
Hinrichs et al.
EURASIP Journal on Audio, Speech, and Music Processing (2024) 2024:9
https://doi.org/10.1186/s13636-024-00330-0

EMPIRICAL RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

EURASIP Journal on Audio,
Speech, and Music Processing

Blind extraction of guitar effects
through blind system inversion and neural
guitar effect modeling
Reemt Hinrichs1* , Kevin Gerkens1, Alexander Lange1 and Jörn Ostermann1

Abstract

Audio effects are an ubiquitous tool in music production due to the interesting ways in which they can shape
the sound of music. Guitar effects, the subset of all audio effects focusing on guitar signals, are commonly used
in popular music to shape the guitar sound to fit specific genres or to create more variety within musical compo-
sitions. Automatic extraction of guitar effects and their parameter settings, with the aim to copy a target guitar
sound, has been previously investigated, where artificial neural networks first determine the effect class of a refer-
ence signal and subsequently the parameter settings. These approaches require a corresponding guitar effect
implementation to be available. In general, for very close sound matching, additional research regarding effect
implementations is necessary. In this work, we present a different approach to circumvent these issues. We propose
blind extraction of guitar effects through a combination of blind system inversion and neural guitar effect modeling.
That way, an immediately usable, blind copy of the target guitar effect is obtained. The proposed method is tested
with the phaser, softclipping and slapback delay effect. Listening tests with eight subjects indicate excellent quality of
the blind copies, i.e., little to no difference to the reference guitar effect.

Keywords Demucs, Neural effect modeling, Guitar effect extraction, Blind system identification

1 Introduction
Audio effects are a common tool used in the produc-
tion of music [1]. They find use in all sorts of music and
are applied to all kinds of instruments such as guitar,
keyboard, and vocals [2]. In guitar-centered music, a
prominent and well known effect is the distortion effect,
closely related to the overdrive effect. A multitude of
other effects exist such as phaser, delay, and ring-mod-
ulator [3]. Music genres like Post-Rock, achieve part of
their distinctive sound due to the usage of certain audio
or guitar effects. A common question is how a certain
instrument or guitar sound was created. The aim usually

is to emulate that sound, or to use it as basis for ones own
sound. Automatic replication of guitar effects that yield a
desired target sound can be of interest. For this purpose,
algorithms are required that allow to copy a given target
reference guitar sound.

Many common guitar effects belong to well defined
classes [4], e.g., overdrive, echo, or reverb among others.
Additionally, their sound can usually be modified by one
or more parameters. Also, these effects can be and often
are combined in an effect chain. Previous work in this
area, loosely termed guitar effect extraction, is based on
the classification and parameter extraction of the effects
[5, 6]. The overarching goal is to allow automatic repli-
cation of a target guitar sound using another guitar. This
work is a continuation of our previous works [6–8] and
attempts to remedy some of the observed shortcom-
ings. As such, emphasis in the background section is
given to methods based on or closely related to effect and

*Correspondence:
Reemt Hinrichs
hinrichs@tnt.uni-hannover.de
1 Institut für Informationsverarbeitung, Leibniz University Hannover,
Hannover, Germany

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13636-024-00330-0&domain=pdf
http://orcid.org/0000-0003-3352-7223

Page 2 of 17Hinrichs et al. EURASIP Journal on Audio, Speech, and Music Processing (2024) 2024:9

parameter setting extraction. In the following section,
previous related work is summarized before explaining
the idea of this manuscript.

1.1 Background
Early work about guitar effect extraction was con-
cerned with the classification of guitar effects. Stein
et al. pioneered this area of research with their semi-
nal work [5, 9], using a large set of audio features and
a support vector machine to classify eleven guitar
effects. They achieved an accuracy of 97.7% for solo
guitar recordings. Further work regarding the clas-
sification of guitar effects was done by Eichas et al.
[10] and Schmitt et al. [11], the latter investigating the
importance of audio features and comparing the so
called bag-of-audio-words approach to the use of func-
tionals, i.e., feature statistics like moments of order k.
They found both approaches to achieve similar high
performance.

The issue of deriving or extracting the parameter set-
tings of a guitar effect from audio samples is closely
related to sound matching [12], the estimation of syn-
thesizer parameters replicating a certain given sound.
Yee-King et al. [13] proposed a special long short-
term memory network structure for this purpose, and
achieved a close sound for 25% of their test set.

Sheng and Fazekas [14] investigated extraction of
dynamic range compression parameter settings from
audio samples of violins and drums using several audio
features and regression models. For the same purpose,
the authors investigated deep neural networks [15] and
found them to improve performance, predicting multi-
ple dynamic range compression parameters at once from
monophonic and polyphonic audio samples.

Research regarding the extraction of guitar effect
parameter settings is scarce. So far, only four previ-
ous works exist: Jürgens et al. [6] pioneered this task
using shallow neural networks combined with specifi-
cally designed features for each guitar effect, achieving
or surpassing the (presumed) performance of a human
expert. Comunitá et al. [16] used convolutional neural
networks (CNNs) to extract the parameter settings of
different implementations of distortion related guitar
effects from monophonic and polyphonic audio sam-
ples, achieving below 0.1 root mean-square error in
all cases. In [7, 8], a CNN was used for classification of
guitar effects from instrument mixes as well as extrac-
tion of their parameter settings. The CNN was used for
the extraction of single and multi guitar effects limited
to distortion, tremolo, and slapback delay effect. The
CNN yielded presumed human expert level results for
all effects considered but saw some increase in param-
eter extraction error when extracting the settings

from multi-effect samples. The most recent publica-
tion closely related to the aforementioned works is Lee
et al. [17]. They investigated blind estimation of audio
processing graphs, which is a generalization to the
general problem of deriving a sequence of processing
steps, including parameter settings, that were applied
to a clean audio signal from target, processed audio.
Unlike the aforementioned publications, they are not
specifically concerned with guitar effects and are using
transformers instead of CNNs. While they were able to
achieve reasonable to good quality, they saw a consid-
erable drop in performance on unseen data. A similar
approach concerned with blind audio effect estima-
tion based on autoencoders was recently proposed by
Peladeau and Peeters [18]. They estimated effect type
and parameter settings for equalizer, compressor, and
clipper and found that performance was best, when
optimizing the autoencoder with respect to a percep-
tual loss instead of the parameter extraction error.

