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Abstract 

Chinese traditional music, a vital expression of Chinese cultural heritage, possesses both a profound emotional reso-
nance and artistic allure. This study sets forth to refine and analyze the acoustical features essential for the aesthetic 
recognition of Chinese traditional music, utilizing a dataset spanning five aesthetic genres. Through recursive feature 
elimination, we distilled an initial set of 447 low-level physical features to a more manageable 44, establishing their 
feature-importance coefficients. This reduction allowed us to estimate the quantified influence of higher-level musi-
cal components on aesthetic recognition, following the establishment of a correlation between these components 
and their physical counterparts. We conducted a comprehensive examination of the impact of various musical ele-
ments on aesthetic genres. Our findings indicate that the selected 44-dimensional feature set could enhance aes-
thetic recognition. Among the high-level musical factors, timbre emerges as the most influential, followed by rhythm, 
pitch, and tonality. Timbre proved pivotal in distinguishing between the JiYang and BeiShang genres, while rhythm 
and tonality were key in differentiating LingDong from JiYang, as well as LingDong from BeiShang.
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1 Introduction
Why are listeners so captivated by music? A primary 
allure is its ability to convey emotions and provide aes-
thetic enjoyment. Aesthetics evoke a distinct emotional 
experience, predominantly associated with affective 
responses [1]. Music theory posits that emotional pat-
terns are crafted by musical elements such as tonality, 
rhythm, and timbre. The nexus between musical compo-
nents and emotions was first scrutinized by music psy-
chology, with Hevner pioneering this inquiry in 1936. 
He devised a musical emotion model and assessed the 

separate influences of rhythm, harmony, and melody [2]. 
Since then, Gabrielsson and Lindström have compiled 
related studies looking at the factors that affect musi-
cal expression of emotion, identifying pattern, rhythm, 
dynamics, articulation, timbre, and phase as pivotal and 
most frequently examined [3]. For instance, attributes 
like rhythm, mode, and pitch have been shown to dis-
tinguish emotions such as happiness and sadness effec-
tively. Baltes FR delved into music’s psychological effects 
on behavior and motivation [4], while Jonna K. Vuosko-
ski conducted empirical research on music’s influence on 
emotions and personality [5]. Tuomas Eerola explored 
how six musical elements-mode, rhythm, dynamic range, 
articulation, timbre, and pitch range-impact emotional 
perception [6]. The results revealed that mode was the 
most important musical factor, followed by rhythm, pitch 
range, dynamics, articulation, and timbre, and that these 
factors acted additively rather than interactively.
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With recent advancements in artificial intelligence 
and enhanced understanding of sound quality in human 
cognition, music emotion research increasingly focuses 
on the correlation between automatic music emotion 
recognition and objective acoustical features. George 
Tzanetakis conducted a comparative study in 2002 on 
the performance of three feature sets representing tim-
bre texture, melody content, and pitch content for music 
genre classification [7]. Yang Liu et  al.’s deeper explora-
tion into music-emotion connections highlighted BPM 
(beats per minute), spectral flux’s mean and standard 
deviation, and the first component of MFCC (Mel Fre-
quency Cepstrum Coefficient) as crucial for sentiment 
classification. The mean and standard deviation of spec-
tral flux, on the other hand, reflect the rate of pitch 
change and degree of consistency of the song [8]. Xinyu 
Yang et al. summarized data-driven music emotion rec-
ognition methods, mentioning that acoustic features 
commonly used in music emotion recognition include 
the first 10 dimensions of the MFCC coefficient, the 14 
dimensions of spectrum contrast based on octave, and 
4 dimensions of spectral statistical descriptors (Spectral 
Centroid, Flux, Rolloff, and Flatness), and a 12-dimen-
sions Chromogram [9]. Jun Su et  al. extracted 15 basic 
audio features across timbre, rhythm, pitch for modeling 
the intrinsic relationship between emotion and music 
using 8 machine learning methods [10].

Musical aesthetics, a complex emotion, has received 
less attention than musical emotion detection in pre-
vious studies. Aesthetic experience, as a unique form 
of aesthetic emotion, relies on higher cognitive func-
tions beyond perception. A five-dimensional process-
ing model that Leder et  al. created to explain aesthetic 
enjoyment and evaluation explains the varied aesthetic 
experiences of modern art [11]. Subsequently, Juslin 
et  al. sought to model music aesthetic judgment using 
subjective criteria, concluding that listeners have dis-
tinct ways of interpreting and experiencing music, and 
that these distinct ways with aesthetic value can be effec-
tively modeled using concrete methods [12]. Schindler 
et  al., drawing on aesthetic emotion theory, reviewed 
existing measurement methods across various domains 
like music, literature, film, painting, advertising, design, 
and architecture, proposing a new framework for study-
ing aesthetic emotion [13].

