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Abstract 

Audio effects are an ubiquitous tool in music production due to the interesting ways in which they can shape 
the sound of music. Guitar effects, the subset of all audio effects focusing on guitar signals, are commonly used 
in popular music to shape the guitar sound to fit specific genres or to create more variety within musical compo-
sitions. Automatic extraction of guitar effects and their parameter settings, with the aim to copy a target guitar 
sound, has been previously investigated, where artificial neural networks first determine the effect class of a refer-
ence signal and subsequently the parameter settings. These approaches require a corresponding guitar effect 
implementation to be available. In general, for very close sound matching, additional research regarding effect 
implementations is necessary. In this work, we present a different approach to circumvent these issues. We propose 
blind extraction of guitar effects through a combination of blind system inversion and neural guitar effect modeling. 
That way, an immediately usable, blind copy of the target guitar effect is obtained. The proposed method is tested 
with the phaser, softclipping and slapback delay effect. Listening tests with eight subjects indicate excellent quality of  
the blind copies, i.e., little to no difference to the reference guitar effect.

Keywords Demucs, Neural effect modeling, Guitar effect extraction, Blind system identification

1 Introduction
Audio effects are a common tool used in the produc-
tion of music [1]. They find use in all sorts of music and 
are applied to all kinds of instruments such as guitar, 
keyboard, and vocals [2]. In guitar-centered music, a 
prominent and well known effect is the distortion effect, 
closely related to the overdrive effect. A multitude of 
other effects exist such as phaser, delay, and ring-mod-
ulator [3]. Music genres like Post-Rock, achieve part of 
their distinctive sound due to the usage of certain audio 
or guitar effects. A common question is how a certain 
instrument or guitar sound was created. The aim usually 

is to emulate that sound, or to use it as basis for ones own 
sound. Automatic replication of guitar effects that yield a 
desired target sound can be of interest. For this purpose, 
algorithms are required that allow to copy a given target 
reference guitar sound.

Many common guitar effects belong to well defined 
classes [4], e.g., overdrive, echo, or reverb among others. 
Additionally, their sound can usually be modified by one 
or more parameters. Also, these effects can be and often 
are combined in an effect chain. Previous work in this 
area, loosely termed guitar effect extraction, is based on 
the classification and parameter extraction of the effects 
[5, 6]. The overarching goal is to allow automatic repli-
cation of a target guitar sound using another guitar. This 
work is a continuation of our previous works [6–8] and 
attempts to remedy some of the observed shortcom-
ings. As such, emphasis in the background section is 
given to methods based on or closely related to effect and 
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parameter setting extraction. In the following section, 
previous related work is summarized before explaining 
the idea of this manuscript.

1.1  Background
Early work about guitar effect extraction was con-
cerned with the classification of guitar effects. Stein 
et  al. pioneered this area of research with their semi-
nal work [5, 9], using a large set of audio features and 
a support vector machine to classify eleven guitar 
effects. They achieved an accuracy of 97.7% for solo 
guitar recordings. Further work regarding the clas-
sification of guitar effects was done by Eichas et  al. 
[10] and Schmitt et al. [11], the latter investigating the 
importance of audio features and comparing the so 
called bag-of-audio-words approach to the use of func-
tionals, i.e., feature statistics like moments of order k. 
They found both approaches to achieve similar high 
performance.

The issue of deriving or extracting the parameter set-
tings of a guitar effect from audio samples is closely 
related to sound matching [12], the estimation of syn-
thesizer parameters replicating a certain given sound. 
Yee-King et  al. [13] proposed a special long short-
term memory network structure for this purpose, and 
achieved a close sound for 25% of their test set.

Sheng and Fazekas [14] investigated extraction of 
dynamic range compression parameter settings from 
audio samples of violins and drums using several audio 
features and regression models. For the same purpose, 
the authors investigated deep neural networks [15] and 
found them to improve performance, predicting multi-
ple dynamic range compression parameters at once from 
monophonic and polyphonic audio samples.

Research regarding the extraction of guitar effect 
parameter settings is scarce. So far, only four previ-
ous works exist: Jürgens et  al. [6] pioneered this task 
using shallow neural networks combined with specifi-
cally designed features for each guitar effect, achieving 
or surpassing the (presumed) performance of a human 
expert. Comunitá et al. [16] used convolutional neural 
networks (CNNs) to extract the parameter settings of 
different implementations of distortion related guitar 
effects from monophonic and polyphonic audio sam-
ples, achieving below 0.1 root mean-square error in 
all cases. In [7, 8], a CNN was used for classification of 
guitar effects from instrument mixes as well as extrac-
tion of their parameter settings. The CNN was used for 
the extraction of single and multi guitar effects limited 
to distortion, tremolo, and slapback delay effect. The 
CNN yielded presumed human expert level results for 
all effects considered but saw some increase in param-
eter extraction error when extracting the settings 

from multi-effect samples. The most recent publica-
tion closely related to the aforementioned works is Lee 
et  al. [17]. They investigated blind estimation of audio 
processing graphs, which is a generalization to the 
general problem of deriving a sequence of processing 
steps, including parameter settings, that were applied 
to a clean audio signal from target, processed audio. 
Unlike the aforementioned publications, they are not 
specifically concerned with guitar effects and are using 
transformers instead of CNNs. While they were able to 
achieve reasonable to good quality, they saw a consid-
erable drop in performance on unseen data. A similar 
approach concerned with blind audio effect estima-
tion based on autoencoders was recently proposed by 
Peladeau and Peeters [18]. They estimated effect type 
and parameter settings for equalizer, compressor, and 
clipper and found that performance was best, when 
optimizing the autoencoder with respect to a percep-
tual loss instead of the parameter extraction error.

The publication most similar to ours is concerned 
with blind adversarial guitar amplifier modeling [19]. 
Wright et al. attempt to copy a target timbre of a gui-
tar, including possible distortion effects, to another gui-
tar using generative neural networks. Their approach 
does not extract parameter settings or effect classes but 
directly replicates a target sound. In their MUSHRA 
evaluation, they achieved a perceptual match between 
Good and Excellent on the MUSHRA scale for their 
copied guitar timbres. A comparison of our work to the 
work of Wright et al. can be found in Sec. 4.