The publication most similar to ours is concerned
with blind adversarial guitar amplifier modeling [19].
Wright et al. attempt to copy a target timbre of a gui-
tar, including possible distortion effects, to another gui-
tar using generative neural networks. Their approach
does not extract parameter settings or effect classes but
directly replicates a target sound. In their MUSHRA
evaluation, they achieved a perceptual match between
Good and Excellent on the MUSHRA scale for their
copied guitar timbres. A comparison of our work to the
work of Wright et al. can be found in Sec. 4.

Except for Wright et al., the previously described
approaches in guitar effect extraction have the minor
downside of requiring hard- or software implementa-
tions of the recognized guitar effects to actually make
use of the extracted effect types and parameter set-
tings. More specifically, very close or exact replication
of a target guitar sound in general requires additional
research/knowledge regarding implementation types,
as in general different implementations of guitar effects
at least slightly differ from each other in the produced
sound.

Furthermore, when extracting parameter settings
from guitar samples processed by multi-effects, i.e.,
a sequence or chain of effects, as in [8], CNNs specifi-
cally trained on multi-effect samples were used. Hinrichs
et al. [8] observed an increase of about 50% in parameter
extraction error when using CNNs, trained on single
effect samples, for the extraction of parameter settings
of multi-effect samples. The authors conclude, that
CNNs specifically trained on multi-effects are required
to achieve high performance on multi-effect processed
samples. Due to the general nonlinear nature of many
guitar effects, the order of effects matters, and as such

Page 3 of 17Hinrichs et al. EURASIP Journal on Audio, Speech, and Music Processing (2024) 2024:9

training specific CNNs for a larger number of guitar
effects is not feasible.

1.2 Contribution
In this work, a novel approach to guitar effect extrac-
tion is investigated, which, in principle, can remedy
all or most described downsides: for a given reference
guitar signal, which has been processed by some guitar
effect(s), the original, clean guitar signal, i.e., the refer-
ence guitar signal before being processed by said gui-
tar effect, is estimated or regenerated using an artificial
neural network, namely Hybrid Transformer Demucs
(HT Demucs). HT Demucs achieves state-of-the-art
results for declipping of guitar signals [20] and, more
generally, audio effect removal [21] and thus appears to
be a natural choice for the task of guitar effect removal.
Then, using the pair of the regenerated, clean reference
guitar signal and the processed reference guitar signal,
the guitar effect is learned using another artificial neu-
ral network, namely gated convolutional network with
temporal feature-wise linear modulation (GCNTF)
proposed by Comunità et al. for neural guitar effect
modeling [22]. After training, this second network then
is a copy of the original guitar effect that was applied
to the clean, reference guitar signal and can be used to
modify arbitrary other guitar signals. The general sig-
nal flow of this approach is shown in Fig. 1. Thus, blind
extraction, i.e., without knowledge of the original, clean
input signal, of the guitar effect is achieved. No exter-
nal effect implementations are required, and in princi-
ple, the target guitar sound can be approximated with
arbitrary precision for any order of the applied guitar
effects.

In this manuscript, we describe the precise process of
blind guitar effect extraction in detail and evaluate our
approach in subjects to provide evidence of its effec-
tiveness given current technology. Furthermore, we dis-
cuss the current limitations of our approach.

2 Fundamentals
2.1 Problem description
Let xclean be a clean reference guitar signal, subse-
quently processed by the linear or nonlinear guitar
effect Heff . The resulting output signal is given as

In the first step of the proposed blind guitar extrac-
tion scheme, we estimate xclean , i.e., we require some
system G which approximately inverts Heff to recover
an approximation x̂clean of xclean . That is, we want to
compute

such that

for some metric d of interest. This problem is a special
kind of inverse problem or blind system identification.
If such a system G is found, then, using x̂clean , we can
approximately deduce Heff using the input/output pair
(x̂clean, xeff) and another artificial neural network F, which
is trained using the loss function L(yF , xeff) := d(yF , xeff)
with yF := F{x̂clean}.

After training G and F, d(F{x̂clean}, xeff) should be
small and the output signal of F should sound quite
similar to xeff . F can now be used to modify other gui-
tar signals, achieving blind extraction or copying of the
target guitar effect. For simplicity of the discussion,
here we assumed that xclean is sufficiently long/rich in
information or actually consists of a set of individual
guitar samples allowing to train the network F. With
recent advances [20], the system G, at least in certain
cases, can be learned using HT Demucs. The system F
can be learned using GCNTFs, which showed high per-
formance in neural guitar effect modeling [22]. The lim-
itations of this approach are discussed in Sec. 4.

(1)xeff := Heff {xclean}.

(2)x̂clean := G{Heff {xclean}}

(3)d(xclean, x̂clean) → min.

Fig. 1 Depiction of the proposed idea: a previously, and separately, trained Hybrid Transformer Demucs (HT Demucs) network estimates for a set
of processed reference input guitar signals xi

eff
(n) , each processed by the same effect Heff , the clean, unprocessed reference signal x̂ i

clean
 . These

estimates are then used, together with the given processed signals xi
eff
(n) , to train a gated convolutional network with temporal feature-wise linear

modulation (GCNTF). The result is an estimate Ĥeff of the actual guitar effect Heff used to process the xi
clean

 , which then can be applied to any guitar
signal

Page 4 of 17Hinrichs et al. EURASIP Journal on Audio, Speech, and Music Processing (2024) 2024:9

2.1.1 Hybrid transformer demucs
Demucs [23] is a neural network architecture for
music source separation, which consists of a U-Net
like encoder/decoder architecture, each consisting
of several convolutional blocks, and a bidirectional
long-term short-term network (BiLSTM) between
encoder and decoder. It separates a source audio sig-
nal using its immediate waveform. Hybrid Demucs [24]
improves Demucs by introducing a second, separate
U-Net like encoder/decoder architecture, which pro-
cesses the audio signal’s short-time Fourier transform.
The two encoder/decoder structure are connected (and
summed if dimensions allow it) through new shared
convolutional block layers in the center of the architec-
ture. Hybrid transformer Demucs [25] improves Hybrid
Demucs by replacing the shared convolutional blocks
with a cross-domain Transformer encoder. Hybrid
transformer Demucs (HT Demucs) achieves state-of-
the-art results in music source separation. Recently, its
predecessor Demucs was found to achieve high per-
formance in declipping of distorted guitar signals [20],
i.e., it was used to recover clean guitar signals from dis-
torted input signals. This is a special case of the prob-
lem of blind system inversion, which is a key part of the
proposed idea.