The aforementioned studies predominantly focus on 
Western music. However, the emotional and aesthetic 
perception of music will differ depending on one’s cul-
tural background. Traditional Chinese culture has its own 
distinct aesthetic characteristics. Similarly, Chinese tra-
ditional musical instruments and national music exhibit 
distinct emotional and aesthetic cognition through their 
distinctive timbre. Some scholars have conducted related 

research in this regard. Through experiments, Liu Tao 
created an emotional loop that corresponded to the emo-
tional cognitive habits of Chinese people towards music 
[14]. Gao and Xie proposed a classification and quantifi-
cation method for the aesthetic attributes of Chinese tra-
ditional music and painting after conducting experiments 
to confirm the limitations of the current aesthetic catego-
ries on the aesthetic classification of Chinese traditional 
arts [15], and established a database for aesthetic classi-
fication of Chinese traditional music [16]. Jiang Shengyi 
et  al. built a tree-shaped hierarchical structure Chinese 
sentiment dictionary in the music field based on the 
improved Hevner model, and they realized lyrics emo-
tion classification using a sentiment vector space model 
and a sentiment dictionary [17]. Wu Wen et  al. investi-
gated the similarities and differences of classical music 
in emotion classification and discovered that emotion 
classification feature sets applicable to western classical 
music could not achieve the same good effect on data 
from Chinese traditional music [18, 19]. Yi-hsuan Yang 
et al. conducted a cross-cultural comparison of the emo-
tional expression of Chinese and Western pop songs [20], 
and established a Chinese pop music emotional database 
containing 818 songs [21].

Current research on the aesthetics of Chinese tradi-
tional music predominantly resides within the realm 
of humanities-based artistic aesthetics, with minimal 
exploration in science and engineering fields. Notably, 
studies focusing on the automatic recognition of beauty 
in Chinese traditional music are especially scarce. Ma 
Xinyu et  al. conducted preliminary automatic classifi-
cation based on five categories from the Chinese tradi-
tional music database in 2018 [16, 22]. The aesthetics of 
national music play a crucial role in Chinese traditional 
aesthetics, and the intelligent objective analysis is benefi-
cial in providing valuable insights and inspiration for the 
scientific study of the aesthetics of Chinese traditional 
music. Different musical aspects, such as timbre, mode, 
and rhythm, should contribute uniquely to aesthetic per-
ception, especially when seen from a more in-depth per-
spective. The cognitive patterns of music aesthetics can 
be enhanced if the association between musical elements 
and aesthetic classification can be objectively and statisti-
cally stated.

In this study, the feature optimization of the automatic 
classification and the correlation analysis between music 
aesthetics and musical aspects are conducted using a 
database of Chinese traditional music with five catego-
ries of aesthetic assessments generated in [16]. Figure 1 
illustrates the overall workflow. The paper begins with an 
introduction to the Chinese music aesthetic database and 
the music feature set, which consists of 447-dimensional 
low-level physical features. The 44-dimensional features 
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suitable for aesthetic classification of Chinese traditional 
music are then generated using two feature selection 
methods: filtering and wrapping. Based on the feature 
importance coefficient, the association between aesthetic 
categorization and musical elements is further investi-
gated. This paper’s database and research findings can aid 
in the study and implementation of intelligent informa-
tion retrieval of Chinese traditional music and the inte-
gration of audio-visual scenarios based on aesthetics.

2  Chinese traditional music aesthetic database
The music data we used came from albums performed 
by well-known artists as well as instrumental music 
compilation CDs. Stringed, plucked, blowpipe, and 
percussion were the four types of musical instruments, 
and each music was primarily performed by one instru-
ment (or solo). A total of 441 classic clips with 17 dif-
ferent instruments were collected. One or 2 segments 
of about 20–30 s were intercepted from each piece of 

music to reduce the burden on the labeling staff and to 
prevent emotional abrupt changes in the entire music 
[23]. Finally, a Chinese traditional music dataset with 
500 clips was gathered, as shown in Table  1, and all 
clips were in wav format with a bit rate of 1411 kbps.

The division and definition of aesthetic categories 
should be determined first in the evaluation of aesthet-
ics. We gathered 350 words suitable for evaluating aes-
thetics by reviewing aesthetics-related literature. Then, 
using a questionnaire survey and word frequency sta-
tistics, 40 words were chosen to evaluate the aesthetics 
of Chinese traditional music. On this basis, we devel-
oped five aesthetic categories through a combination of 
subjective evaluation and factor analysis. To annotate 
the dataset, a total of 20 people were recruited. The 
subjects determined which of the five aesthetic catego-
ries the pieces should fall into. Table 2 displays the cat-
egories of Chinese traditional music aesthetic attributes 
and data distribution [16].