Except for Wright et  al., the previously described 
approaches in guitar effect extraction have the minor 
downside of requiring hard- or software implementa-
tions of the recognized guitar effects to actually make 
use of the extracted effect types and parameter set-
tings. More specifically, very close or exact replication 
of a target guitar sound in general requires additional 
research/knowledge regarding implementation types, 
as in general different implementations of guitar effects 
at least slightly differ from each other in the produced 
sound.

Furthermore, when extracting parameter settings 
from guitar samples processed by multi-effects, i.e., 
a sequence or chain of effects, as in [8], CNNs specifi-
cally trained on multi-effect samples were used. Hinrichs 
et al. [8] observed an increase of about 50% in parameter 
extraction error when using CNNs, trained on single 
effect samples, for the extraction of parameter settings 
of multi-effect samples. The authors conclude, that 
CNNs specifically trained on multi-effects are required 
to achieve high performance on multi-effect processed 
samples. Due to the general nonlinear nature of many 
guitar effects, the order of effects matters, and as such 
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training specific CNNs for a larger number of guitar 
effects is not feasible.

1.2  Contribution
In this work, a novel approach to guitar effect extrac-
tion is investigated, which, in principle, can remedy 
all or most described downsides: for a given reference 
guitar signal, which has been processed by some guitar 
effect(s), the original, clean guitar signal, i.e., the refer-
ence guitar signal before being processed by said gui-
tar effect, is estimated or regenerated using an artificial 
neural network, namely Hybrid Transformer Demucs 
(HT Demucs). HT Demucs achieves state-of-the-art 
results for declipping of guitar signals [20] and, more 
generally, audio effect removal [21] and thus appears to 
be a natural choice for the task of guitar effect removal. 
Then, using the pair of the regenerated, clean reference 
guitar signal and the processed reference guitar signal, 
the guitar effect is learned using another artificial neu-
ral network, namely gated convolutional network with 
temporal feature-wise linear modulation (GCNTF) 
proposed by Comunità et  al. for neural guitar effect 
modeling [22]. After training, this second network then 
is a copy of the original guitar effect that was applied 
to the clean, reference guitar signal and can be used to 
modify arbitrary other guitar signals. The general sig-
nal flow of this approach is shown in Fig. 1. Thus, blind 
extraction, i.e., without knowledge of the original, clean 
input signal, of the guitar effect is achieved. No exter-
nal effect implementations are required, and in princi-
ple, the target guitar sound can be approximated with 
arbitrary precision for any order of the applied guitar 
effects.

In this manuscript, we describe the precise process of 
blind guitar effect extraction in detail and evaluate our 
approach in subjects to provide evidence of its effec-
tiveness given current technology. Furthermore, we dis-
cuss the current limitations of our approach.

2  Fundamentals
2.1  Problem description
Let xclean be a clean reference guitar signal, subse-
quently processed by the linear or nonlinear guitar 
effect Heff  . The resulting output signal is given as

In the first step of the proposed blind guitar extrac-
tion scheme, we estimate xclean , i.e., we require some 
system G which approximately inverts Heff  to recover 
an approximation x̂clean of xclean . That is, we want to 
compute

such that

for some metric d of interest. This problem is a special 
kind of inverse problem or blind system identification. 
If such a system G is found, then, using x̂clean , we can 
approximately deduce Heff  using the input/output pair 
(x̂clean, xeff ) and another artificial neural network F, which 
is trained using the loss function L(yF , xeff ) := d(yF , xeff ) 
with yF := F{x̂clean}.

After training G and F, d(F{x̂clean}, xeff ) should be 
small and the output signal of F should sound quite 
similar to xeff  . F can now be used to modify other gui-
tar signals, achieving blind extraction or copying of the 
target guitar effect. For simplicity of the discussion, 
here we assumed that xclean is sufficiently long/rich in 
information or actually consists of a set of individual 
guitar samples allowing to train the network F. With 
recent advances [20], the system G, at least in certain 
cases, can be learned using HT Demucs. The system F 
can be learned using GCNTFs, which showed high per-
formance in neural guitar effect modeling [22]. The lim-
itations of this approach are discussed in Sec. 4.

(1)xeff := Heff {xclean}.

(2)x̂clean := G{Heff {xclean}}

(3)d(xclean, x̂clean) → min.

Fig. 1 Depiction of the proposed idea: a previously, and separately, trained Hybrid Transformer Demucs (HT Demucs) network estimates for a set 
of processed reference input guitar signals xi

eff
(n) , each processed by the same effect Heff  , the clean, unprocessed reference signal x̂ i

clean
 . These 

estimates are then used, together with the given processed signals xi
eff
(n) , to train a gated convolutional network with temporal feature-wise linear 

modulation (GCNTF). The result is an estimate Ĥeff  of the actual guitar effect Heff  used to process the xi
clean

 , which then can be applied to any guitar 
signal
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2.1.1  Hybrid transformer demucs
Demucs [23] is a neural network architecture for 
music source separation, which consists of a U-Net 
like encoder/decoder architecture, each consisting 
of several convolutional blocks, and a bidirectional 
long-term short-term network (BiLSTM) between 
encoder and decoder. It separates a source audio sig-
nal using its immediate waveform. Hybrid Demucs [24] 
improves Demucs by introducing a second, separate 
U-Net like encoder/decoder architecture, which pro-
cesses the audio signal’s short-time Fourier transform. 
The two encoder/decoder structure are connected (and 
summed if dimensions allow it) through new shared 
convolutional block layers in the center of the architec-
ture. Hybrid transformer Demucs [25] improves Hybrid 
Demucs by replacing the shared convolutional blocks 
with a cross-domain Transformer encoder. Hybrid 
transformer Demucs (HT Demucs) achieves state-of-
the-art results in music source separation. Recently, its 
predecessor Demucs was found to achieve high per-
formance in declipping of distorted guitar signals [20], 
i.e., it was used to recover clean guitar signals from dis-
torted input signals. This is a special case of the prob-
lem of blind system inversion, which is a key part of the 
proposed idea.