Seeing that HT Demucs is a more powerful architec-
ture than Demucs, at least for music source separation,
we hoped that HT Demucs surpasses the performance
of the original Demucs in Declipping and, more gener-
ally, blind system inversion, as well. This hope is sup-
ported by very recent results from [21], which found
HT Demucs to be highly effective in general audio
effect removal.

Initially, we also investigated gated recurrent units for
effect removal from guitar signals; however, they did
not yield sufficient quality of the regenerated clean sig-
nals, even for the most simple cases. In comparison, HT
Demucs performed considerably better.

2.1.2 Gated convolution network with temporal FiLM
Neural modeling of guitar effects and amplifiers nowa-
days achieves high quality in most conditions. A good
review of the field can be found in [26]. Recurrent neu-
ral networks are a general purpose tool used for neural
effect modeling, where long short-term memory net-
works (LSTMs) and gated recurrent and convolutional
networks are topologies commonly used [27]. Gated
convolution networks with temporal FiLM (GCNTFs)
combine gated convolutional networks (GCNs), a special
kind of temporal convolutional network and the previous
state-of-the-art in black box modeling of guitar effects,
with temporal feature-wise linear modulation (tempo-
ral FiLM). The temporal FiLM is used to capture long

range temporal dependencies in input signals and for
the modeling of audio effects. In the latter case, it modu-
lates the intermediate activations of the GCNs. That way,
the GCNTF improves the state of the art at least for the
modeling of fuzz and compressor [22]. In this work, the
GCNTF is used as a tool for universal neural guitar effect
modeling. In all our informal pilot tests it was found to
yield very high quality replications of the tested guitar
effects.

2.1.3 Configuration of HT Demucs and the GCNTF
The following changes were made to HT Demucs in
this work compared to the default implementation
[28]: we used only one audio channel, i.e., mono audio,
instead of two, and 32 channels per layer instead of
48. We set the rewrite parameter, which, if set to true,
adds additional convolutional layers, to false to reduce
the computational complexity to a manageable level.
For the encoder and decoder, 5 layers instead of 4 were
used in order to slightly counteract the reduction in
expressive power due to setting the rewrite parameter
to false.

For the GCNTF, we used 10 layers, each consisting
of 24 channels with kernel size and dilation growth
set to 3. Initial investigations suggested that a longer
receptive field yields superior performance for time-
dependent guitar effects. The chosen setting yields a
receptive field approximately equal to the length of the
input signals. The total number of parameters of the
GCNTF was 85,969. The receptive field covered about
59,000 samples.

2.2 Datasets and plugins
All training datasets in this work are based on the
GuitarSet dataset [29]. It consists of 320 recordings
by six guitarists with a total duration of about three
hours. The recordings cover five different genres and
several different tempos. The samples were initially
split into segments of four seconds length each and
downsampled to 16 kHz. Additionally, the dataset was
augmented by creating five different versions of each
sample through processing it with a 3-band equalizer
using randomly sampled parameter settings. Parameter
settings were sampled from [− 40 dB, − 0.1 dB]. The
samples were subsequently peak normalized to a maxi-
mum absolute value of 1.0. This clean dataset contains
12,840 samples with a total duration of over 14 hours
and is called GuitarsetEQ.

For each of the effects softclipping, phaser, and slapback
delay, seven processed versions of each sample from the
GuitarSetEQ dataset were created using random effect
parameter settings. The parameter setting range was lim-
ited to commonly used values, namely [1 dB, 20 dB] for

Page 5 of 17Hinrichs et al. EURASIP Journal on Audio, Speech, and Music Processing (2024) 2024:9

the gain setting of the softclipping effect, [0.3 Hz, 2.0 Hz]
for the rate of the phaser effect, [0.05 s, 0.3 s] for the time
parameter of the slapback delay, and [0.2, 0.5] for the
other parameters of the latter two effects. The samples are
peak normalized to a maximum absolute value of 1.0 after
processing. This dataset is referred to as GuitarSetVFX
and contains 89,880 samples per effect with a total dura-
tion of just under 100 h. The corresponding pairs of clean
and processed samples from the GuitarSetEQ and Gui-
tarSetVFX datasets are used to train a single HT Demucs
network to learn effect removal. The application of phaser
and slapback delay is done using Pedalboard [30], while
softclipping is customarily implemented through the
input/output relation

with the gain parameter g, the softclipping input signal
x, and the output signal y. x is peak-normalized before
applying softclipping. A summary of these effects is given
in Table 1.

Another dataset called GuitarSetCFX was made by
randomly sampling five different parameter setting tuples
for each of the effects and creating a processed version
of the GuitarSetEQ dataset for each tuple. This results in
15 sub-datasets with 12,840 samples and a duration of
around 14 h each.

Lastly, a test dataset was created based on parts of
the IDMT-SMT-GUITAR dataset. The recordings of
its fourth sub-dataset, which were made with an Ibanez

(4)y = tanh(g · x),

RG2820 guitar, were first split into segments of four
seconds length each and downsampled to 16 kHz. This
dataset, consisting of the unprocessed, clean samples, is
referred to as IDMTClean. The samples were then pro-
cessed with all effects and parameter settings given in
Table 2. The resulting dataset is referred to as IDMTCFX.