Fig. 1 The overall workflow of this paper
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3  Chinese traditional music feature set
By analyzing and processing the extracted features of 
music signals, high-level semantic information about 
music, such as emotion and aesthetic, can be obtained. 
As a result, the primary task of realizing music intelligent 
information processing is to obtain relevant features. For 
the time being, the extractable music signal features con-
sist primarily of low-level physical features and high-level 
music element features. Low-level physical features are 
based on sound’s time-frequency properties, and include 
time-domain features, frequency-domain features, and 
time-frequency domain features; high-level music ele-
ment features are abstract semantic features that can 
describe the inherent elements of music [24], such as 
energy, pitch, timbre, rhythm, and mode. These high-
level characteristics are typically represented by a num-
ber of low-level features. Marsyas [25], OpenSMILE [26], 
and MirToolbox [27] are popular tools for extracting fea-
tures from music or audio signals. These three tools were 
used in this paper to extract low-level physical features 

and map them to the corresponding high-level musical 
elements.

3.1  Energy features
The objective amplitude of the sound and the auditory 
subjective psychological perception are related to sound 
energy. So, both objective and subjective viewpoints are 
used to extract the information linked to energy. Loud-
ness reflects the perceived sound level from a subjec-
tive perspective, while RMS (root mean square), sound 
intensity, and LER (low energy rate) reflect the objective 
variations of signal amplitude and energy in time domain. 
MirToolbox was used to extract the LER, while OpenS-
MILE was used to extract the RMS, intensity, and loud-
ness. In order to quantify the statistical characteristics, 
the mean, standard deviation, and variance of these four 
variables were calculated, yielding a total of 12-dimen-
sion features.

3.2  Pitch features
The fundamental frequency in music is represented by 
pitch, and the melody is mostly represented by how the 
fundamental frequency changes over time. The funda-
mental frequency (F0) and the smoothed fundamental 
frequency (F0env) were both retrieved by OpenSMILE 
and used in this study as characteristics reflecting pitch. 
There are a total of 6 dimensions characteristics because 
each feature needs to calculate its mean, standard devia-
tion, and variance.

3.3  Timbre features
The frequency spectrum of sound, which is the propor-
tion of fundamental frequency and overtones in musical 
signals, is the primary determinant of timbre. Timbre 
features have been frequently employed in music genre 
and emotion categorization [28], and timbre-based fea-
ture parameters have a significant impact on music aes-
thetic classification. As a reflection of timbre acoustic 
features, this paper extracted MFCC (Mel-frequency 
coefficients), SFM (spectral flatness measure), SCF (spec-
tral crest factor), LPC (linear prediction coefficients), LSP 
(linear spectral pairs), spectral slope, spectral entropy, 

Table 1 Musical instrument distribution of Chinese traditional 
music aesthetic database

Instrument Clips Total

Wind instrument Flute 47 113

Vertical flute 22

Xun 12

Sheng 10

Gourd pipe 12

Suona 10

String instrument Erhu 90 144

Jinghu 12

Banhu 8

Matouqin 34

Plucked instrument Guqin 26 190

Zither 67

Konghou 12

Pipa 47

Percussion instrument Drum 47 53

Chime bell 6

Table 2 Categories of Chinese traditional music aesthetic attributes and data distribution

Category Description Number 
of 
samples

LingDong Lively, flexible and full of change. 155

JiYang Exciting, inspiring and strong passion. 117

QingRou Easy to ease, calm and gentle. 122

ShenChen Deep, steady and not exposed. Strong and powerful, not slim. 47

BeiShang Sad, grieved, sorrowful, mournful, and distressed. 59
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spectral harmonicity, MCR (mean-crossing rate), ZCR 
(zero-crossing rate), alphaRatio (the ratio of 1–5 kHz 
energy to energy less than 1 kHz), spectral centroid, spec-
tral spread, spectral flux, spectral rolloff, and sharpness, a 
total of 16 features.

Marsyas was able to extract the MFCC, SFM, and SCF 
from this group. In particular, SFM and SCF had both 
24 dimensions, but MFCC had 13 dimensions. Marsyas 
devised a segmented computation method in which each 
segment calculates the mean and standard deviation 
of the related features using 20 frames of data as input. 
A music data sample contained a mean time series and 
a standard deviation time series. The mean and stand-
ard deviation of these two series were then computed. 
Finally, a total of (13 + 24 + 24) * 4 = 244 dimensional fea-
tures were created by combining the four statistical char-
acteristics of the mean of the mean, the variance of the 
mean, the mean of the variance, and the variance of the 
variance.

The remaining 13 features were extracted by OpenS-
MILE, of which LPC and LSP each had 10 dimensions, 
and the three statistical features of mean, standard devia-
tion and variance were calculated, a total of (10 + 10 + 11) 
* 3 = 93 dimensional features. Thus, the timbre class has 
337 dimensional features in total.