Seeing that HT Demucs is a more powerful architec-
ture than Demucs, at least for music source separation, 
we hoped that HT Demucs surpasses the performance 
of the original Demucs in Declipping and, more gener-
ally, blind system inversion, as well. This hope is sup-
ported by very recent results from [21], which found 
HT Demucs to be highly effective in general audio 
effect removal.

Initially, we also investigated gated recurrent units for 
effect removal from guitar signals; however, they did 
not yield sufficient quality of the regenerated clean sig-
nals, even for the most simple cases. In comparison, HT 
Demucs performed considerably better.

2.1.2  Gated convolution network with temporal FiLM
Neural modeling of guitar effects and amplifiers nowa-
days achieves high quality in most conditions. A good 
review of the field can be found in [26]. Recurrent neu-
ral networks are a general purpose tool used for neural 
effect modeling, where long short-term memory net-
works (LSTMs) and gated recurrent and convolutional 
networks are topologies commonly used [27]. Gated 
convolution networks with temporal FiLM (GCNTFs) 
combine gated convolutional networks (GCNs), a special 
kind of temporal convolutional network and the previous 
state-of-the-art in black box modeling of guitar effects, 
with temporal feature-wise linear modulation (tempo-
ral FiLM). The temporal FiLM is used to capture long 

range temporal dependencies in input signals and for 
the modeling of audio effects. In the latter case, it modu-
lates the intermediate activations of the GCNs. That way, 
the GCNTF improves the state of the art at least for the 
modeling of fuzz and compressor [22]. In this work, the 
GCNTF is used as a tool for universal neural guitar effect 
modeling. In all our informal pilot tests it was found to 
yield very high quality replications of the tested guitar 
effects.

2.1.3  Configuration of HT Demucs and the GCNTF
The following changes were made to HT Demucs in 
this work compared to the default implementation 
[28]: we used only one audio channel, i.e., mono audio, 
instead of two, and 32 channels per layer instead of 
48. We set the rewrite parameter, which, if set to true, 
adds additional convolutional layers, to false to reduce 
the computational complexity to a manageable level. 
For the encoder and decoder, 5 layers instead of 4 were 
used in order to slightly counteract the reduction in 
expressive power due to setting the rewrite parameter 
to false.

For the GCNTF, we used 10 layers, each consisting 
of 24 channels with kernel size and dilation growth 
set to 3. Initial investigations suggested that a longer 
receptive field yields superior performance for time-
dependent guitar effects. The chosen setting yields a 
receptive field approximately equal to the length of the 
input signals. The total number of parameters of the 
GCNTF was 85,969. The receptive field covered about 
59,000 samples.

2.2  Datasets and plugins
All training datasets in this work are based on the 
GuitarSet dataset [29]. It consists of 320 recordings 
by six guitarists with a total duration of about three 
hours. The recordings cover five different genres and 
several different tempos. The samples were initially 
split into segments of four seconds length each and 
downsampled to 16 kHz. Additionally, the dataset was 
augmented by creating five different versions of each 
sample through processing it with a 3-band equalizer 
using randomly sampled parameter settings. Parameter 
settings were sampled from [−  40 dB, −  0.1 dB]. The 
samples were subsequently peak normalized to a maxi-
mum absolute value of 1.0. This clean dataset contains 
12,840 samples with a total duration of over 14 hours 
and is called GuitarsetEQ.

For each of the effects softclipping, phaser, and slapback 
delay, seven processed versions of each sample from the 
GuitarSetEQ dataset were created using random effect 
parameter settings. The parameter setting range was lim-
ited to commonly used values, namely [1 dB, 20 dB] for 
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the gain setting of the softclipping effect, [0.3 Hz, 2.0 Hz] 
for the rate of the phaser effect, [0.05 s, 0.3 s] for the time 
parameter of the slapback delay, and [0.2, 0.5] for the 
other parameters of the latter two effects. The samples are 
peak normalized to a maximum absolute value of 1.0 after 
processing. This dataset is referred to as GuitarSetVFX 
and contains 89,880 samples per effect with a total dura-
tion of just under 100 h. The corresponding pairs of clean 
and processed samples from the GuitarSetEQ and Gui-
tarSetVFX datasets are used to train a single HT Demucs 
network to learn effect removal. The application of phaser 
and slapback delay is done using Pedalboard [30], while 
softclipping is customarily implemented through the 
input/output relation

with the gain parameter g, the softclipping input signal 
x, and the output signal y. x is peak-normalized before 
applying softclipping. A summary of these effects is given 
in Table 1.

Another dataset called GuitarSetCFX was made by 
randomly sampling five different parameter setting tuples 
for each of the effects and creating a processed version 
of the GuitarSetEQ dataset for each tuple. This results in 
15 sub-datasets with 12,840 samples and a duration of 
around 14 h each.

Lastly, a test dataset was created based on parts of 
the IDMT-SMT-GUITAR dataset. The recordings of 
its fourth sub-dataset, which were made with an Ibanez 

(4)y = tanh(g · x),

RG2820 guitar, were first split into segments of four 
seconds length each and downsampled to 16 kHz. This 
dataset, consisting of the unprocessed, clean samples, is 
referred to as IDMTClean. The samples were then pro-
cessed with all effects and parameter settings given in 
Table 2. The resulting dataset is referred to as IDMTCFX.

2.3  Training
A single HT Demucs network was trained, covering all 
three investigated effects, using the GuitarSetEQ and 
GuitarSetVFX datasets for the target and source sam-
ples, respectively. A 80:20 training/validation split was 
used. Optimization was performed with the Adam opti-
mizer and a learning rate of 3 · 10−4 . In total, 273 training 
epochs were performed, where the training was manually 
aborted once it had converged. For all networks, the loss 
function L was

with the mean absolute error L1 and the multi-scale 
short-time Fourier transform (MR-STFT) loss [31], the 
latter taken from the auraloss python library [32]. By 
default, HT Demucs uses the signal-to-distortion ratio 
as its loss function. However, we found that the loss 
according to Eq. 5 yielded less artifacts and better overall 
quality.