2.3 Training
A single HT Demucs network was trained, covering all
three investigated effects, using the GuitarSetEQ and
GuitarSetVFX datasets for the target and source sam-
ples, respectively. A 80:20 training/validation split was
used. Optimization was performed with the Adam opti-
mizer and a learning rate of 3 · 10−4 . In total, 273 training
epochs were performed, where the training was manually
aborted once it had converged. For all networks, the loss
function L was

with the mean absolute error L1 and the multi-scale
short-time Fourier transform (MR-STFT) loss [31], the
latter taken from the auraloss python library [32]. By
default, HT Demucs uses the signal-to-distortion ratio
as its loss function. However, we found that the loss
according to Eq. 5 yielded less artifacts and better overall
quality.

The GCNTFs were trained, one for each effect, using
the GuitarSetCFX dataset as target samples and the
regenerated GuitarSetCFX, where the trained HT
Demucs network regenerated the clean, unprocessed
samples, used as source samples. The other training
parameters were identical to the training of HT Demucs,
except that 300 epochs were trained. All samples were
peak-normalized before feeding them to the networks.

2.4 Listening test
To assess the quality of the copied guitar effects, we per-
formed MUSHRA tests at the Institut für Information-
sverarbeitung with a total of eight subjects, all of them
in the age range of 18–27 years. All subjects had some
level of musical experience, all playing an instrument.
In total, three guitar effects were evaluated, namely soft-
clipping, slapback delay, and phaser effect as summa-
rized in Table 1. The order in which these guitar effects
were presented was random for each subject. Further-
more, the samples corresponding to one guitar effect
were presented in random order. The tests were per-
formed double blind using the WebMUSHRA software
[33]. The software shows a rating label for each intervals
of 20 points lengths next to the rating controller that is
supposed to guide the subject in its rating. These labels
range from “bad,” for MUSHRA scores between zero
and 20, up to “good,” for MUSHRA scores between 60

(5)L = L1+MR-STFT,

Table 1 Overview of the investigated guitar effects, their
parameters and the respective implementations used

Effect Parameters Source

Softclipping Gain Custom

Phaser Rate, depth, mix Pedalboard [30]

Slapback delay Time, mix Pedalboard [30]

Table 2 The parameter settings for each guitar effect used in
the IDMTCFX dataset. The boldfaced settings were chosen for the
MUSHRA listening test. For softclipping, the gain is given in dB

Effects

 Setting
number

Softclipping Phaser Slapback delay

1 5 (0.3, 0.48, 0.43) (0.15, 0.5)
2 8 (0.3, 0.49, 0.4) (0.19, 0.22)
3 10 (1.0, 0.5, 0.5) (0.19, 0.42)

4 12 (1.37, 0.41, 0.36) (0.21, 0.44)
5 13 (1.81, 0.43, 0.38) (0.24, 0.43)

Page 6 of 17Hinrichs et al. EURASIP Journal on Audio, Speech, and Music Processing (2024) 2024:9

and 80, and “excellent,” for MUSHRA scores between 80
and 100. Before testing, all subjects were introduced into
the general MUSHRA procedure by the main authors
using a single example which was not part of the actual
MUSHRA test. The subjects were additionally encour-
aged to rate the samples according to their own, sub-
jective impression, emphasizing that any value ranging
from zero to 100 was perfectly fine, if they considered it
to be an accurate assessment, as long as it abides to the
MUSHRA regulations. These regulations require one
stimulus to be assigned the rating zero and one stimulus
to be assigned the rating 100.

2.4.1 Conditions
For each of the three investigated effects, five test con-
ditions were tested: the reference condition REF, which
is the clean guitar signal processed by the reference gui-
tar plugin, i.e., the reference effect. The anchor condi-
tion ANCHOR, which is the original clean guitar signal
without any processing. Finally, the NN200, NN500,
and NN1000 conditions correspond to the original clean
guitar samples processed by the GCNTFs after training
with 200, 500, or 1000 training samples, respectively. The
corresponding total durations of the training samples are
800 s, 2000 s, and 4000 s.

These training samples were chosen randomly and
inclusively from the GuitarSetCFX dataset, i.e., such that
all training samples of the NN200 condition were part
of the training samples of the NN500 condition, and all
training samples of the NN500 condition were part of the
training samples of the NN1000 condition.

The reason for testing models trained using different
numbers of samples was the fact that in a real scenario,
where a target guitar sound of a song is supposed to be
copied, at best about 3 min of guitar can be used. While
still far away from a total duration of 3 min, investigat-
ing the impact of a reduced number of training samples
was an interesting research question. Figure 2 depicts the

signal flowchart for each condition. There, Heff ,K is the
GCNTF network after training with K samples.

2.4.2 Stimuli
For each considered guitar effect, three different param-
eter settings were considered, each applied to the same
five clean guitar samples. The parameter settings were
selected to depict a wide range of settings for at least one
of the effect parameters. This means, for example, that for
the phaser effect, one setting with slow, medium, and fast
modulation rate each were chosen from the five tuples
that were determined during the creation of the Gui-
tarSetCFX dataset. The parameter settings used in the
listening test are highlighted in Table 2 using bold font.
Regarding the guitar samples, three of the five samples
for each effect were chosen randomly, whereas the other
two samples were chosen by hand because their respec-
tive musical styles were considered to fit the given effect.
For softclipping, prior informal listening tests suggested
that HT Demucs yields decreasing performance above a
gain of about 15 db. This is why the highest considered
gain is below 15 dB for softclipping. All samples used in
the MUSHRA listening tests were loudness normalized
according to the ITU-R BS.1770-4 recommendation [34].

The ANCHOR samples were taken from the IDMT-
Clean dataset, with the REF samples being the corre-
sponding processed samples from the IDMTCFX dataset.
The stimuli were created by processing the clean guitar
samples with the trained GCNTF models for the respec-
tive effect, parameter setting, and dataset size. Most
importantly, for the softclipping effect only, each sam-
ple was processed twice by the GCNTF models since the
effect was considered too weak after a single pass. The
quality after a single pass was not per se bad but would
have obviously been noticed by subjects of the listening
tests. This is picked up on in the discussion. Some audio
examples showcasing the effect removal of HT Demucs
as well as a few samples from the MUSHRA listening test

Fig. 2 Flowchart of the generation of the test stimuli of the MUSHRA test. Heff is the respective reference guitar effect, e.g., Pedalboard phaser, Ĥeff ,K
is the learned guitar effect, obtained as depicted in Fig. 1, using K samples during training. By processing clean guitar signals by Ĥeff ,K we obtain
the NN200, NN500 and NN1000 conditions. The ANCHOR condition is the unprocessed clean guitar signal

Page 7 of 17Hinrichs et al. EURASIP Journal on Audio, Speech, and Music Processing (2024) 2024:9

can be found under https:// rhtnt. github. io/ Blind Effec
tExtr action/. The url furthermore contains a link to the
complete set of stimuli of the MUSHRA test as well as
additional audio material.

