′
t

(8)SNR =
Psignal

Pnoise

(9)Ps = 10 log10(Psignal)

The difference between these two values is considered to 
be the noise level, represented by Pn.

2.5  Integrating and training GRU predictor model 
with ADPCM speech coding algorithm

The proposed method for using a GRU predictor model 
with an ADPCM system for speech signal coding process-
ing step by step summery is the following.

Step 1: Identified and imported all required libraries
Step 2: Load PCM actual speech sample and output of 

ADPCM fixed predictor speech sample

Step 3: Normalize the speech samples from range 
(-32,768 to 32,767) into (0 to 1)

Step 4: Define the input and output sequences for the 
GRU-based predictor model

Step 5: Training the model with the given inputs

Step 6: Define the GRU-based predictor model 
architecture 

(10)Pn = 10 log10(Pnoise)
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Step 7: Compile trained GRU with ADPCM model with 
optimizer as Adam and loss as MSE

Step 8: Save the trained GRU predictor model with the 
ADPCM encoder

Step 9: Preparing testing set

Step 10: One sample prediction per step head

Step 11: Evaluate the model using SNR

Step 12: Deployed/integrated trained GRU predictive 
model with ADPCM speech decoder

3  Results and discussion
In this section, we report the results of our experimen-
tal study on the embedded GRU predictive model-based 
ADPCM decoder system. The experiments were carried 

out using the Python 3.9.7 Anaconda platform on a Jupi-
ter notebook, TensorFlow version 2.9.1, and Keras 2.6.0 
on a Windows 10 Pro, 22H2 operating system. The com-
puter used had an Intel® CoreTM i5 6th generation pro-
cessor, with a speed of 2.30 GHz, 2.40 GHz, and 16 GB of 
RAM.

In this study, four different experimental settings 
were examined. The first used the baseline of the IMA 
ADPCM speech codec with a fixed predictor. The second 
configuration used of an online training RNN predictor 
with the IMA ADPCM speech codec. The third experi-
ment was online learning GRU predictor model with 
IMA-ADPCM speech codec. Lastly, the fourth configura-
tion employed trained GRU predictive model, embedded 
with the IMA ADPCM speech decoder.

To properly evaluate each predictor’s error (specifi-
cally experiments 1, 2, and 3 compare with GRU batch 
predictor model), we need to divide the test data set and 
demonstrate the evaluation in three steps. This is neces-
sary for the experiment 2 and 3 to have enough time to 
converge when measuring the mean square error and the 
SNR. The total sample length of the speech signal of the 
test set is 2,187,074 samples. Each predictor will be eval-
uated in four stages as the following setting:

• Experiment i, first stage: 1/3 of the first test set 
speech signal samples (0 to 729,000)

• Experiment i, second stage: 1/3 of the middle test set 
speech signal samples (729,001 to 1,458,050)

• Experiment i, third stage: 1/3 of the last test set 
speech signal samples (1,458,051 to 2,187,074)

• Experiment i, fourth stage: the whole test set speech 
signal samples (0 to 2,187,074)

where i = 1, 2, 3, and 4 experiments.

3.1  Experiment 1: ADPCM speech CODEC with fixed 
predictor

In experiment 1, we used a fixed predictor ADPCM 
codec. This codec utilizes adaptive quantization and a 
fixed prediction process. The encoding process involves 
converting a 16-bit PCM sample, x(t), into a 4-bit 
ADPCM sample, c(t). This compressed 4-bit ADPCM 
data can be used for transmission in low band and stored 
on the disk. The compressed data is then reconstructed 
into the original signal.

In the decoding process, the ADPCM decoder takes 
in the 4-bit code from the encoder output and generates 
a 16-bit predicted speech signal sample. To produce a 
new predicted difference value, the 4-bit ADPCM code 
input is inverse-quantized. The new value of the speech 
sample is calculated by adding this value to the previous 
predicted value of the speech sample. The new step size 
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index is obtained by adding the value of modifications to 
the present index. The final result is a new 16-bit sample 
that is reconstructed.

The quality of the reconstructed signal was evaluated 
against the original signal using the SNR, which was 
recorded in 31.5 dB throughout all evaluation stages.

