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Abstract 

Claimed identities of speakers can be verified by means of automatic speaker verification (ASV) systems, also known 
as voice biometric systems. Focusing on security and robustness against spoofing attacks on ASV systems, 
and observing that the investigation of attacker’s perspectives is capable of leading the way to prevent known 
and unknown threats to ASV systems, several countermeasures (CMs) have been proposed during ASVspoof 2015, 
2017, 2019, and 2021 challenge campaigns that were organized during INTERSPEECH conferences. Furthermore, 
there is a recent initiative to organize the ASVSpoof 5 challenge with the objective of collecting the massive spoof-
ing/deepfake attack data (i.e., phase 1), and the design of a spoofing-aware ASV system using a single classifier 
for both ASV and CM, to design integrated CM-ASV solutions (phase 2). To that effect, this paper presents a survey 
on a diversity of possible strategies and vulnerabilities explored to successfully attack an ASV system, such as target 
selection, unavailability of global countermeasures to reduce the attacker’s chance to explore the weaknesses, state-
of-the-art adversarial attacks based on machine learning, and deepfake generation. This paper also covers the possibil-
ity of attacks, such as hardware attacks on ASV systems. Finally, we also discuss the several technological challenges 
from the attacker’s perspective, which can be exploited to come up with better defence mechanisms for the security 
of ASV systems.
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1 Introduction
Automatic speaker verification (ASV) systems are voice-
based biometric systems used to authenticate speakers’ 
claimed identities. They are vulnerable to various spoof-
ing attacks, such as identical twins, impersonation, voice 
conversion (VC), synthetic speech (SS), and replay [1]. 
In order to design robust defending mechanisms, it is 
important to discuss the numerous techniques, that can 

enable spoofing attacks on ASV systems. Assessments on 
the security of ASV systems can be performed whenever 
various possible approaches and attackers’ perspectives 
are known a priori. Hence, possible vulnerability aspects 
should be examined in order to make an ASV system 
robust against spoofing attacks.

In ASVspoof 2015 challenge, during INTERSPEECH 
2015, several countermeasures (CMs) were proposed 
using a diversity of feature extraction techniques. They 
are mostly based on signal processing strategies over 
the standard and statistically meaningful ASVSpoof 
2015 dataset [2]. In particular, most of the participant 
teams concentrated on signal processing-based research 
strategies to develop feature sets and, then, used Gauss-
ian mixture models (GMMs) for a two-class classifica-
tion problem of distinguishing spoofed from genuine 
speech. Furthermore, for ASVSpoof 2017 challenge 
during INTERSPEECH 2017, several CMs for replay 
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spoof detection were presented [3, 4], including the use 
of deep learning-based methods. Recently, ASVSpoof 
2021 challenge―a satellite event of INTERSPEECH 
2021―focused additionally on deepfake detection [5]. 
In addition to this in 2023, the ASVSpoof 5 challenge was 
organized, focusing on two main tasks―(1) data col-
lection of spoofing/deepfake attack data, and (2) design 
of integrated CM-ASV system for deepfakes. The pur-
pose of the first task is to have more real-world data as 
the deepfake attacks are expected to be more adversarial 
than in previous editions of ASVspoof challenges and 
to fool both ASV and CM systems. The purpose of the 
second task is to have an integrated solution in the form 
of a spoofing-aware speaker verification (SASV) system, 
which is an integrated CM-ASV system [6]. Furthermore, 
very recently, two editions of audio deepfake detection 
(ADD) challenges, namely, ADD 2022 [7] and ADD 2023 
[8], were organized, indicating the vibrant and synergistic 
activities in this field.

In order to detect spoofed speech, a spoof speech 
detection (SSD) system is considered in tandem with 
ASV system, making it a two-class problem, as shown 
in Fig. 1, where the SSD system identifies an attack and, 
subsequently, denies the corresponding spoofed speech 
to enter into the ASV system. Nevertheless, due to the 
advancement of deep neural network (DNN) archi-
tectures, ASV systems remain vulnerable to powerful 
attacks, such as voice conversion and deepfake gen-
eration based on adversarial training and generative 
adversarial networks (GANs) [10]. Consequently, the 
security of ASV systems can be compromised by using 
these approaches as individual methods of attack or a 
possible combination of these in the near future. There-
fore, this study explores the various vulnerabilities and 