2.5 Objective evaluation
To assess some aspects of the proposed method objec-
tively, we evaluated the samples regenerated by HT
Demucs with respect to signal-to-distortion ratio (SDR)
by comparing the regenerated samples to the correspond-
ing original, unprocessed clean audio samples. This SDR,
hereonforth called Output SDR, was compared to the
SDR of the processed samples before application of HT
Demucs, hereonforth called Input SDR. If HT Demucs
is effective in removing the guitar effects, the difference
between the Output SDR and the Input SDR should be
positive. This objective evaluation was performed on
three different datasets/test cases: first, the Output SDR
and Input SDR was assessed for guitar samples coming
from the validation split of the dataset used for training
HT Demucs, i.e., the GuitarSetVFX dataset.

Then, to assess generalization to unseen guitar or
recording types, Output SDR and Input SDR was
assessed for guitar samples taken from the IDMTCFX
dataset. Finally, to assess the possible generalization capa-
bilities to unseen effect implementations, a new dataset
was created, hereonforth called GuitarSetVFX-3P, which
took the samples of the GuitarSetEQ dataset, but now,
for each effect and sample, one out of three effect imple-
mentations was randomly selected. These effect imple-
mentations are given in Table 3. Note that these were not
used for the creation of the GuitarSetCFX dataset. The
different softclipping implementations each used a dif-
ferent characteristic curve. HT Demucs was then newly
trained on this GuitarSetVFX-3P dataset and evaluated
with respect to Output-SDR and Input-SDR on the Gui-

tarSetCFX dataset, which used (for this newly trained
HT Demucs) unseen effect implementations. For each
Output SDR and Input SDR assessment, 1000 randomly
selected samples were used. Furthermore, using the
results of the listening tests, we assessed the correlation
of the MUSHRA Scores with the values of the L1, MR-
STFT, and the actual loss L ≡ L1+MR− STFT , as given
in Eq. 5, used for training the GCNTF and HT Demucs.
This allows to give further insight into the importance of
the different metrics on a per effect basis.

3 Results
Figure 3 shows an example of a regenerated waveform
created by HT Demucs, where the softclipping effect is
approximately removed. Some mild artifacts remain, but
the original waveform is approximately regenerated.

Example waveforms of the learned softclipping
effect are depicted in Fig. 4, where the conditions are
as in Sec. 2.4.1. While the dynamics of the learned
effects match the REF signal roughly, the shape of the

Table 3 Overview of the effect implementations and parameters
used for the GuitarSet VFX-3P data set

Effect Producer Parameter

Softclipping Kilohearts Distortion Overdrive Gain

Kilohearts Distortion Hardclip

Kilohearts Distortion Saturate

Phaser BlueCat Audio Rate, depth, mix

Kilohearts

ChowDSP Rate, depth

Slapback delay FullBucket Time, mix

Kilohearts

HY

Fig. 3 Waveforms of a section of a clean guitar signal (Target), the same signal with a softclipping effect with 13 dB gain (Effect Signal),
and the signal that was regenerated by Hybrid Transformer Demucs (Demucs Output)

https://rhtnt.github.io/BlindEffectExtraction/
https://rhtnt.github.io/BlindEffectExtraction/

Page 8 of 17Hinrichs et al. EURASIP Journal on Audio, Speech, and Music Processing (2024) 2024:9

waveforms, especially at the largest peaks, is quite dif-
ferent, resulting in an audible difference in the distri-
bution of the harmonic overtones. This was mentioned
to the authors by one of the test subjects. Example
waveforms for the learned phaser and slapback delay
effect are depicted in Figs. 5 and 6, respectively. For the
phaser effect, a phase shift of 180◦ (polarity inversion)
of the waveforms of the NN200 and NN1000 condition
is apparent, which was occasionally observed through-
out our work for different effects. Figure 7 depicts the
corresponding spectrograms, which reveal that the
phaser effect indeed was learned for the NN1000 con-
dition and just barely for the NN500 condition. The

NN200 condition in this case does not exhibit the typi-
cal phaser pattern.

3.1 Listening test
Boxplots of the MUSHRA scores are depicted for the
softclipping effect in Fig. 8, for the phaser effect in Fig. 9,
and for the slapback delay effect in Fig. 10.

The median ratings of the NN200 and NN500 condi-
tion for the phaser effect are considerably worse than that
of the NN1000 condition due to the fact that the effect
is barely or not at all audible for the former two, as can
be exemplary seen in Fig. 7. 95% confidence intervals
of the median MUSHRA scores, for all test conditions,
computed by bootstrapping, are given in Table 4. The

Fig. 4 Waveforms of a section of a REF sample processed by the reference softclipping effect with 13 dB gain and the corresponding output
signals of NN200, NN500, and NN1000

Fig. 5 Waveforms of a section of a REF sample processed by the reference phaser effect with setting (1.0, 0.5, 0.5) and corresponding output
signals of NN200, NN500, and NN1000

Page 9 of 17Hinrichs et al. EURASIP Journal on Audio, Speech, and Music Processing (2024) 2024:9

REF and ANCHOR conditions were reliably recognized
by the subjects. Outliers are most likely due to fatigue
or hard-to-hear settings. For example, the five largest
MUSHRA scores of the ANCHOR condition in Fig. 8 all
occurred for the lowest gain setting of the softclipping
effect. A one-way analysis of variance (ANOVA) revealed
significant differences between the test conditions for all
guitar effects with F(4, 115) = 334.9 (p < 0.05) for the
softclipping effect, F(4, 115) = 126.3 (p < 0.05) for the
phaser effect, and F(4, 115) = 207.1 (p < 0.05) for the
slapback delay effect.