The GCNTFs were trained, one for each effect, using 
the GuitarSetCFX dataset as target samples and the 
regenerated GuitarSetCFX, where the trained HT 
Demucs network regenerated the clean, unprocessed 
samples, used as source samples. The other training 
parameters were identical to the training of HT Demucs, 
except that 300 epochs were trained. All samples were 
peak-normalized before feeding them to the networks.

2.4  Listening test
To assess the quality of the copied guitar effects, we per-
formed MUSHRA tests at the Institut für Information-
sverarbeitung with a total of eight subjects, all of them 
in the age range of 18–27 years. All subjects had some 
level of musical experience, all playing an instrument. 
In total, three guitar effects were evaluated, namely soft-
clipping, slapback delay, and phaser effect as summa-
rized in Table 1. The order in which these guitar effects 
were presented was random for each subject. Further-
more, the samples corresponding to one guitar effect 
were presented in random order. The tests were per-
formed double blind using the WebMUSHRA software 
[33]. The software shows a rating label for each intervals 
of 20 points lengths next to the rating controller that is 
supposed to guide the subject in its rating. These labels 
range from “bad,” for MUSHRA scores between zero 
and 20, up to “good,” for MUSHRA scores between 60 

(5)L = L1+MR-STFT,

Table 1 Overview of the investigated guitar effects, their 
parameters and the respective implementations used

Effect Parameters Source

Softclipping Gain Custom

Phaser Rate, depth, mix Pedalboard [30]

Slapback delay Time, mix Pedalboard [30]

Table 2 The parameter settings for each guitar effect used in 
the IDMTCFX dataset. The boldfaced settings were chosen for the 
MUSHRA listening test. For softclipping, the gain is given in dB

Effects

 Setting 
number

Softclipping Phaser Slapback delay

1 5 (0.3, 0.48, 0.43) (0.15, 0.5)
2 8 (0.3, 0.49, 0.4) (0.19, 0.22)
3 10 (1.0, 0.5, 0.5) (0.19, 0.42)

4 12 (1.37, 0.41, 0.36) (0.21, 0.44)
5 13 (1.81, 0.43, 0.38) (0.24, 0.43)
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and 80, and “excellent,” for MUSHRA scores between 80 
and 100. Before testing, all subjects were introduced into 
the general MUSHRA procedure by the main authors 
using a single example which was not part of the actual 
MUSHRA test. The subjects were additionally encour-
aged to rate the samples according to their own, sub-
jective impression, emphasizing that any value ranging 
from zero to 100 was perfectly fine, if they considered it 
to be an accurate assessment, as long as it abides to the 
MUSHRA regulations. These regulations require one 
stimulus to be assigned the rating zero and one stimulus 
to be assigned the rating 100.

2.4.1  Conditions
For each of the three investigated effects, five test con-
ditions were tested: the reference condition REF, which 
is the clean guitar signal processed by the reference gui-
tar plugin, i.e., the reference effect. The anchor condi-
tion ANCHOR, which is the original clean guitar signal 
without any processing. Finally, the NN200, NN500, 
and NN1000 conditions correspond to the original clean 
guitar samples processed by the GCNTFs after training 
with 200, 500, or 1000 training samples, respectively. The 
corresponding total durations of the training samples are 
800 s, 2000 s, and 4000 s.

These training samples were chosen randomly and 
inclusively from the GuitarSetCFX dataset, i.e., such that 
all training samples of the NN200 condition were part 
of the training samples of the NN500 condition, and all 
training samples of the NN500 condition were part of the 
training samples of the NN1000 condition.

The reason for testing models trained using different 
numbers of samples was the fact that in a real scenario, 
where a target guitar sound of a song is supposed to be 
copied, at best about 3 min of guitar can be used. While 
still far away from a total duration of 3 min, investigat-
ing the impact of a reduced number of training samples 
was an interesting research question. Figure 2 depicts the 

signal flowchart for each condition. There, Heff ,K  is the 
GCNTF network after training with K samples.

2.4.2  Stimuli
For each considered guitar effect, three different param-
eter settings were considered, each applied to the same 
five clean guitar samples. The parameter settings were 
selected to depict a wide range of settings for at least one 
of the effect parameters. This means, for example, that for 
the phaser effect, one setting with slow, medium, and fast 
modulation rate each were chosen from the five tuples 
that were determined during the creation of the Gui-
tarSetCFX dataset. The parameter settings used in the 
listening test are highlighted in Table 2 using bold font. 
Regarding the guitar samples, three of the five samples 
for each effect were chosen randomly, whereas the other 
two samples were chosen by hand because their respec-
tive musical styles were considered to fit the given effect. 
For softclipping, prior informal listening tests suggested 
that HT Demucs yields decreasing performance above a 
gain of about 15 db. This is why the highest considered 
gain is below 15 dB for softclipping. All samples used in 
the MUSHRA listening tests were loudness normalized 
according to the ITU-R BS.1770-4 recommendation [34].

The ANCHOR samples were taken from the IDMT-
Clean dataset, with the REF samples being the corre-
sponding processed samples from the IDMTCFX dataset. 
The stimuli were created by processing the clean guitar 
samples with the trained GCNTF models for the respec-
tive effect, parameter setting, and dataset size. Most 
importantly, for the softclipping effect only, each sam-
ple was processed twice by the GCNTF models since the 
effect was considered too weak after a single pass. The 
quality after a single pass was not per se bad but would 
have obviously been noticed by subjects of the listening 
tests. This is picked up on in the discussion. Some audio 
examples showcasing the effect removal of HT Demucs 
as well as a few samples from the MUSHRA listening test 

Fig. 2 Flowchart of the generation of the test stimuli of the MUSHRA test. Heff  is the respective reference guitar effect, e.g., Pedalboard phaser, Ĥeff ,K 
is the learned guitar effect, obtained as depicted in Fig. 1, using K samples during training. By processing clean guitar signals by Ĥeff ,K we obtain 
the NN200, NN500 and NN1000 conditions. The ANCHOR condition is the unprocessed clean guitar signal
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can be found under https:// rhtnt. github. io/ Blind Effec 
tExtr action/. The url furthermore contains a link to the 
complete set of stimuli of the MUSHRA test as well as 
additional audio material.