3.2  Experiment 2: ADPCM with online learning RNN 
predictor

A simple recurrent neural network (RNN) model can be 
integrated with the ADPCM speech coding system to 
improve its predictive capabilities. The RNN model takes 
a short history of previous speech samples and predicts 
the next sample. This predicted sample is then used by 
the ADPCM encoder instead of the original predicted 
sample. The RNN model architecture consists of an 
input layer to receive the previous speech samples, a hid-
den recurrent layer to capture temporal context, and an 
output layer to predict the next sample. The network is 
trained on speech data to minimize the prediction error 
using backpropagation over time. The online RNN model 
is then integrated into the ADPCM system by feeding the 
RNN predicted sample into the quantizer and encoder 
instead of the prediction from the original ADPCM 

algorithm. The experiment shows the integrated online 
RNN-ADPCM system provides improved speech quality 
and lower distortion compared to the baseline ADPCM 
fixed predictor coder alone.

Figure 8 depicts the experimental result of an ADPCM 
codec based on an online RNN predictor model. In the 
first stage of experiment 2, a subset of speech signal sam-
ples from the initial test set (ranging from 0 to 729,000) 
was used to evaluate the performance of ADPCM with 
the RNN predictor. The resulting SNR was 36.4 dB. In the 
second and third phases of experiment 2, the test set of 
speech signal samples ranging from 729,001 to 1,458,050 
and 1,458,051 to 2,187,074 have been used to evaluate 
the RNN predictor model-based ADPCM codec. The 
obtained results were 40.3 dB and 42.5 dB respectively. 
In the fourth stage of experiment 2, all speech signal 
samples (from 0 to 2,187,074) were used to evaluate the 
model, resulting in SNR of 39.7 dB. Table 2 presents the 
results of experiments 1, 2, 3, and 4.

Figure 8a displays the actual, predicted, and error sig-
nals of the ADPCM codec with the online RNN predic-
tor model on the entire test set. Furthermore, Fig.  8b 
shows 100 randomly selected samples from the range of 
300,000 to 300,100, and Fig. 8c provides a zoomed-out 

Fig. 8 a The actual, predicted, and error signals of the IMA-ADPCM codec with the online RNN predictor model applied to the entire test set. 
b, c 100 randomly selected samples from specific ranges, offering insights into the performance of the model in capturing and predicting speech 
signals
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view of the predictive error for 100 randomly selected 
samples ranging from 1,300,000 to 1,300,100 to visual-
ize the difference of actual and predicted signal.

3.3  Experiment 3: online learning GRU predictor model 
with IMA‑ADPCM speech codec

Experiment 3 extends the approach of experiment 2 
that integrated GRU predictor model with the ADPCM 
speech coding system. The main difference between 
experiments 2 and 3 (RNN- and GRU-based ADPCM 
codec) lies in their internal architecture. RNN has a 
simple structure that passes information from one step 
to the next, but they struggle with capturing long-term 
dependencies due to vanishing or exploding gradient 
problems. GRU, on the other hand, incorporates gating 
mechanisms that enable better handling of long-range 
dependencies by selectively updating information. GRU 
has a more sophisticated design with reset and update 
gates, allowing them to effectively capture relevant 
information over longer sequences while mitigating 
some of the challenges associated with RNNs.

Both experiments adopt an online learning strategy, 
with the predictor model trained to minimize quanti-
zation errors. Results indicate improved speech qual-
ity and reduced distortion compared to the baseline 
ADPCM fixed predictor and online learning RNN pre-
dictor-based ADPCM codec.

The experimental results, depicted in Fig.  11 and 
summarized in Table  2, showcased the effectiveness 
of the online GRU predictor model across different 
phases of testing. In the initial stage, utilizing a subset 
of speech signal samples, the SNR was measured at 36.8 
dB. As the evaluation extended to larger portions of the 
test set in subsequent phases, SNR values of 40.5 dB 
and 42.6 dB were achieved. In the final stage, encom-
passing the entire test set, the model yielded an SNR of 
40.1 dB.

The integration of online learning models with ADPCM 
speech coding systems can be enhanced by examining the 
particular details in performance and predictive abilities, 
even if both experiments demonstrated enhancements in 
speech quality and reduction of distortion.