attacking approaches to an ASV system. It should be 
noted that the study in [11] reports the attacker’s per-
spective mainly on non-proactive attacks, such as VC 
and SS, and proactive attacks, which are mainly adver-
sarial attacks. Unlike [11], the discussion in this work 
is not limited to well-known adversarial attacks and 
spoofing attacks, such as replay, VC, and SS only. Con-
trary to this, our study investigates attacking strategies 
and vulnerabilities, such as target selection, deepfake 
generation, enrolled users with malicious intent, and 
complementary attacks, in addition to the techni-
cal challenges faced by an attacker, while mounting an 
attack. The approach of target selection can be used 
by an attacker to select the most vulnerable speaker 
to imitate, in order to be authorized by an ASV sys-
tem. It is based on the hypothesis that a pool of speak-
ers contains speakers with varying vulnerability levels 
and varying effects on the performance of the ASV 
system [12]. The approach of deepfake generation is 
in line with the current trends, especially with fast-
paced research in generative AI [13]. Another attacking 
approach discussed in this work is the scenario when 
there are enrolled users with malicious intent [14, 15]. 
This attacking scenario/perspective is important to 
note because in such a case the attacker is not an out-
side entity, whereas usually most of the attacking strat-
egies and prevention techniques assume the attacker 
to be an external entity, with no knowledge or access 
to the ASV system. Furthermore, we also discuss the 
effect and the role of publicly available corpora for anti-
spoofing, as well as publicly available audio content 
on the Internet through websites, such as YouTube. In 
complement, this paper also gently discusses possible 
hardware attacks. Furthermore, this study also presents 

Fig. 1 SSD and ASV systems in tandem. After [9]
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the experimental findings and observations w.r.t. vari-
ous attacking techniques in the literature.

The remainder of this paper is organized as follows. 
Classification of attacks is presented in Section 2. Apart 
from the most known attacks discussed in that sec-
tion, various other vulnerabilities of ASV systems are 
described in Section  3. Section  4 presents the various 
technological challenges faced by the attacker, while 
mounting a successful attack. Finally, we conclude our 
paper in Section 5 along with potential future research 
directions.

2  Classification of attacks on an ASV system
Notably, there are two main types of attacks, namely, 
direct and indirect, as shown in Fig.  2. Direct attacks 
are those implemented and carried out without under-
standing the internal architecture of the ASV system 
design. As a result, in a direct attack, the attacker does 
not breach or fool any internal subsystem in the target 
ASV system. Instead, attacks on the microphone and 
transmission levels are carried out. To that effect, a suc-
cessful direct attack does not need any prior knowledge 
of the ASV system in question. This is the reason why 
such an event is also known as black box attack [16]. 
Thus, this kind of attack poses a significant threat to the 
security of the ASV system due to its ease of execution. 
Types of direct attacks are spoofing attacks, hardware 
attacks, and adversarial attacks, as shown in Fig. 2.

Contrary to this, indirect attacks are those occurring 
in system-levels, being feasible whenever the attacker 

has access to the internal subsystems of the target 
ASV system. If the attacker has complete knowledge 
and access to all the subsystems, the attack is termed 
as a white box attack. It represents an ideal scenario for 
attackers, which is not practically realistic. However, 
despite their unrealistic nature, these attacks should 
not be ignored since they represent the worst-case pos-
sibility for the security of ASV systems. The robustness 
of an ASV system should be evaluated against such a 
worst-case scenario so that the ASV systems, and their 
associated countermeasures, are fully prepared to pre-
vent most of the possible attacks.

A more realistic case of indirect attacks is that in which 
the attacker has partial knowledge of the target ASV sys-
tem. Such indirect attacks are termed as grey box attacks. 
Most of the indirect attacks are grey box attacks due to 
their realistic nature. An attacker can perform more seri-
ous damage to the ASV system security by implement-
ing a grey box attack as compared to a black box attack 
because more power, i.e., knowledge on the grey-box tar-
get ASV system exists. We now briefly comment on each 
of the attacks shown in Fig. 2, i.e., spoofing attacks, hard-
ware attacks, and attacks on corpora. Specifically, adver-
sarial attacks are discussed in much greater detail in the 
next section.