2.5  Objective evaluation
To assess some aspects of the proposed method objec-
tively, we evaluated the samples regenerated by HT 
Demucs with respect to signal-to-distortion ratio (SDR) 
by comparing the regenerated samples to the correspond-
ing original, unprocessed clean audio samples. This SDR, 
hereonforth called Output SDR, was compared to the 
SDR of the processed samples before application of HT 
Demucs, hereonforth called Input SDR. If HT Demucs 
is effective in removing the guitar effects, the difference 
between the Output SDR and the Input SDR should be 
positive. This objective evaluation was performed on 
three different datasets/test cases: first, the Output SDR 
and Input SDR was assessed for guitar samples coming 
from the validation split of the dataset used for training 
HT Demucs, i.e., the GuitarSetVFX dataset.

Then, to assess generalization to unseen guitar or 
recording types, Output SDR and Input SDR was 
assessed for guitar samples taken from the IDMTCFX 
dataset. Finally, to assess the possible generalization capa-
bilities to unseen effect implementations, a new dataset 
was created, hereonforth called GuitarSetVFX-3P, which 
took the samples of the GuitarSetEQ dataset, but now, 
for each effect and sample, one out of three effect imple-
mentations was randomly selected. These effect imple-
mentations are given in Table 3. Note that these were not 
used for the creation of the GuitarSetCFX dataset. The 
different softclipping implementations each used a dif-
ferent characteristic curve. HT Demucs was then newly 
trained on this GuitarSetVFX-3P dataset and evaluated 
with respect to Output-SDR and Input-SDR on the Gui-

tarSetCFX dataset, which used (for this newly trained 
HT Demucs) unseen effect implementations. For each 
Output SDR and Input SDR assessment, 1000 randomly 
selected samples were used. Furthermore, using the 
results of the listening tests, we assessed the correlation 
of the MUSHRA Scores with the values of the L1, MR-
STFT, and the actual loss L ≡ L1+MR− STFT  , as given 
in Eq. 5, used for training the GCNTF and HT Demucs. 
This allows to give further insight into the importance of 
the different metrics on a per effect basis.

3  Results
Figure  3 shows an example of a regenerated waveform 
created by HT Demucs, where the softclipping effect is 
approximately removed. Some mild artifacts remain, but 
the original waveform is approximately regenerated.

Example waveforms of the learned softclipping 
effect are depicted in Fig.  4, where the conditions are 
as in Sec. 2.4.1. While the dynamics of the learned 
effects match the REF signal roughly, the shape of the 

Table 3 Overview of the effect implementations and parameters 
used for the GuitarSet VFX-3P data set

Effect Producer Parameter

Softclipping Kilohearts Distortion Overdrive Gain

Kilohearts Distortion Hardclip

Kilohearts Distortion Saturate

Phaser BlueCat Audio Rate, depth, mix

Kilohearts

ChowDSP Rate, depth

Slapback delay FullBucket Time, mix

Kilohearts

HY

Fig. 3 Waveforms of a section of a clean guitar signal (Target), the same signal with a softclipping effect with 13 dB gain (Effect Signal), 
and the signal that was regenerated by Hybrid Transformer Demucs (Demucs Output)

https://rhtnt.github.io/BlindEffectExtraction/
https://rhtnt.github.io/BlindEffectExtraction/
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waveforms, especially at the largest peaks, is quite dif-
ferent, resulting in an audible difference in the distri-
bution of the harmonic overtones. This was mentioned 
to the authors by one of the test subjects. Example 
waveforms for the learned phaser and slapback delay 
effect are depicted in Figs. 5 and 6, respectively. For the 
phaser effect, a phase shift of 180◦ (polarity inversion) 
of the waveforms of the NN200 and NN1000 condition 
is apparent, which was occasionally observed through-
out our work for different effects. Figure 7 depicts the 
corresponding spectrograms, which reveal that the 
phaser effect indeed was learned for the NN1000 con-
dition and just barely for the NN500 condition. The 

NN200 condition in this case does not exhibit the typi-
cal phaser pattern.

3.1  Listening test
Boxplots of the MUSHRA scores are depicted for the 
softclipping effect in Fig. 8, for the phaser effect in Fig. 9, 
and for the slapback delay effect in Fig. 10.

The median ratings of the NN200 and NN500 condi-
tion for the phaser effect are considerably worse than that 
of the NN1000 condition due to the fact that the effect 
is barely or not at all audible for the former two, as can 
be exemplary seen in Fig.  7. 95% confidence intervals 
of the median MUSHRA scores, for all test conditions, 
computed by bootstrapping, are given in Table  4. The 

Fig. 4 Waveforms of a section of a REF sample processed by the reference softclipping effect with 13 dB gain and the corresponding output 
signals of NN200, NN500, and NN1000 

Fig. 5 Waveforms of a section of a REF sample processed by the reference phaser effect with setting (1.0, 0.5, 0.5) and corresponding output 
signals of NN200, NN500, and NN1000 
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REF and ANCHOR conditions were reliably recognized 
by the subjects. Outliers are most likely due to fatigue 
or hard-to-hear settings. For example, the five largest 
MUSHRA scores of the ANCHOR condition in Fig. 8 all 
occurred for the lowest gain setting of the softclipping 
effect. A one-way analysis of variance (ANOVA) revealed 
significant differences between the test conditions for all 
guitar effects with F(4, 115) = 334.9 (p < 0.05) for the 
softclipping effect, F(4, 115) = 126.3 (p < 0.05) for the 
phaser effect, and F(4, 115) = 207.1 (p < 0.05) for the 
slapback delay effect.