3.4  Experiment 4: GRU predictor model‑based ADPCM 
speech decoder

In this study, we integrated the GRU prediction model 
with the ADPCM codec to enhance the encoding qual-
ity. By utilizing the Adam optimization technique and a 
batch size of 32, GRU prediction model is trained using 
50 epochs, while incorporating various amounts of previ-
ous sample sizes.

In addition, we examined various numbers of previ-
ous speech sample sizes to predict the current sample. 
The correlation function of previous speech samples can 
be used to describe the dynamic GRU prediction model. 
According to the experimentation, the use of the number 
of previous speech sample sizes such as 3, 5, 7, 10, 12, and 
15 resulted in predicted SNR accuracy values ranging 
from 38.9 to 41.5 dB, as depicted in Fig. 9,when using a 
sample size of 10, outperforms the better performance of 
other in terms of prediction accuracy.

In the fourth experiment’s first stage of testing, the 
trained GRU predictive model-based IMA-ADPCM 
decoder was evaluated by a portion of the test set con-
sisting of 729,000 speech signal samples in range from 
0 to 729,000. We then could obtain a 44.6 dB result. In 
the second stage of experiment 3, we used to evaluate 
the model 1/3 of the entire middle range of the test set 
speech samples, ranging from 729,001 to 1,458,050. The 
GRU predictor model resulted in an SNR of 45 dB. The 
third stage of experiment 4 involved to evaluate the pro-
posed model using the last portion of 1/3 of the entire 
speech signal sample test set in between 1,458,051 and 
2,187,074. The result obtained from SNR was 44.7 dB. 
And lastly, in the fourth stage of this experiment, all 
speech signal samples (from 0 to 2,187,074) were used to 
evaluate the model, resulting in an SNR of 44.8 dB.

The experimental results of the GRU predictor model-
based ADPCM speech coding actual, predicted, and 
quantization error speech signals are shown in Fig. 10.

In order to visualize, the experimental plotted results 
of quantization error (difference) of actual and predicted 
signal are depicted in Fig.  10a–c. Figure  10b shows 100 
randomly selected samples from the range of 300,000th 
to 300,100th, and Fig. 10c provides a zoomed-out view of 
the predictive error for 100 randomly selected samples 
ranging from 1,300,000 to 1,300,100.

Furthermore, Figs.  8 and 10 illustrated the visual per-
formance differences between the online RNN predictive 
model-based ADPCM codec and the proposed GRU pre-
dictive model-based ADPCM decoder.

Table   2 illustrates the SNR coding for different sets 
of speech signal test set using ADPCM with a fixed 
predictor, ADPCM with an online RNN predictor, and 
ADPCM with GRU predictor model. Figure  11 com-
pares the results of the four experimental settings 

Table 2 The four experimental SNR results in various speech 
signal data test sets

Test‑set is divided into 4 stages EXP1 EXP2 EXP3 EXP4

1st stage samples (0 to 729,000) 31.6 36.4 36.8 44.6

2nd stage samples (729,001 to 1,458,050) 31 40.3 40.5 45

3rd stage samples (1,458,051 to 2,187,074) 32.2 42.5 42.6 44.7

The whole test set samples (0 to 2,187,074) 30.9 39.7 40.1 44.7
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Fig. 9 ADPCM with GRU predictor model SNR value of performance in different previous sample size

Fig. 10 GRU predictor model based on ADPCM coding of actual, predicted, and quantization error speech signals
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using a different stage of the test set: ADPCM with 
fixed predictor, ADPCM with online RNN train pre-
dictor, and ADPCM with the GRU predictor model. 
The test results are shown in four stages: the first stage 
test set (0 to 729,000 samples), the second stage test set 
(729,001 to 1,458,050), the third stage test set (1,458,051 
to 2,187,074), and the last stage whole test set (0 to 
2,187,074).

As shown in Fig.  11, the ADPCM-fixed predictor set-
ting has relatively stable test results at all stages, with val-
ues close to 31.5. In the ADPCM online RNN and GRU 
predictor setting, it has higher results in the second and 
third stages, which adaptable incremental enhancing, 
but in the last stage (average of all stages), a lower result 
which is used for the whole data set. The ADPCM-GRU 
predictor model setting has the highest test results, with 
values close to stable to 45 at all stages.