2.1  Spoofing attacks
Spoofing attacks fall under the category of direct attacks 
and are the most discussed attacks in the literature. 
Spoofing attacks generated from text-to-speech (TTS) 

Fig. 2 Classifying various attacks on an ASV system. After [16]
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and voice conversion (VC) techniques are called logi-
cal access (LA) attacks. In opposition, spoofing attacks, 
which are generated in real physical space are called 
physical access (PA) attacks. The most common type of 
PA attack is a replay attack. Furthermore, a recent type 
of attack, known as deepfake is also a direct attack, which 
involves generating spoofing utterances using TTS and 
VC algorithms, similar to LA. Currently, deepfake attacks 
are known to be the most successful types of attacks. 
However, the ease of mounting and executing an attack 
also plays a role from an attacker’s perspective. To that 
effect, replay attacks are the easiest to mount, most dif-
ficult to detect, and do not even require the attacker to be 
technically knowledgeable!

2.2  Hardware attacks
Due to flaws in hardware implementations of security 
algorithms, an attacker can find the possibility of mount-
ing a hardware attack. These attacks can be direct as 
well as indirect. In case of a direct hardware attack, the 
attacker can keep track of outputs from the hardware, 
such as power, timing, and cache traits, to get enough 
information about the ASV system in order to attack 
it. Such attacks are called side-channel attacks. Sim-
ple power analysis (SPA) and differential power analysis 
(DPA), for instance, are classic examples of such type 
of attacks [17, 18]. Differently, in the case of grey-box 
and white box attacks, where the attacker has partial or 
complete access to the victim hardware, the hardware 
attacks are performed by deliberately mounting faults in 
the electrical circuitry to alter the behavior of the circuit 
used. An example of fault injection attack is performed 
by injecting parametric Trojan [19]. With the help of par-
ametric Trojan, the electrical characteristics of the logic 
gates used in the circuit is altered. However, hardware 
attacks are usually mounted on systems, which use cryp-
tographic algorithms for their security. In this regard, 
to the best of the authors’ knowledge and belief, a hard-
ware attack on an ASV system is yet to be uncovered, and 
hence, it is an open research problem!

2.3  Attack on corpora
Attacks over unprotected corpora are categorized as 
white box attacks. Attacks over unprotected corpora do 
not necessarily lead to attack on an ASV system, how-
ever, can be used to determine personal information 
about speakers. The ISO/IEC International Standard 
24745 on Biometric Information Protection [20] enforces 
that, for full privacy protection, biometric references 
should be irreversible and unlinkable [21–23]. An unpro-
tected speech corpus, i.e., a biometric reference, enables 
searching for a speaker’s information on the Internet [24, 
25]. Likewise, the study in [26] deals with matching users’ 

speech to celebrities’ speech data available on YouTube. 
Thus, due to publicly available speaker data collected 
from YouTube, also called as “found data”, an attacker 
can look for a celebrity’s voice, which resembles the most 
to a particular user’s voice, using an approach called as 
target selection, as described ahead.

3  Vulnerabilities of ASV systems: approaches 
and techniques of attacks

In this section, we present various attacking 
approaches on the ASV systems, mainly including tar-
get selection-based and adversarial attacks. Further-
more, a detailed analysis of various attacks found in the 
literature is coherently shown in Table 1. We also dedi-
cate space for a discussion on vulnerability scenarios, 
such as malicious enrolled users, and the lack of robust 
universal countermeasures leading to the attacker ben-
efiting from the weakness of the SSD system.

3.1  Target selection attacks
To intuitively understand the attacker’s approach of 
target selection, we assume log-likelihood ratio (LLR) 
as being the similarity score. Usually, it is compared 
to a predefined threshold, which then defines the false 
acceptance rate (FAR) and false rejection rate (FRR). 
Additionally, the LLR is computed in terms of proba-
bilistic linear discriminant analysis (PLDA) score for 
state-of-the-art x-vector-based approach for ASV [44]. 
Target selection attacks can be performed in one of the 
following two ways: 

1. By selecting the most vulnerable speaker, from the 
speaker classification step as shown in Table  2, 
referred to as “lamb” in [12], from the set of enrolled 
speakers. Lambs are the speakers who are easiest to 
mimic w.r.t. a specific attacker. Thus, the speaker with 
the highest LLR score w.r.t. that attacker is selected as 
being the lamb.

2. By selecting the most skillful attacker, referred to 
as “wolf ” in [12], w.r.t. a pre-defined victim speaker. 
Thus, an attacker with the highest LLR score w.r.t. 
the fixed pre-defined victim is selected as being 
the wolf.