Ten Bonferroni-adjusted Wilcoxon signed-rank tests
were performed per effect to investigate pairs of test
conditions. The new threshold of significance after

Bonferroni-adjustment was p = 0.005 . Four of these
Wilcoxon signed-rank tests compared all other test con-
ditions to the ANCHOR condition and revealed signifi-
cant differences of the medians (p < 0.001) . The other
comparisons and corresponding p-values are listed in
Table 5. Except for the phaser effect and the NN1000
condition, where the NN1000 condition achieved a per-
fect median MUSHRA score of 100, for all effects, sig-
nificant differences were found between the REF and
the NN200 to NN1000 condition. However, this only
means that the subjects, on average, identified a differ-
ence, not that the quality was poor. For the slapback delay
effect, no significant differences between the NN200 to
NN1000 conditions were observed. There, the NN200 to

Fig. 6 Waveforms of a section of a REF sample processed by the reference slapback delay effect with setting (0.15, 0.5) and corresponding output
signals of NN200, NN500, and NN1000

Fig. 7 Spectrograms of a REF sample processed by the reference phaser effect with parameter setting (1.0, 0.5, 0.5) and corresponding output
signals of NN200, NN500, and NN1000

Page 10 of 17Hinrichs et al. EURASIP Journal on Audio, Speech, and Music Processing (2024) 2024:9

Fig. 8 MUSHRA scores of all three investigated test conditions as well as the ANCHOR and REF condition for the softclipping effect across all
tested effect settings. Anchor and reference were correctly recognized by the subjects with few exceptions, where the five largest outliers
for the anchor condition occurred for the weakest softclipping setting, i.e., when the effect was just barely audible

Fig. 9 MUSHRA scores of all three investigated test conditions as well as the ANCHOR and REF condition for the phaser effect across all tested
effect settings. Anchor and reference were correctly recognized by the subjects with few exceptions

Fig. 10 MUSHRA scores of all three investigated test conditions as well as the ANCHOR and REF condition for the slapback delay effect across all
tested effect settings. Anchor and reference were correctly recognized by the subjects with few exceptions

Page 11 of 17Hinrichs et al. EURASIP Journal on Audio, Speech, and Music Processing (2024) 2024:9

NN1000 conditions achieved median MUSHRA scores
of 92.5 and more. In contrast, significant differences were
observed for the NN200 to NN1000 conditions for the
softclipping effect, where the NN200 achieved superior
performance to the NN500 and NN1000 condition with
a median MUSHRA score of 93.5, compared to 77.5 and
74.0 for the NN500 and NN1000 condition, respectively.

3.2 Objective evaluation
For softclipping and phaser, Output SDR across Input
SDR for all three test cases as described in Sect. 2.5 is
depicted in Fig. 11. For slapback delay, corresponding

Table 4 95% confidence intervals of the median MUSHRA score for all test conditions of the listening test across all parameter settings
and all guitar effects investigated. Confidence intervals were computed through bootstrapping with 10000 resamples

NN200 NN500 NN1000 REF ANCHOR

Softclipping 93.5± 6.5 77.5± 7.5 74.0± 6.0 100.0± 0.0 0.0± 0.0

Phaser 21.5± 21.5 45.5± 14.5 100.0± 0.0 100.0± 0.0 0.0± 0.0

Slapback delay 94.25± 5.75 94.0± 6.0 92.5± 7.5 100.0± 0.0 0.0± 0.0

Table 5 Some p-values of the Bonferroni-adjusted Wilcoxon-
signed-rank-tests for the results of the MUSHRA listening tests.
Boldface values indicate statistical significance after applying
Bonferroni’s correction

Conditions Effects

 A B Softclipping Phaser Slapback delay

NN200 NN500 < 0.001 0.028 0.44

NN200 NN1000 < 0.001 < 0.001 0.88

NN500 NN1000 0.003 < 0.001 0.53

NN200 Reference < 0.001 < 0.001 < 0.001

NN500 Reference < 0.001 < 0.001 < 0.001

NN1000 Reference < 0.001 0.014 < 0.001

Fig. 11 Output SDR across Input SDR for HT Demucs processed, i.e., regenerated, samples for softclipping and phaser and the three test cases
as described in Sec. 2.5. Note the different y-axis scalings

Page 12 of 17Hinrichs et al. EURASIP Journal on Audio, Speech, and Music Processing (2024) 2024:9

results are shown in Fig. 12. Note the different y-axis
scalings.

Corresponding averages of Output-SDR (OSDR),
Input-SDR (ISDR), and �SDR := OSDR− ISDR for the
respective test cases are summarized in Table 6.

In all scenarios, HT Demucs achieves at least some
level of sample regeneration for all three guitar effects.
The greatest improvement with respect to SDR was
observed for softclipping with an at least 8.4 dB differ-
ence in average �SDR . Improvements were considerably
smaller for phaser and slapback delay, at worst 0.7 dB and
0.8 dB and at best 4.1 dB and 2.4 dB, respectively. Gen-
erally, for phaser and slapback delay, higher Input SDR
values were observed, almost certainly due to their type
of processing, which is not, unlike softclipping, by defini-
tion based on signal distortion. Going by SDR, softclip-
ping and phaser signal regeneration appears to generalize

well to new guitar signals going by the observed change
in Table 6 between the test cases. However, HT Demucs
appears to generalize worse to unseen phaser imple-
mentations compared to unseen slapback delay imple-
mentations as the �SDR drops to 0.7 dB for the phaser
compared to an increase to 2.4 dB for the slapback delay
on the GuitarSetVFX-3P dataset. Going by the results,
HT Demucs appears to generalize at least partially to
unknown/unseen guitar signals and effect implementa-
tions. While the improvement in SDR might suggest a
good performance of HT Demucs for softclipping, sub-
jectively, effect removal was actually worst for it on aver-
age. The likely cause are the types of signal distortions
introduced, which should distort high frequency signal
components more than low frequency components. This
would explain why high SDRs or high SDR improvements
do not necessarily yield corresponding improvements in