Ten Bonferroni-adjusted Wilcoxon signed-rank tests 
were performed per effect to investigate pairs of test 
conditions. The new threshold of significance after 

Bonferroni-adjustment was p = 0.005 . Four of these 
Wilcoxon signed-rank tests compared all other test con-
ditions to the ANCHOR condition and revealed signifi-
cant differences of the medians (p < 0.001) . The other 
comparisons and corresponding p-values are listed in 
Table  5. Except for the phaser effect and the NN1000 
condition, where the NN1000 condition achieved a per-
fect median MUSHRA score of 100, for all effects, sig-
nificant differences were found between the REF and 
the NN200 to NN1000 condition. However, this only 
means that the subjects, on average, identified a differ-
ence, not that the quality was poor. For the slapback delay 
effect, no significant differences between the NN200 to 
NN1000 conditions were observed. There, the NN200 to 

Fig. 6 Waveforms of a section of a REF sample processed by the reference slapback delay effect with setting (0.15, 0.5) and corresponding output 
signals of NN200, NN500, and NN1000 

Fig. 7 Spectrograms of a REF sample processed by the reference phaser effect with parameter setting (1.0, 0.5, 0.5) and corresponding output 
signals of NN200, NN500, and NN1000 
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Fig. 8 MUSHRA scores of all three investigated test conditions as well as the ANCHOR and REF condition for the softclipping effect across all 
tested effect settings. Anchor and reference were correctly recognized by the subjects with few exceptions, where the five largest outliers 
for the anchor condition occurred for the weakest softclipping setting, i.e., when the effect was just barely audible

Fig. 9 MUSHRA scores of all three investigated test conditions as well as the ANCHOR and REF condition for the phaser effect across all tested 
effect settings. Anchor and reference were correctly recognized by the subjects with few exceptions

Fig. 10 MUSHRA scores of all three investigated test conditions as well as the ANCHOR and REF condition for the slapback delay effect across all 
tested effect settings. Anchor and reference were correctly recognized by the subjects with few exceptions
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NN1000 conditions achieved median MUSHRA scores 
of 92.5 and more. In contrast, significant differences were 
observed for the NN200 to NN1000 conditions for the 
softclipping effect, where the NN200 achieved superior 
performance to the NN500 and NN1000 condition with 
a median MUSHRA score of 93.5, compared to 77.5 and 
74.0 for the NN500 and NN1000 condition, respectively.

3.2  Objective evaluation
For softclipping and phaser, Output SDR across Input 
SDR for all three test cases as described in Sect.  2.5 is 
depicted in Fig.  11. For slapback delay, corresponding 

Table 4 95% confidence intervals of the median MUSHRA score for all test conditions of the listening test across all parameter settings 
and all guitar effects investigated. Confidence intervals were computed through bootstrapping with 10000 resamples

NN200 NN500 NN1000 REF ANCHOR

Softclipping 93.5± 6.5 77.5± 7.5 74.0± 6.0 100.0± 0.0 0.0± 0.0

Phaser 21.5± 21.5 45.5± 14.5 100.0± 0.0 100.0± 0.0 0.0± 0.0

Slapback delay 94.25± 5.75 94.0± 6.0 92.5± 7.5 100.0± 0.0 0.0± 0.0

Table 5 Some p-values of the Bonferroni-adjusted Wilcoxon-
signed-rank-tests for the results of the MUSHRA listening tests. 
Boldface values indicate statistical significance after applying 
Bonferroni’s correction

Conditions Effects

 A B Softclipping Phaser Slapback delay

NN200 NN500 < 0.001 0.028 0.44

NN200 NN1000 < 0.001 < 0.001 0.88

NN500 NN1000 0.003 < 0.001 0.53

NN200 Reference < 0.001 < 0.001 < 0.001

NN500 Reference < 0.001 < 0.001 < 0.001

NN1000 Reference < 0.001 0.014 < 0.001

Fig. 11 Output SDR across Input SDR for HT Demucs processed, i.e., regenerated, samples for softclipping and phaser and the three test cases 
as described in Sec. 2.5. Note the different y-axis scalings
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results are shown in Fig.  12. Note the different y-axis 
scalings.

Corresponding averages of Output-SDR (OSDR), 
Input-SDR (ISDR), and �SDR := OSDR− ISDR for the 
respective test cases are summarized in Table 6.

In all scenarios, HT Demucs achieves at least some 
level of sample regeneration for all three guitar effects. 
The greatest improvement with respect to SDR was 
observed for softclipping with an at least 8.4 dB differ-
ence in average �SDR . Improvements were considerably 
smaller for phaser and slapback delay, at worst 0.7 dB and 
0.8 dB and at best 4.1 dB and 2.4 dB, respectively. Gen-
erally, for phaser and slapback delay, higher Input SDR 
values were observed, almost certainly due to their type 
of processing, which is not, unlike softclipping, by defini-
tion based on signal distortion. Going by SDR, softclip-
ping and phaser signal regeneration appears to generalize 

well to new guitar signals going by the observed change 
in Table 6 between the test cases. However, HT Demucs 
appears to generalize worse to unseen phaser imple-
mentations compared to unseen slapback delay imple-
mentations as the �SDR drops to 0.7 dB for the phaser 
compared to an increase to 2.4 dB for the slapback delay 
on the GuitarSetVFX-3P dataset. Going by the results, 
HT Demucs appears to generalize at least partially to 
unknown/unseen guitar signals and effect implementa-
tions. While the improvement in SDR might suggest a 
good performance of HT Demucs for softclipping, sub-
jectively, effect removal was actually worst for it on aver-
age. The likely cause are the types of signal distortions 
introduced, which should distort high frequency signal 
components more than low frequency components. This 
would explain why high SDRs or high SDR improvements 
do not necessarily yield corresponding improvements in 

Fig. 12 Output SDR across Input SDR for HT Demucs processed, i.e., regenerated, samples for slapback delay and the three test cases as described 
in Sec. 2.5. Note the different y-axis scalings