In order to increase the chances of a successful 
attack, an attacker selects the most vulnerable target by 
using the attacker’s own ASV, as shown in Fig. 3, con-
sequently increasing the FAR [12]. Then, the attacker 
succeeds with good and appropriate target selection. It 
is worth mentioning that, while such an attack may not 
always show an increase in FAR, this approach can still 
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be useful in determining how secure a closed-domain 
targeted ASV system is [45].

Notably, target selection is different from a speaker 
identification perspective. In the latter, a claimed iden-
tity is compared with all the speaker models and, then, 
the speaker model with the maximum closeness to the 
claimed identity is chosen. Contrary to this, in the for-
mer, as shown in Fig. 3, there is no single speaker claim-
ing his/her identity and, hence, the ASV system has to 
be run in an iterative manner in order to include all the 
speakers. Moreover, the chosen target is responsible for 
maximum FAR, out of all the enrolled speakers.

3.2  Adversarial attacks
Adversarial attacks aim to intentionally misclassify 
input data to a machine learning (ML) model based on 
a minor signal perturbation, which forces the ML model 
to generate an incorrect output. Usually, the pertur-
bation is so modest that it is not even perceivable by 
humans. The speech signal with the intentionally added 
perturbation is called as adversarial example. An adver-
sarial example w.r.t. to an original speech signal x can be 
represented as:

(1)x̄ = x + δ,

Table 2 Classification of speakers for target selection to attack ASV system. After [12, 16]

Fig. 3 Target selection: by using the attacker’s ASV to attack the victim’s ASV. After [16]
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where δ is so small that x̄ is perceptually the same as x. 
Nevertheless, δ is large enough to cause misclassification. 
This is in agreement with the finding that there may exist 
speech feature parameters that are acoustically relevant 
for ASV, e.g., fine structure features derived from glottal 
flow derivative waveform, but perceptually insignificant 
[46, 47]. Assuming that the ASV system to be attacked is 
a black box, from the attackers’ perspective, to the best 
of our knowledge, the work reported in [48] was the first 
to propose adversarial attacks against machine learn-
ing (ML) methods, where the attacker has no access to a 
large training dataset. The attack is performed by training 
an attacker’s model based on the labels assigned by the 
existing victim ML model; however, the attacks presented 
in this work are not confined to ASV systems and pertain 
to more general adversarial attacks in machine learning.

Notably, in paper [49], the approach of target selection 
is combined with adversarial attack, wherein an adversar-
ial attack is used to optimize master voices (MV), origi-
nally referred to as “wolves” in [12], where the search for 
MVs is performed by using a dictionary attack, i.e., one-
by-one. Furthermore, in paper [50], adversarial attacks 
were evaluated on various scenarios including transfer-
ability of attacks, practicability of over-the-air attacks by 
replay, and human-imperceptibility to demonstrate the 
imperceptibility of adversarial samples.

3.3  Deepfake attacks
Deepfakes correspond to false (or fake) data in both 
audio and visual domains, which are generated using 
deep learning algorithms. Deepfakes become each time 
closer to the real data as the iterative process used to 
generate them. This has led to serious misuse of the 
deepfake technology [13, 51]. In speech, DNN models, 
such as Wavenets [52], are capable of generating artifi-
cial speech signals from speaker embeddings, providing 
state-of-the-art performance, when evaluated by human 
listeners. Another model, known as Waveglow, combines 
Wavenets and Glow, i.e., generative flow model [53]. It is 
capable of generating speech from multi-speaker data-
sets. Another interesting generative adversarial network 
(GAN)-based model known as speech enhancement gen-
erative adversarial network (SEGAN) uses input speech 
signals enhanced by a convolutional autoencoder [54] 
to perform noise-robust speech enhancement task [55]. 
Additionally, in [56], voice cloning based on speaker 
adaptation and speaker encoding is shown to be possi-
ble by training models using just a few samples. Another 
strategy by the attacker is that he/she hides some small 
fake segment of audio in the genuine audio. This poses a 
serious threat since it is difficult to distinguish that small 
fake segment of audio from the whole speech utterance 
[57]. The experimental analysis in [57] shows that such 

partially fake audio is much more challenging to detect as 
compared to fully spoofed audio.

Each biometric sample or template in a biometric sys-
tem is usually linked to a single identity. Recent studies, 
however, have shown that it is feasible to create “morph” 
biometric samples that can accurately match many 
identities.