Fig. 12 Output SDR across Input SDR for HT Demucs processed, i.e., regenerated, samples for slapback delay and the three test cases as described
in Sec. 2.5. Note the different y-axis scalings

Table 6 Overview of the average Output SDR (OSDR), Input SDR (ISDR), and the difference �SDR := OSDR − ISDR for the test cases of
the effect removal as described in Sec. 2.5. For �SDR , values in parentheses denote standard deviations also in dB

Test case Effect Input SDR [dB] Output SDR [dB] �SDR [dB]

GuitarSetVFX Softclipping − 9.7 3.5 13.2 (3.65)

Phaser 5.1 7.9 2.8 (1.77)

Slapback delay 7.2 9.6 2.4 (3.2)

IDMTCFX Softclipping − 8.8 4.4 13.2 (4.63)

Phaser 4.6 8.7 4.1 (2.99)

Slapback delay 6.5 7.3 0.8 (3.62)

GuitarSetVFX-3P Softclipping − 10.4 − 2.0 8.4 (2.1)

Phaser 3.9 4.6 0.7 (1.03)

Slapback delay 5.4 8.8 3.4 (2.16)

Page 13 of 17Hinrichs et al. EURASIP Journal on Audio, Speech, and Music Processing (2024) 2024:9

subjective quality. This is supported by a comparison of
the MR-STFT loss values on the GuitarCFX dataset. The
median MR-STFT loss value for the softclipping is about
2–4 times higher than for phaser and slapback delay.

While generally there was a considerable correlation
between MUSHRA Scores and corresponding losses
as can be seen in Table 7, some interesting exceptions
exist and can be observed in Fig. 13: for the phaser and
the NN1000 condition, no clear association of the L1 or
MR-STFT loss with the MUSHRA scores exist. Actually,

for all phaser samples, the L1 loss was within the range
of about 0.2–0.4, similarly for the MR-STFT loss, yet, the
corresponding MUSHRA scores appear randomly dis-
tributed within a range of about 70–100. An association
is clear for the NN500 condition, which shows a great
increase in MUSHRA scores with decreasing L1 loss and
similarly an increase in MUSHRA scores with a decrease
in MR-STFT loss. The NN200 condition, while not as
erratic with respect to the MUSHRA score-loss asso-
ciation as the NN1000 condition, shows a considerably

Table 7 Correlation coefficients between the MUSHRA scores and the L1 and MR-STFT errors for the conditions of the MUSHRA
listening test. In the last row (“Total”), the samples of the different conditions are considered together. L is the sum of the L1 and
MR-STFT errors and is the loss function used for training HT Demucs and the GCNTF networks

Softclipping Phaser Slapback delay

L1 MR-STFT L L1 MR-STFT L L1 MR-STFT L

NN200 − 0.308 − 0.508 − 0.49 − 0.908 − 0.551 − 0.834 − 0.327 − 0.453 − 0.435

NN500 − 0.668 − 0.804 − 0.794 − 0.833 − 0.813 − 0.825 0.312 − 0.51 − 0.165

NN1000 − 0.8 − 0.788 − 0.797 − 0.155 0.379 0.25 − 0.462 − 0.583 − 0.579

Total − 0.693 − 0.789 − 0.784 0.035 − 0.738 − 0.658 − 0.021 − 0.518 − 0.38

Fig. 13 Distribution of the MUSHRA Scores of the individual samples as a function of the objective metrics. a, b Softclipping. c, d Phaser.
e, f Slapback delay

Page 14 of 17Hinrichs et al. EURASIP Journal on Audio, Speech, and Music Processing (2024) 2024:9

less clear connection between MUSHRA scores and loss
values. The most erratic behavior was observed for the
slapback delay and the L1 loss: most samples for all con-
ditions exhibit an L1 loss in the range of about 0–0.075,
yet, the corresponding MUSHRA scores are scattered
across a range of about 50 to 100. While still consider-
ably noisy, the corresponding MR-STFT loss values show
some linear dependency of the MUSHRA Scores on the
MR-STFT losses.

When combining the losses, as done during training,
and assessing the relationship between this combined
loss to the MUSHRA score, a somewhat less erratic
relationship arises as can be seen in Fig. 14. However,
even combined, for the phaser and the NN1000 condi-
tion, there does not appear to be a clear pattern in the
MUSHRA score-loss scatterplot. A possible explana-
tion could be that the observed differences in MUSHRA
scores are due to chance, and for the entire loss range
from about 0.5 to about 1.0, the GCNTF achieved about
the same quality, which was close to perfect.

4 Discussion
This work investigates blind extraction of guitar effects
through blind system inversion followed by neural effect
learning. For blind system inversion, we used Hybrid
Transformer Demucs (HT Demucs), and for neural effect
modeling, we used gated convolutional network with
temporal feature-wise linear modulation (GCNTF).

In general, it proved to be possible to blindly copy a
given guitar effect, for all effects one of the conditions
achieved a median MUSHRA score above 80, which cor-
responds to excellent quality according to MUSHRA

regulations. Unfortunately, there was no consistent best
condition, i.e., the number of training samples yielding
the best performing model depended on the guitar effect.
Additionally, even 200 samples are way too many for
a real application, seeing that a music piece of ordinary
lengths will cover at most about 3 min of guitar sam-
ples, which correspond to about 45 samples of 4 s length.
Our current results do not allow to achieve good qual-
ity with this few samples, and a lot of research lies ahead
to achieve this goal. Even when repeatedly training the
GCNTF on a few training samples and testing on these
very samples, the GCNTF did not appear to learn the
respective guitar effect. For the slapback delay effect, the
delayed part of the stimuli signals created by the GCNTF
sound slightly smeared in some samples, which is a pos-
sible explanation for the outliers depicted in the boxplots.
For softclipping, the effect of the GCNTF processed sam-
ples sounded too weak if applied only once, as if only half
the target gain was applied, and the quality was rated by
the authors considerably better after a second process-
ing. While in reality a single pass should suffice, to get
an independent judgment for an additional effect, we
decided to investigate this two-pass version nonetheless,
to see whether softclipping can, in principle, be copied
in the proposed way. The cause of this issue certainly is
the insufficient clean signal regeneration by Demucs.
Since the effect was only partially removed, the GCNTF
is merely able to learn the part of the effect that was
removed, resulting in a far lower intensity of the learned
softclipping effect. For the softclipping effect, the NN200
condition achieved a significantly higher MUSHRA score
than the NN500 and NN1000 condition. A hypothesis

Fig. 14 Distribution of the MUSHRA Scores of the individual samples as a function of the sum of the objective metrics. a Softclipping. b Phaser.
c Slapback delay

Page 15 of 17Hinrichs et al. EURASIP Journal on Audio, Speech, and Music Processing (2024) 2024:9

is that due to passing the input signal twice through the
GCNTFs for softclipping as previously mentioned, some
additional audable artifacts could arise in the NN500
and NN1000 conditions, which are less present in the
NN200, despite the NN200 condition yielding inferior
performance after a single pass.