Table 6 Overview of the average Output SDR (OSDR), Input SDR (ISDR), and the difference �SDR := OSDR − ISDR for the test cases of 
the effect removal as described in Sec. 2.5. For �SDR , values in parentheses denote standard deviations also in dB

Test case Effect Input SDR [dB] Output SDR [dB] �SDR [dB]

GuitarSetVFX Softclipping − 9.7 3.5 13.2 (3.65)

Phaser 5.1 7.9 2.8 (1.77)

Slapback delay 7.2 9.6 2.4 (3.2)

IDMTCFX Softclipping − 8.8 4.4 13.2 (4.63)

Phaser 4.6 8.7 4.1 (2.99)

Slapback delay 6.5 7.3 0.8 (3.62)

GuitarSetVFX-3P Softclipping − 10.4 − 2.0 8.4 (2.1)

Phaser 3.9 4.6 0.7 (1.03)

Slapback delay 5.4 8.8 3.4 (2.16)
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subjective quality. This is supported by a comparison of 
the MR-STFT loss values on the GuitarCFX dataset. The 
median MR-STFT loss value for the softclipping is about 
2–4 times higher than for phaser and slapback delay.

While generally there was a considerable correlation 
between MUSHRA Scores and corresponding losses 
as can be seen in Table  7, some interesting exceptions 
exist and can be observed in Fig. 13: for the phaser and 
the NN1000 condition, no clear association of the L1 or 
MR-STFT loss with the MUSHRA scores exist. Actually, 

for all phaser samples, the L1 loss was within the range 
of about 0.2–0.4, similarly for the MR-STFT loss, yet, the 
corresponding MUSHRA scores appear randomly dis-
tributed within a range of about 70–100. An association 
is clear for the NN500 condition, which shows a great 
increase in MUSHRA scores with decreasing L1 loss and 
similarly an increase in MUSHRA scores with a decrease 
in MR-STFT loss. The NN200 condition, while not as 
erratic with respect to the MUSHRA score-loss asso-
ciation as the NN1000 condition, shows a considerably 

Table 7 Correlation coefficients between the MUSHRA scores and the L1 and MR-STFT errors for the conditions of the MUSHRA 
listening test. In the last row (“Total”), the samples of the different conditions are considered together. L is the sum of the L1 and 
MR-STFT errors and is the loss function used for training HT Demucs and the GCNTF networks

Softclipping Phaser Slapback delay

L1 MR-STFT L L1 MR-STFT L L1 MR-STFT L

NN200 − 0.308 − 0.508 − 0.49 − 0.908 − 0.551 − 0.834 − 0.327 − 0.453 − 0.435

NN500 − 0.668 − 0.804 − 0.794 − 0.833 − 0.813 − 0.825 0.312 − 0.51 − 0.165

NN1000 − 0.8 − 0.788 − 0.797 − 0.155 0.379 0.25 − 0.462 − 0.583 − 0.579

Total − 0.693 − 0.789 − 0.784 0.035 − 0.738 − 0.658 − 0.021 − 0.518 − 0.38

Fig. 13 Distribution of the MUSHRA Scores of the individual samples as a function of the objective metrics. a, b Softclipping. c, d Phaser. 
e, f Slapback delay
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less clear connection between MUSHRA scores and loss 
values. The most erratic behavior was observed for the 
slapback delay and the L1 loss: most samples for all con-
ditions exhibit an L1 loss in the range of about 0–0.075, 
yet, the corresponding MUSHRA scores are scattered 
across a range of about 50 to 100. While still consider-
ably noisy, the corresponding MR-STFT loss values show 
some linear dependency of the MUSHRA Scores on the 
MR-STFT losses.

When combining the losses, as done during training, 
and assessing the relationship between this combined 
loss to the MUSHRA score, a somewhat less erratic 
relationship arises as can be seen in Fig.  14. However, 
even combined, for the phaser and the NN1000 condi-
tion, there does not appear to be a clear pattern in the 
MUSHRA score-loss scatterplot. A possible explana-
tion could be that the observed differences in MUSHRA 
scores are due to chance, and for the entire loss range 
from about 0.5 to about 1.0, the GCNTF achieved about 
the same quality, which was close to perfect.

4  Discussion
This work investigates blind extraction of guitar effects 
through blind system inversion followed by neural effect 
learning. For blind system inversion, we used Hybrid 
Transformer Demucs (HT Demucs), and for neural effect 
modeling, we used gated convolutional network with 
temporal feature-wise linear modulation (GCNTF).

In general, it proved to be possible to blindly copy a 
given guitar effect, for all effects one of the conditions 
achieved a median MUSHRA score above 80, which cor-
responds to excellent quality according to MUSHRA 

regulations. Unfortunately, there was no consistent best 
condition, i.e., the number of training samples yielding 
the best performing model depended on the guitar effect. 
Additionally, even 200 samples are way too many for 
a real application, seeing that a music piece of ordinary 
lengths will cover at most about 3 min of guitar sam-
ples, which correspond to about 45 samples of 4 s length. 
Our current results do not allow to achieve good qual-
ity with this few samples, and a lot of research lies ahead 
to achieve this goal. Even when repeatedly training the 
GCNTF on a few training samples and testing on these 
very samples, the GCNTF did not appear to learn the 
respective guitar effect. For the slapback delay effect, the 
delayed part of the stimuli signals created by the GCNTF 
sound slightly smeared in some samples, which is a pos-
sible explanation for the outliers depicted in the boxplots. 
For softclipping, the effect of the GCNTF processed sam-
ples sounded too weak if applied only once, as if only half 
the target gain was applied, and the quality was rated by 
the authors considerably better after a second process-
ing. While in reality a single pass should suffice, to get 
an independent judgment for an additional effect, we 
decided to investigate this two-pass version nonetheless, 
to see whether softclipping can, in principle, be copied 
in the proposed way. The cause of this issue certainly is 
the insufficient clean signal regeneration by Demucs. 
Since the effect was only partially removed, the GCNTF 
is merely able to learn the part of the effect that was 
removed, resulting in a far lower intensity of the learned 
softclipping effect. For the softclipping effect, the NN200 
condition achieved a significantly higher MUSHRA score 
than the NN500 and NN1000 condition. A hypothesis 

Fig. 14 Distribution of the MUSHRA Scores of the individual samples as a function of the sum of the objective metrics. a Softclipping. b Phaser. 
c Slapback delay
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is that due to passing the input signal twice through the 
GCNTFs for softclipping as previously mentioned, some 
additional audable artifacts could arise in the NN500 
and NN1000 conditions, which are less present in the 
NN200, despite the NN200 condition yielding inferior 
performance after a single pass.