3.4  Enrolled users with malicious intents
For all the types of attacks, the intuitive assumption is 
that the attacker will be an external entity. Thus, the real-
istic scenario of an enrolled speaker with malicious intent 
has been ignored during the design of current ASV sys-
tems. To that effect, twins fraud is a classic example of 
such a problem in the biometrics literature [14], where 
both the co-twins, in principle, are enrolled speakers in 
the ASV system. In that case, if one of the co-twins hap-
pens to have malicious intent, more specifically, mali-
cious intent towards his/her other co-twin speaker, he/
she will have more power, i.e., higher similarities in fea-
tures, to fool the ASV system as compared to someone 
who is not enrolled. To that effect, Fig. 4 shows two utter-
ances and their corresponds spectrograms, each cor-
responding to a co-twin speakers in a pair of twins. The 
utterances are taken from the twins corpus reported in 
[58], where the twins are a pair of 25 years old males at 
the time of recording. It can be observed from Fig. 4 that 
the overall pattern of spectral energy densities for twins 
are very much similar, if not identical, and moreover, 
spectral features, such as mel frequency cepstral coef-
ficients (MFCCs) are predominantly used still today for 
ASV systems, thereby making twins fraud a serious tech-
nological challenge for ASV. The significance of the study 
of twins fraud was originally reported several decades ago 
in [59]; however, attention to this problem has not been 
sufficient in the ASV literature primarily due to practical 
issue w.r.t. unavailability of statistically meaningful twins 
corpora. This is why there is no anti-spoofing ASVS-
poof challenge addressing CMs for twins spoof in the 
literature up-to-date. Furthermore, the situation for the 
design of CMs for mimicry is not different. This is due to 
the fact that mimicry attack is highly subjective, depend-
ing on the relative skillfullness of the potential attacker. 
Nevertheless, recent real case examples of twins fraud 
involved the HSBC bank fraud, where a BBC journal-
ist and his non-identical twin spoofed the HSBC bank’s 
voice authentication system [15]. To that effect, design-
ing a robust countermeasure for such a case is a challenge 
since twins’ physiological characteristics, such as size and 
shape of the vocal tract system [59], are practically indis-
tinguishable. Furthermore, the countermeasure can also 
prevent genuine and zero-effort imposters from verifica-
tion, thereby increasing FRR.
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3.5  Complementary attack: utilizing the weakness of SSD 
systems

As of now, SSD systems are designed considering only a 
single type of attack. Therefore, we are far from design-
ing a versatile SSD system, which would alleviate all the 
five types of presentation attacks, as well as unknown 
attacks. For instance, segmental information is respon-
sible for twin’s fraud, and prosodic information is found 
to be significant for skillful mimicry attacks, whereas 
reverberation, transmission channel, and acoustic envi-
ronment-related information are useful for replay attacks 
[60]. Thus, SSD systems will always have a limitation on 
the types of attacks they can anti-spoof. Although the 
attacker is an independent entity, being free to come up 
with a new attack, which can be an amalgamation of the 
various kinds of spoofing attacks, the SSD will not be able 
to anti-spoof it in real-life practical settings, unfortu-
nately. This means that we are yet to design an universal 
attack-proof mechanism for ASV system. Hence, the cur-
rent SSD systems still give a great margin to the attacker 
to mount an unknown attack on ASV.

4  Technological challenges faced by the attacker
In this section, we present various issues the attacker 
faces in order to attack any given ASV system.

4.1  Number of trials on victim ASV access
In realistic scenarios, an effective ASV system should 
have an upper limit to the number of trials that can 
be allowed for a particular speaker. Nevertheless, an 
assumption for target selection attacks is that the attacker 
can have in principle, an infinite number of trials, since 
the attacker uses his/her own ASV to attack, to effectively 
practice the mimicry, which is impossible in practical 
scenarios of ASV system development.

4.2  Corpora for attacker’s perspective
The attacker can proceed with the target selection attacks 
only when the corpus used for ASV is public, such as 
VoxCeleb. This is because target selection should be per-
formed over the same corpora as that of the victim ASV. 
If this is not the case, then the probability of a good LLR 
score will decrease drastically, as the probability of the 
existence of a speaker, who is also the most vulnerable in 
two different datasets is almost negligible.