The proposed GRU predictor model for IMA-ADPCM 
decoding stands out as the high-quality among the exam-
ined predictors for several key reasons. Firstly, the pro-
posed model trained by leveraging the fixed predictor’s 
output and the actual speech sample data separately in 
encoder side by back propagation could optimize the 
Wight. This integration allows the GRU predictor to 
continuously refine its predictions based on the actual 
speech samples, resulting in enhanced decoding quality, 
as evident from the consistently higher SNR values across 
all test stages.

Additionally, the proposed GRU predictor model 
excels in terms of computational efficiency, as high-
lighted in experiment 4. Unlike the online RNN and GRU 

predictors in experiments 2 and 3, respectively, the pro-
posed model is trained during a separate training phase 
using a large dataset. Once trained, the model is saved 
and deployed on the decoder part, eliminating the need 
for continuous computations during encoding in real-
time applications. This unique approach significantly 
reduces the encoding computational cost, offering a bal-
anced solution that prioritizes predictive accuracy while 
mitigating processing speed concerns. In contrast, the 
online RNN and GRU predictors incur higher computa-
tional costs as they compute predictions for each sample 
during both encoding and decoding processes.

In summary, the proposed GRU predictor model 
emerges as the preferred choice due to its ability to 
enhance predictions through a hybrid learning approach 
and its efficiency in terms of encoding computational 
cost, addressing key challenges associated with real-time 
applications and showcasing superior performance in 
decoding quality.

4  Conclusions
We proposed a GRU predictor model-based IMA-
ADPCM speech decoder system for to enhance predic-
tion performance and computational encoding cost.

In this study, four experiments have been examined: 
the baseline or fixed predictor-based IMA-ADPCM 
speech codec, online learning RNN predictor-based 
IMA-ADPCM, online learning GRU predictor-based 
IMA-ADPCM, and GRU predictor model IMA-ADPCM 
decoder.

Fig. 11 Comparison of ADPCM predictor performance and experimental results
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The results of the experiment show that the GRU pre-
dictor model-based ADPCM decoder had the highest 
SNR, indicating that it was the most accurate in pre-
dicting the speech signals. The online RNN and GRU 
predictor also improved the predictive ability of IMA-
ADPCM coding over time eventually, but it was not 
performed the same as the proposed model.

This proposed integrated GRU predictor with IMA-
ADPCM decoder significantly improves the accuracy 
of speech predictions, making it a promising approach 
for speech coding applications. The proposed model 
also could remove the online learning-based predictors’ 
encoding computational cost.

Our contribution includes the development of an 
algorithm to train the GRU model using a data set of 
PCM speech samples and the ADPCM fixed predictor 
output. Due to this, the study improves the decoding 
performance and decreases the encoding computa-
tional cost.

Although the proposed GRU predictor model with 
ADPCM coding shows promising results in terms of 
speech quality and prediction accuracy, its computa-
tional cost and complexity need further study. Thus, 
future research should assess the model’s computa-
tional efficiency and complexity of the model and eval-
uate its performance with other speech coding metrics. 
Furthermore, it would be interesting to investigate the 
integration of the proposed model with other speech 
coding techniques such as parameter coding and vec-
tor quantization, to further improve its performance. 
Additionally, it would be beneficial to investigate the 
proposed model’s performance in different languages 
and under different noise conditions.

Appendix
Some sample Python codes
IMA ADPCM encoding (16‑bit PCM sample to 4‑bit ADPCM 
sample word length) Python sample code
IndexTable = [-1, -1, -1, -1, -1, 2, 4, 6, 8, -1, -1, -1, -1, 2, 
4, 6, 8]

StepSizeTable = [7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 
21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 
88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 
279, 307, 337, 371, 408, 449, 494, 544, 598, 658, 724, 
796, 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 
2066, 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 
4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493, 10442, 
11487, 12635, 13899, 15289, 16818, 18500, 20350, 
22385, 24623, 27086, 29794, 32767] 
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Decoding from ADPCM to PCM ( a 4‑bit ADPCM sample 
to 16‑bit PCM)

Load speech signal sample data to encoding and decoding

Normalize data between 0 and 1

The input data preparation for GRU predictive model 
training

Build GRU model architecture

Training the GRU predictive model
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Model validation

To save the trained model

Preparing and loading testing set

GRU model one step‑based prediction

Evalout the model using SNR
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