For the slapback delay effect, where the NN200 con-
dition also achieved the highest MUSHRA score, the 
differences to NN500 and NN1000 condition was not 
significant, and thus it is presumed that the quality of the 
effect is identical. Seeing that the slapdelay delay effect 
is simpler than, e.g., the phaser effect, the number of 
training samples having no apparent impact on the qual-
ity of the modeled effect is reasonable. Generally, the 
effect modeling was found to be rather repeatable, with 
either yielding identically good effect quality each time 
or showing only minor variations from training to train-
ing. The limiting factor of the proposed approach cur-
rently is HT Demucs, which can regenerate a sufficient 
approximation of the clean input signals only for a hand-
ful of guitar effects, and in some of these cases, consider-
able artifacts still remain. Though, despite these artifacts, 
sometimes the guitar effects are removed just enough 
to allow learning them, i.e., perfect removal was found 
to not be necessary in general. To make it very clear: in 
all our experiments, given a sufficient effect removal in 
the input signals, the GCNTFs never failed to yield high 
quality effect copies. The issue is HT Demucs, not the 
GCNTF.

4.1  Comparison to other work
Our approach to blindly copy a target guitar effect is 
closely related to the generative approach by Wright et al. 
[19], the only other work to blindly model a target guitar 
effect sound to the best knowledge of the authors. They 
even achieved very similar performance in their listening 
test. However, they copy both, effects and timbre of the 
guitar, while in our approach, the goal is to not copy the 
timbre of a target guitar but only the applied guitar effect. 
Depending on the application, this can be an advantage 
or a disadvantage. The result of our approach is a neu-
ral effect model, which could be applied to any guitar 
without affecting its characteristic timbre. Going by the 
audio examples provided by Wright et  al., their genera-
tive approach is generally capable of copying timbre and 
effect but appears to sometimes modify the sequence of 
tones, such that the target, reference tone sequence is 
mixed up and somewhat modified (e.g., higher notes) in 
the copy. This is a considerable disadvantage for the aim 
of allowing to copy a sound of a guitar. In that aspect, our 
approach is considerably superior as this cannot hap-
pen due to the method we apply. Their approach and 
ours appears to require a similar amount of data to yield 

sufficient performance; however, due to our use of HT 
Demucs, our approach would be considerably more com-
putationally complex.

4.2  Limitations
In this work, we only investigated blind extraction of gui-
tar effects using guitar only samples, i.e., no other instru-
ments were present in the recordings. Furthermore, only 
one implementation per guitar effect was used. While 
we did a few successful tests with instrument mixes and 
different implementations, the performance is far from 
sufficient and a lot of further work is required to yield 
useful results. Some general limits or constraints exist 
to our approach: the guitar input signal of a target gui-
tar effect has to be sufficiently rich in spectral content to 
allow blind extraction of an “entire” effect. This is due to 
the regeneration of the clean input signal and is known 
from blind system identification theory [35]. Examples 
can be easily thought up, e.g., a guitar effect that acts dif-
ferently depending on the frequency content of the input 
signal processing a signal which only contains a certain 
frequency region. Some, currently unknown, key char-
acteristics of the clean input guitar signal have to be 
left unmodified by a target guitar effect to allow to esti-
mate the input signal. However, how much these limits 
will actually prohibit blind effect copies is not clear as, 
e.g., no signal model1 exists for guitars. Furthermore, 
the proposed system does not allow the tweaking of 
effect parameters, meaning that learned effects cannot 
be modified by hand afterwards. If a modification of the 
sound of the learned effect is desired, additional pre- or 
postprocessing (e.g., equalization) has to be introduced 
afterwards. This limitation is shared with the approach 
of Wright et  al. [19]. Allowing to tweak the sound of 
the learned model could be perhaps achieved using pre-
trained effect embeddings and a powerful, pretrained 
effect modeling network. Modulating extracted embed-
dings could then allow modulating the copied guitar 
sound2.

4.3  Future work
One obvious research endeavor is the improvement of 
HT Demucs or the development of other approaches, 
specifically designed for effect removal, seeing that HT 
Demucs is currently the bottleneck of the proposed 
approach. Additionally, to potentially allow subsequent 
modification of the learned effect, disentangled autoen-
coders could be applied, similar to approaches to voice 

1 In the sense of, e.g., ratios of overtones and rate of decay among others 
distinguishing guitars from other instruments.
2 Idea due to our colleague Lars Rumberg.
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conversion [36]. If a sufficiently powerful autoencoder 
was used to process a guitar signal that has been pro-
cessed by some guitar effect, and the said autoencoder 
yielded a disentangled latent representation of the guitar 
signal which separates the original, clean guitar signal 
from the effect processing used to compute the processed 
guitar signal, subsequent modification of the effect 
sound might be feasible. In the latent space, the compo-
nents corresponding to the clean guitar signal could be 
replaced by a new guitar signal to be processed, while the 
components of the latent space corresponding to the gui-
tar effect could be modified in a desired way.

5  Conclusions
This work investigates blind extraction of guitar effects 
using Hybrid Transformer Demucs for blind system 
inversion and gated convolutional network with tem-
poral feature-wise linear modulation for neural guitar 
effect modeling. The proposed method is tested with the 
phaser, softclipping, and slapback delay effect. Listening 
tests with eight subjects indicated excellent quality of the 
the blind copies, i.e., little to no difference to the refer-
ence guitar effect.
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