3.4  Rhythm features
The speed and movement of a piece of music are 
described by rhythm, which is an important musical 
element. Rhythm is comprised of two concepts: tempo 
and speed. The former relates to the regular alternating 
movement of strong and weak beats in music, which is 
the beat combination; the later refers to the rate at which 
these beats occur. MirToolbox was used to extract the 
rhythm features in this work, which included fluctuation, 
beatspectrum, events, event density, tempo, and pulse-
clarity. The mean, standard deviation, and variance of 
each feature had to be calculated, resulting in a total of 18 
dimensional features in the rhythm.

3.5  Mode features
A mode is an arrangement of many musical notes with 
one note serving as the tonic, structured according to a 
specific interval relationship and varied pitches. It serves 
as the foundation for the melody and reflects the rela-
tionship between the various tones in a piece of music. 
Chroma (14 dimensions), a histogram of pitch level 
energy distribution, and KeyStrength, which indicates 
the significance of tone, were extracted in this study to 
reflect mode. MIRToolbox was used to extract Key-
Strength characteristics, and the mean, standard devia-
tion, and variance were calculated as three statistical 
features. Marsyas extracted chroma characteristics, and 

four statistical features were computed. Additionally, in 
accordance with [29], we used OpenSMILE to extract 
energy features from 5 sub-bands based on octaves. 
Table  3 displays the frequency band distribution. This 
feature, which is categorized as a mode feature, dis-
plays the energy distribution of musical signals over 
various scale ranges. As a result, there were a total of 
3 + 14 * 4 + 5 * 3 = 74 features in the mode features.

Overall, 447-dimensional features have been separated 
into 5 categories, all of which are given in Table 4.

4  Feature selection
To increase the recognition rate in a variety of music 
information retrieval applications, the feature informa-
tion was always extracted as much as possible. As a result, 
the feature dimension expanded and gave rise to numer-
ous unnecessary and redundant features, which nega-
tively impacted the back-end classifier’s performance. We 
preprocessed the data first, used two methods of filter-
ing and wrapping to screen the 447-dimensional features 
in Table 4, and then compared and decided on the most 
appropriate feature selection method in order to extract 
the signal features that can best reflect the essence of 
music aesthetic classification.

4.1  Classifier selection
An appropriate classifier is a prerequisite for the aesthetic 
classification of traditional Chinese music. In this study, 
we selected five commonly used traditional machine 
learning classification models. We extracted 447 fea-
tures from a database of 500 pieces of traditional Chinese 
music, as shown in Table  4, to perform a comparative 
analysis of the classification results. The five classification 
models are logistic regression (LR), K-nearest neighbor 
(KNN), linear support vector machine (SVM), random 
forest (RF), and extremely randomized trees (ERT). For 
the sake of simplicity and reproducibility in our initial 
experiments, we employed the default parameters pro-
vided by the scikit-learn library(version 1.2.2) for all the 
models. For example, the default cost of linear SVM is 
1.0. Ultimately, the classification accuracy and F1-score 
metrics were used to compare the classification perfor-
mance of different classifiers. The best classifier suitable 

Table 3 Sub-band frequency division based on octave

Subband Freq (Hz) Octave scale

1 0–200  -F3

2 200–400 G3-F#4

3 400–800 G4-F#5

4 800–1600 G5-F#6

5 1600–3200 G6-F#7
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for the aesthetic recognition of traditional Chinese music 
in this paper was identified based on these evalua-
tions. The results, presented in Table 5, indicate that the 
extremely randomized trees outperformed other classifi-
ers in both classification accuracy and F1-score. Hence, 
this classifier will be used for subsequent research.

4.2  Data preprocessing
Because the 447-dimensional initial feature set acquired 
above was extracted using several tools and each feature’s 
physical meaning varied, there were significant dynamic 
range or dimension discrepancies between the feature 
values, which might significantly impair machine learn-
ing performance. The category discrimination of the fea-
ture dimension can be expanded and the classification 
accuracy increased by appropriately preprocessing these 
data. Upper and lower limit range compression, nor-
malization, maximum normalization, etc. are frequently 
used data preparation techniques. The initial feature set 
obtained in the  Section  3 was preprocessed using tech-
niques from the Python-based Scikit-Learn toolkit [30], 
and extremely randomized trees were used as the clas-
sifier. The corresponding aesthetic recognition rate was 
calculated using a 5-fold cross-validation, and the results 
are displayed in Table 6.