Not only this but various corpora are available in 
the literature w.r.t. anti-spoofing research, such as the 
ASVSpoof 2015, 2017, 2019, and 2021 datasets; how-
ever, these standard datasets are limited to a fixed 
number of configurations of data collection setup and 
recording conditions. Moreover, datasets are prepared 
with certain underlying assumptions. Such assumptions 

Fig. 4 Panel I shows the time-domain speech signal, and panel II shows the corresponding spectrogram for 25 years old male twin-pair 
where (a)  1st co-twin and (b)  2nd co-twin. Speech taken from the dataset in [58]
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keep us far away from developing anti-spoofing sys-
tems suitable for real-world applications. For instance, 
the generation of spoof utterances in ASVSpoof 2015 
dataset is limited to ten algorithms of VC and SS. Simi-
larly, the replay spoofing utterances in ASVSpoof 2017, 
2019, and 2021 datasets are limited to a fixed number 
of recording configurations. This makes the attacker to 
mount complementary attacks by utilizing the weak-
ness of the underlying SSD system because till now the 
corpora for anti-spoofing are limited to a specific attack 
only. Therefore, we are far away from designing a ver-
satile SSD system that would alleviate all five types of 
presentation attacks as well as unknown attacks. Addi-
tionally, these publicly available corpora are in principle, 
available to the attacker as well. To that effect, attacks 
over unprotected corpora can be used to determine 
personal information about speakers using techniques, 
such as target selection, which enables an attacker to 
select the most vulnerable speaker from a corpus [16, 
45]. Figure  5 shows a Venn diagram w.r.t. the publicly 
available corpora for developing anti-spoofing defenses 
against various spoofing attacks. Datasets, such as the 
ASVSpoof 2015, 2019 LA, and 2021 LA, share two com-
mon spoofing attacks, namely, voice conversion and 
speech synthesis. However, these datasets are not struc-
tured w.r.t. other spoofing attacks like replay, deepfake, 
and twins attacks. Likewise, datasets, such as BTAS, 
ReMASC, VSDC, POCO, ASVSpoof 2017, 2019 PA, and 
2021 PA are focused only on replay attack conditions. 

These datasets lack the environmental and recording 
conditions for other spoofing attacks, such as voice con-
version, speech synthesis, and deepfakes. Nevertheless, 
it should be noted that there exists no dataset that aims 
at developing CMs for all the spoofing attacks. This sit-
uation is denoted by “?” in Fig. 5. Therefore, there is still 
a long way to come up with generalized CMs, that are 
suitable for real-world SSD deployment.

4.3  Transmission channel
As per the recent anti-spoofing literature, transmission 
channel conditions are known to play an important role 
in the performance of the SSD systems. Therefore, anti-
spoofing over a phone channel was chosen as the topic of 
the recent ASVSpoof 2021 challenge [5]. Thus, the trans-
mission channel also forms one of the technological chal-
lenges in the attacker’s perspective as well.

4.4  Perturbation minuteness in adversarial attacks
While attacking by adversarial ML approach, the boon 
for the attacker can even become disadvantageous. The 
small perturbation might not be captured over the air, 
causing the attack to be unsuccessful, specially in case 
of voice assistant systems [61]. Consequently, over the 
air, the performance of perturbed signals should also be 
considered, while evaluating the chances of a successful 
attack by adversarial ML methods. Furthermore, the per-
turbation should be such that it bypasses any smoothing 
technique used in the ASV system [62].

Fig. 5 Publicly available corpora for anti-spoofing research, and the associated known attacks. Here, “?” indicates gap area to develop anti-spoofing 
corpora from attacker’s perspective
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4.5  Voice privacy systems
Voice privacy (VP) aims to hide a speaker’s identity while 
retaining the speech’s linguistic content and naturalness 
[23, 63]. If the users publish data without anonymiza-
tion, the attacker gains illegal access to it and can further 
use speakers’ information to attack the ASV system. If a 
speech signal undergoes a considerably good algorithm 
for VP, it will be almost impossible for an attacker to 
perform target selection due to the absence of mapping 
between the speech data and actual speaker identity [64, 
65]. If VP is used, then the most vulnerable target T ∗ 
cannot be chosen correctly. Consequently, the approach 
of optimal target selection will not be useful, and the 
attacker will be left with only a few attack strategies.

In Fig.  6, when the published data does not undergo 
voice privacy, the attacker is likely to have a successful 
attack. However, when the published data is anonymized 
using voice privacy techniques, the attacker does not 
have access to the actual information about the speakers, 
and hence, an attack using anonymized data is most likely 
to fail, and the attacker will not be granted authorization 
by the ASV system.