It can be seen that after data preprocessing, the aes-
thetic recognition rate improved, with quantile transfor-
mation being the most improved preprocessing method. 
The quantile transformation is a nonlinear transforma-
tion that maps data to a uniform or normal distribu-
tion within the range of 0–1 based on the quantile range 
obtained from statistics, in this case the normal distri-
bution map. In combination with the recognition rate 
results in Table  6, quantile transformation (normal dis-
tribution mapping) was used as the data preprocessing 
method in this paper’s subsequent works.

4.3  Feature selection
Wrapping, filtering, and embedding are three common 
feature selection methods [31]. The feature selection eval-
uation criterion for the wrapping method is the classifier’s 
performance, the filtering method has nothing to do with 
the subsequent classifiers, and the embedding method 
combines feature selection and classifier training. Because 
it is difficult to obtain quantifiable feature importance 
using the embedding method, this paper used the wrap-
ping and filtering method for feature selection.

Table 4 Feature set of the Chinese traditional music

Category Feature name Dimensions Extraction tool

Energy Low energy frame ratio 3 Mir toolbox

RMS energy, intensity, loudness 6 OpenSMILE

Pitch Fundamental frequency, fundamental frequency 6 OpenSMILE

By smoothing

Timbre MFCC, spectral flatness measure, spectral crest factor 244 Marsyas

Linear prediction coefficient, line-spectral pair, spectral slope, spectral 
entropy, zero-crossing rate, spectral centroid, spectral flux, spectral roll-
off, sharpness, spectral harmony, spectral spread, mid-low frequency 
energy ratio

93 OpenSMILE

Rhythm Fluctuation, beatspectrum, events, eventdensity, tempo, pulseclarity 18 MirToolbox

Mode Key strength 3 Mirtoolbox

Chroma 56 Marsyas

Octave-based subband energy 15 OpenSMILE

Total 447

Table 5 Evaluation results of different classifiers

Classifier Accuracy F1-score

LR 65.6% 0.624

KNN 62.5% 0.572

SVM 65.0% 0.613

RF 63.8% 0.594

ERT 67.6% 0.655

Table 6 Aesthetic recognition rate with different preprocessing 
methods

Data preprocessing Aesthetic 
recognition 
rate

Unprocessed raw data 67.6%

Normalization 69.2%

Upper and lower limit range transformation (0,1) 69.0%

Normalize by maximum value 69.1%

Quantile transformation (normal distribution mapping) 70.4%

Standardization 69.1%
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4.3.1  Wrapping feature selection
Feature search is used in the wrapping approach. The 
fundamental concept is to continuously choose sub-
sets from the initial feature set and assess each subset 
based on how well the same classifier and validation 
technique perform until the best subset is chosen. This 
study adopted the RFE (recursive feature elimination) 
method, which uses a classification model with a fea-
ture importance evaluation function to train the clas-
sifier’s initial feature set and determine the importance 
coefficient of features using correlation or contribution 
values as attributes [32]. Every time, one or more of the 
least significant features were deleted. This process was 
then repeated recursively on the feature set until the 
most advantageous features could provide a better rec-
ognition rate.

The fundamental classifier was the extremely random 
tree. Figure  2 depicts the screening procedure, and the 
447-dimensional original feature set yielded 44 features 
that may be used to categorize the aesthetics of Chinese 
traditional music. The number of characteristics is plot-
ted along the horizontal axis, while the cross-validation 
classification accuracy is plotted along the vertical axis. 
The top position was attained at 44 features, and the 
greatest recognition rate was 72% . The remaining 403 ele-
ments may be viewed as redundant or unimportant fea-
tures for aesthetic classification after that point, as the 
recognition rate then marginally declined and remained 
consistent. Table 7 displays the 44 features.

4.3.2  Filtering feature selection
The filtering method computes the attributes of the feature 
and the relationship between each feature, measures the 
feature’s redundancy, and filters out the useless features. 
The method includes the evaluation of correlation attrib-
utes, information entropy, and distance. This paper com-
pared three different measurement methods and chose the 

one with the highest recognition rate for feature induction 
and analysis. The three measurement criteria are described 
below.

Correlation evaluation: This method is mainly selected 
by comparing the correlation between a single feature and 
a category, using the Pearson correlation coefficient (Pear-
son r), and the formula is shown in Eq. (1). The higher the 
value, and the better the feature is for classification.

Gain ratio evaluation: To determine whether a feature 
has a good classification effect, this method computes the 
change in information entropy of the category before and 
after the feature is selected, and then computes the ratio 
of the change value to the information entropy of the fea-
ture itself. The greater the gain ratio, the more obvious the 
feature to improve classification effect. The information 
entropy H is given by formula (2), where m is the number 
of categories C in the sample set, and pi is the probability 
that the data belongs to the ith category.

The calculation of the information gain ratio is shown 
in formula (3).

H (Class) denotes the class’s information entropy, H 
(Attribute) denotes the feature attribute’s internal infor-
mation entropy, and H (Class | Attribute) denotes the 
class’s conditional information entropy under the known 
features.

(1)rXY =

N

i=1

(Xi − X)(Yi − Y )

N

i=1

Xi − X
2

N

i=1

Yi − Y
2

(2)H = −

m
∑

i=1

pilog2pi

(3)
GainR(Class,Attribute) = (H(Class)−H(Class|Attribute))/H(Attribute)

Fig. 2 Feature screening using RFE
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Relief evaluation: It primarily computes the weight of 
each feature using the ReliefF algorithm [33]. It randomly 
selects a sample R from the training sample set each time, 
then uses the Euclidean distance to calculate the k-near-
est neighbor samples of R from the same sample set, then 
searches for k nearest neighbor samples from the differ-
ent R sample sets, and finally calculates the weight value 
of each feature, as shown in formula (4):

In the formula, m refers to the sampling times, k is 
the number of nearest neighbor samples, Mj(C) denotes 
the j-th nearest neighbor sample in the class C /∈class(R), 
and diff (A, R1, R2) denotes the difference between sam-
ples R1 and R2 on feature A. This value is significant 
because it subtracts the difference between the corre-
sponding features of the same category and plus the dif-
ference between the corresponding features of different 
categories. The greater the value of W(A), the better the 
feature’s classification ability. Finally, the appropriate fea-
tures are sorted and filtered based on the weight value, 
yielding an evidence-based feature importance ranking.

The number of features selected by filtered feature 
selection was 44, the same as wrapped feature selection, 
to facilitate comparison and analysis. The basic classifier 
was random forest, and the results were evaluated using 
a five-fold cross-validation. Finally, Table  8 displays the 
aesthetic recognition results of Chinese traditional music 

(4)
W (A) = W (A)−

k
∑

j=1

diff (A,R,Hj)/(mk)

+
∑

C /∈class(R)

[

p(C)
1−p(class(R))

k
∑

j=1

diff (A,R,Mj(C))

]

/(mk)

using the three feature selection methods described 
above.

Table 8 shows that after removing redundant features, 
the aesthetic recognition rate of the three feature selec-
tion methods improved to some extent when compared 
to the full features, with ReliefF having the best effect.

4.3.3  Comparison of feature selection methods
The wrapping method based on RFE achieved a 72% aes-
thetic recognition rate, while the filtering method based 
on the ReliefF algorithm achieved a 70.2% recognition 
rate. As a result, in the following aesthetic classifica-
tion and feature analysis, this paper used the wrapping 
method based on RFE for feature selection. ...

5  Aesthetic classification and characteristic 
analysis of Chinese traditional music

Wrapped feature selection was used to reduce the 
447-dimensional initial features to 44-dimensional fea-
tures. In this section, we quantified the importance of 
each physical feature tested by the classifier, and based 
on this, as well as the correspondence between musical 
elements and physical features in Table 4, we further ana-
lyzed the more abstract musical elements (such as tim-
bre, mode, rhythm, and so on) to assess their importance 
to aesthetic classification.

5.1  Importance coefficient of physical features
Despite the fact that the wrapping feature selection 
method does not provide the value of the correspond-
ing feature importance, some classifiers can calculate the 

Table 7 Filtered list of features

Feature category Dimension Specific dimensions

SFM 16 SFM4_std_mean, SFM5_std_mean, SFM6_std_
mean, SFM6_mean_mean, SFM7_std_mean, SFM8_
std_mean, SFM8_mean_mean, SFM9_std_mean, 
SFM9_mean_mean, SFM10_std_mean, SFM10_std_mean, 
SFM11_std_mean, SFM11_mean_mean, SFM12_std_
mean, SFM13_std_mean, SFM14_std_mean

MFCC 8 MFCC0_std_mean, MFCC1_std_mean, MFCC1_std_
std, MFCC1_mean_mean, MFCC9_std_mean, MFCC10_
std_mean, MFCC11_std_mean, MFCC12_std_mean

SCF 10 SCF4_std_std, SCF4_std_mean, SCF5_std_mean, SCF5_
std_std, SCF6_std_mean, SCF7_std_mean, SCF9_std_
mean, SCF10_std_mean, SCF11_std_mean, SCF12_std_
mean

Events 3 Events_mean, Events_std, Eventdensity_mean

F0 1 F0_mean

Fluctuation 2 Fluctuation , Fluctuation_std

Chrome 1 PeakRatio_Average_Chroma_A

LSP 2 lspFreq [3] _stddev , lspFreq [4] _stddev

PuleseClarity 1 Pulseclarity_mean
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importance coefficient of the feature used in the classifi-
cation. We used the extremely random tree classifier with 
the filtered 44-dimensional features to classify Chinese 
traditional music aesthetics, and we used 5-fold cross-
validation to determine the importance coefficient of 
each feature. The importance coefficients of each feature 
category were then calculated using the category rela-
tionship in Table 7 and the coefficient values of the same 
category of features, as shown in Table 9.