4.6  Voice liveness detection (VLD)
The countermeasure solutions developed in the ASVS-
poof challenges are specific to particular attacks. Given 
the attacks on the ASV systems can be known or 
unknown attacks, VLD systems aim to detect only the 
live speech signal and reject all the other non-live speech, 
which are generated from known and unknown attacks 
[67, 68]. VLD is an emerging research area in which pop 
noise has been used actively as a discriminative acoustic 

cue to detect live speech [69–71]. Pop noise is generated 
by live speakers due to the breathing effect captured by 
the microphone if the speaker is in close proximity to the 
microphone. VLD systems enhance the security of the 
ASV system. Given that VLD systems aid in enhancing 
the robustness against attacks on ASV, it has also become 
a technological challenge for attackers. In particular, 
VLD systems are highly efficient against replay attacks. 
Replay attack requires only a recording device to capture 
a genuine user’s voice from a distance. The attacker can 
then replay the recorded speech to spoof the ASV sys-
tem; however, as shown in Fig. 7, due to the distance of 
the recording device from the speaker, liveness cues, such 
as pop noise, are faintly captured or even absent in some 
cases. Moreover, even in the case of artificially synthe-
sized signals, a playback device/loudspeaker is needed to 
mount the attack, which in turn diminishes the strength 
of pop noise, which is strongly present in live speech.

Moreover, till now, VLD is performed w.r.t. replay 
attacks only; however, the scope of VLD in other spoofing 
techniques, such as VC and SS, remains to be explored.

4.7  Deepfake detectors
Advances in deepfake generation techniques have made 
fake data each time more accessible. Thus, deepfake 
detection has gathered immense interest, especially in 
images and videos [73, 74]. Nevertheless, given the inter-
est of this paper, we focus our discussion on speech deep-
fake detectors, which have not been considered as much 
as image and video deepfake detectors. In [75], higher-
order power spectrum correlations are considered in 
the frequency domain. Bi-spectral characteristics, such 

Fig. 6 Game between an attacker and VP system. After [66]
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as bi-coherent magnitude and phase spectra, were used 
to observe third-order correlations. Differences were 
observed in the bi-coherent magnitude and phase spectra 
between natural and synthetic speech. In [76], semanti-
cally rich information was extracted by using latent rep-
resentation. Particularly, XcepTemporal convolutional 
recurrent neural network was introduced for deepfake 
detection by stacking multiple convolution modules. 
Recently, Whisper (which is a state-of-the-art ASR sys-
tem [77]) features were used for the detection of deep-
fake on the ASVspoof 2021 DF dataset [78]. Furthermore, 
with the ADD 2023-the Second Audio Deepfake Detec-
tion Challenge, research towards deepfake detection has 
paced, and the best-performing system so far used Wav-
2vec2.0 architecture [79].

5  Summary and conclusions
The main objective of this study was to introspect attack-
ers’ perspectives to understand possible vulnerabilities of 
ASV systems in such a way that countermeasures for SSD 
systems can be designed effectively. In addition, while 
designing SSD systems for ASV, attacks can be used as 
benchmarks for testing the security of those systems. A 
new test, i.e., “attacker’s test,” can be performed with each 
update to the ASV system.

In addition, with the advancement in adversarial 
machine learning, over-the-air performance, i.e., noise 
introduction over various channels, should also be 
evaluated for increased chances of successfully attack-
ing the system. Furthermore, privacy-preservation by 
VP systems should also be a topic of future interest. To 
that effect, the classification of speakers, as various cat-
egories in Doddington’s menagerie [12], on the basis of 
their vulnerability even after voice privacy remains an 
open research question from the attacker’s perspective. 

If an anonymization system is used, then the attacker’s 
attempts towards the target selection approach will fail. 
Moreover, the attacker’s perspective is different for a 
voice privacy system than for an ASV system, in a way 
that in a voice privacy system, the attacker can attempt 
to de-anonymize the output. This perspective remains an 
open research problem. Contrary to this, cryptography 
algorithms have their own limitations, i.e., deployment 
and increased computational complexity [23]. Therefore, 
if their deployment is simplified, and the computational 
complexity is dealt with optimally in implementation, 
more secure systems can be designed in the near future. 
Furthermore, given the various vulnerabilities associ-
ated with the secure design of ASV systems, such as the 
lack of generalized CMs to anti-spoof all the five known 
spoofing attacks on ASV, with issues of generalizabil-
ity of CMs and VLD systems, we are far from designing 
robust and secure ASV systems.
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