5.2  Analysis of the importance of musical elements
Although the significance of specific time-frequency 
physical features is clear, its true implications are not 
always clear. Musical components like timbre and rhythm 
are especially better for categorizing musical aesthetics 
since they can be interpreted more generally. The rela-
tionship between musical components and the aesthetic 
categorization of Chinese traditional music will be fur-
ther explored in this section.

The quantification findings of the significance of musical 
elements to the aesthetic categorization can be derived by 
adding the important coefficients of the characteristics of 
comparable musical elements in Table 9 as shown in Fig. 3. 
The findings demonstrated that timbre, which accounts 
for 78.2% of the classification’s aesthetics of Chinese tra-
ditional music, was followed by rhythmic elements, which 
account for 16.3% ; pitch and mode aspects, which account 
for 3.2% and 2.3% , had relatively less influence.

The aforementioned analysis was conducted from the 
standpoint of the significance of the overall contrast 
between the five types of aesthetics; nevertheless, it does 
not adequately convey the significance of musical aspects 

to a particular aesthetic category. In order to determine 
the significance of each musical element to each aesthetic 
category, we used the following methodology: we first 
automatically classified aesthetics by removing the fea-
tures of a particular class of musical elements, then we 
compared and observed the changes in the confusion 
matrix, analyzing the classification results to how which 
aesthetics were influenced by each musical element.

Figure  4 depicts the initial confusion matrix that was 
created following classification using the 44-dimensional 
filtered features, where letters “a” stand for the Ling-
Dong category, “b” for JiYang, “c” for QingRou, “d” for 
ShenChen, and “e” for BeiShang. The original category is 
represented by the first column on the left of the matrix, 
and the classified category is represented by the first 
row from the top. The figures in the following confusion 
matrices employ the same representation. In the instance 
of complete 44-dimensional features, QingRou was the 
type of aesthetics that was most likely to be mistaken 
for one of the other four types, whether it was mistaken 
for another category or another category was mistaken 
for it. Additionally, there was some misunderstanding 
regarding JiYang and LingDong. In contrast to QingRou, 
ShenChen and BeiShang were less perplexed by other 
categories.

When the timbre features were removed, it was clear 
from the confusion matrix in Fig.  5 and the classifica-
tion accuracy rate in Fig.  6 that the aesthetic recogni-
tion rate had dropped from 72% to 44.2% , a drop of 
nearly half, indicating that the timbre features played an 
important role in the overall classification. More specifi-
cally, from the standpoint of various aesthetic categories, 
JiYang and BeiShang’s recognition rates were the most 
obvious, showing a sharp decline, almost to 17.10% and 
6.80% , respectively, and the degree of confusion between 
the two categories increased significantly, with the num-
ber of confusions increasing from 3 to 98. LingDong’s 
recognition rate decreased but not significantly, while 
ShenChen’s recognition rate decreased to some extent. 
The recognition rate of QingRou has decreased slightly, 
while the number of misidentifications as JiYang and 
ShenChen has increased significantly. It was clear that the 
absence of timbre features had less of an impact on the 

Table 8 Aesthetic recognition rates of different filtering feature 
selection methods

Feature selection Aesthetic 
recognition 
rate

Correlation attribute evaluation 67.4%

Gain ratio attribute evaluation 68.2%

Relief attribute evaluation 70.2%

Full features (unscreened) 66.6%

Table 9 Importance coefficients of features in aesthetic classification

Feature Importance coefficient Musical elements Feature Importance coefficient Musical elements

SFM 0.365 Timbre Chroma 0.023 Mode

MFCC 0.173 Timbre LSP 0.042 Timbre

SCF 0.202 Timbre Fluctuation 0.047 Rhythm

Events 0.098 Rhythm Pulseclarity 0.018 Rhythm

F0 0.032 Pitch
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LingDong aestetic category; it had a significant impact on 
the identification and mutual distinction between JiYang 
and BeiShang, and a greater impact on QingRou’s misi-
dentification as ShenChen and JiYang.

Figures  7 and 8 show the results of confusion matri-
ces after removing the features of rhythm and mode. 
The aesthetic recognition rate after removing rhythm 
features dropped dramatically to 61.6% , while the 

recognition rate after removing mode features remained 
at 67.8% . In comparison to the initial matrix in Fig.  4, 
rhythm and mode had little effect on ShenChen and 
BeiShang recognition, but the recognition rates of the 
other three categories all decreased to some extent, and 
the decline was even greater after the rhythm feature 
was removed. After removing the rhythmic feature, the 
number of confusions between the LingDong and the 
JiYang increased significantly, from 28 to 54, while the 
influence of the mode features only increased to 38. The 
number of misunderstandings between BeiShang and 
LingDong increased significantly, from 2 to 11 (rhythm) 
and 9 (mode), respectively. The analysis above shows 
that the impact of rhythm and mode had similar effects 
on the recognition of aesthetic categories: they had a 
certain impact on the identification and differentiation 
of LingDong and JiYang aesthetics, and they also con-
tributed to distinguishing LingDong and BeiShang aes-
thetics. However, the influence of rhythmic features was 
greater than that of mode.

Figure  9 shows the confusion matrix obtained by 
removing the pitch features; the aesthetic recognition 
rate was reduced to 69.2% , which is not significantly 
lower. Individual recognition rates of various aesthetics 
decreased slightly, but there was no significant change in 
the degree of confusion with each other. It showed that 
the contribution of pitch features to aesthetic classifica-
tion was relatively balanced, with a minor impact.

The influence of each musical element on each aes-
thetic category could be obtained based on the results 
of the confusion matrix analysis, which could be sum-
marized as follows: (1) Timbre had a great influence 
on the aesthetic recognition rate, and it was also an 
important factor in the recognition and differentiation 

Fig. 3 The importance of musical elements to the classification 
of Chinese traditional music aesthetics

Fig. 4 Initial confusion matrix with 44 filtered features

Fig. 5 Confusion matrix without timbre features
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of LingDong and JiYang, and it also affected the dis-
tinction between LingDong and BeiShang; (2) Rhythm 
had a great influence on the aesthetic recognition rate, 
and it was an important factor in the recognition and 
differentiation of LingDong and JiYang, and it also 
affected the distinction between LingDong and BeiS-
hang; (3) Mode had a similar influence on aesthetic 
recognition rate and aesthetic categories as rhythm, 
but its influence degree was relatively light; (4) Pitch 
had only a minor influence on each aesthetic catego-
ry’s recognition rate and did not contribute to their 
mutual differentiation.

6  Conclusions
Based on an annotated database of Chinese traditional 
music with five aesthetic categories, this paper extracted 
447 dimensions of music features from five musical ele-
ments, including energy, pitch, timbre, rhythm, and 
mode, and conducted the following research:

(1) The 447-dimensional features were screened using 
two feature selection methods: wrapping and filter-
ing, yielding 44-dimensional features with a significant 
impact on aesthetic classification, increasing the accu-
racy of aesthetic recognition from 66.6% to 72.0%.

Fig. 6 Recognition rate of classification without each music element features

Fig. 7 Confusion matrix without rhythm features Fig. 8 Confusion matrix without mode features
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(2) The extreme random tree classifier was used to clas-
sify the filtered 44-dimensional physical features for aes-
thetic classification of Chinese traditional music, and the 
importance coefficients of each feature were calculated. 
The results revealed that SFM, SCF, MFCC, and Events 
were the most important first four types of features, with 
importance proportions of 36.5% , 20.2% , 17.3% , and 9.8% , 
respectively.

(3) The importance of musical elements for aesthetic 
classification was quantified when combined with the 
mapping relationship between physical features and 
musical elements. The findings revealed that timbre, 
rhythm, pitch, and mode are the four key musical ele-
ments that influence the recognition rate of Chinese tra-
ditional music’s aesthetic classification, accounting for 
78.2% , 16.3% , 3.2% , and 2.3% , respectively.

(4) The influence of each musical element on aes-
thetic classification was thoroughly investigated by 
removing relevant features and combining them with 
a confusion matrix. The findings revealed that the rec-
ognition and mutual distinction between the aesthet-
ics of JiYang and BeiShang were primarily determined 
by timbre; in the absence of timbre features, QingRou 
would significantly increase the number of misidenti-
fied as JiYang and ShenChen; the recognition and dis-
tinction between LingDong and JiYang were primarily 
determined by rhythm, and secondarily by mode; the 
distinction between LingDong and BeiShang was pri-
marily affected by rhythm and mode; the pitch had an 
effect on the overall recognition rate of aesthetics, but 
had less effect on the mutual distinction of different 
aesthetics.

This paper provided a useful reference for further 
information retrieval of Chinese traditional music and 
related music intelligent processing by conducting a 
comprehensive and in-depth analysis and research on the 
importance of low-level physical features and high-level 
musical elements to the classification of Chinese tradi-
tional music aesthetics. Of course, research into Chinese 
traditional music aesthetics is ongoing. Because of the 
ambiguity and polysemy of aesthetics, multi-label rec-
ognition of music aesthetics has a higher practical value, 
and this will be the next research direction. Furthermore, 
the database must be expanded in order to address the 
issue of category imbalance.
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