For the slapback delay effect, where the NN200 con-
dition also achieved the highest MUSHRA score, the
differences to NN500 and NN1000 condition was not
significant, and thus it is presumed that the quality of the
effect is identical. Seeing that the slapdelay delay effect
is simpler than, e.g., the phaser effect, the number of
training samples having no apparent impact on the qual-
ity of the modeled effect is reasonable. Generally, the
effect modeling was found to be rather repeatable, with
either yielding identically good effect quality each time
or showing only minor variations from training to train-
ing. The limiting factor of the proposed approach cur-
rently is HT Demucs, which can regenerate a sufficient
approximation of the clean input signals only for a hand-
ful of guitar effects, and in some of these cases, consider-
able artifacts still remain. Though, despite these artifacts,
sometimes the guitar effects are removed just enough
to allow learning them, i.e., perfect removal was found
to not be necessary in general. To make it very clear: in
all our experiments, given a sufficient effect removal in
the input signals, the GCNTFs never failed to yield high
quality effect copies. The issue is HT Demucs, not the
GCNTF.

4.1 Comparison to other work
Our approach to blindly copy a target guitar effect is
closely related to the generative approach by Wright et al.
[19], the only other work to blindly model a target guitar
effect sound to the best knowledge of the authors. They
even achieved very similar performance in their listening
test. However, they copy both, effects and timbre of the
guitar, while in our approach, the goal is to not copy the
timbre of a target guitar but only the applied guitar effect.
Depending on the application, this can be an advantage
or a disadvantage. The result of our approach is a neu-
ral effect model, which could be applied to any guitar
without affecting its characteristic timbre. Going by the
audio examples provided by Wright et al., their genera-
tive approach is generally capable of copying timbre and
effect but appears to sometimes modify the sequence of
tones, such that the target, reference tone sequence is
mixed up and somewhat modified (e.g., higher notes) in
the copy. This is a considerable disadvantage for the aim
of allowing to copy a sound of a guitar. In that aspect, our
approach is considerably superior as this cannot hap-
pen due to the method we apply. Their approach and
ours appears to require a similar amount of data to yield

sufficient performance; however, due to our use of HT
Demucs, our approach would be considerably more com-
putationally complex.

4.2 Limitations
In this work, we only investigated blind extraction of gui-
tar effects using guitar only samples, i.e., no other instru-
ments were present in the recordings. Furthermore, only
one implementation per guitar effect was used. While
we did a few successful tests with instrument mixes and
different implementations, the performance is far from
sufficient and a lot of further work is required to yield
useful results. Some general limits or constraints exist
to our approach: the guitar input signal of a target gui-
tar effect has to be sufficiently rich in spectral content to
allow blind extraction of an “entire” effect. This is due to
the regeneration of the clean input signal and is known
from blind system identification theory [35]. Examples
can be easily thought up, e.g., a guitar effect that acts dif-
ferently depending on the frequency content of the input
signal processing a signal which only contains a certain
frequency region. Some, currently unknown, key char-
acteristics of the clean input guitar signal have to be
left unmodified by a target guitar effect to allow to esti-
mate the input signal. However, how much these limits
will actually prohibit blind effect copies is not clear as,
e.g., no signal model1 exists for guitars. Furthermore,
the proposed system does not allow the tweaking of
effect parameters, meaning that learned effects cannot
be modified by hand afterwards. If a modification of the
sound of the learned effect is desired, additional pre- or
postprocessing (e.g., equalization) has to be introduced
afterwards. This limitation is shared with the approach
of Wright et al. [19]. Allowing to tweak the sound of
the learned model could be perhaps achieved using pre-
trained effect embeddings and a powerful, pretrained
effect modeling network. Modulating extracted embed-
dings could then allow modulating the copied guitar
sound2.

4.3 Future work
One obvious research endeavor is the improvement of
HT Demucs or the development of other approaches,
specifically designed for effect removal, seeing that HT
Demucs is currently the bottleneck of the proposed
approach. Additionally, to potentially allow subsequent
modification of the learned effect, disentangled autoen-
coders could be applied, similar to approaches to voice

1 In the sense of, e.g., ratios of overtones and rate of decay among others
distinguishing guitars from other instruments.
2 Idea due to our colleague Lars Rumberg.

Page 16 of 17Hinrichs et al. EURASIP Journal on Audio, Speech, and Music Processing (2024) 2024:9

conversion [36]. If a sufficiently powerful autoencoder
was used to process a guitar signal that has been pro-
cessed by some guitar effect, and the said autoencoder
yielded a disentangled latent representation of the guitar
signal which separates the original, clean guitar signal
from the effect processing used to compute the processed
guitar signal, subsequent modification of the effect
sound might be feasible. In the latent space, the compo-
nents corresponding to the clean guitar signal could be
replaced by a new guitar signal to be processed, while the
components of the latent space corresponding to the gui-
tar effect could be modified in a desired way.

5 Conclusions
This work investigates blind extraction of guitar effects
using Hybrid Transformer Demucs for blind system
inversion and gated convolutional network with tem-
poral feature-wise linear modulation for neural guitar
effect modeling. The proposed method is tested with the
phaser, softclipping, and slapback delay effect. Listening
tests with eight subjects indicated excellent quality of the
the blind copies, i.e., little to no difference to the refer-
ence guitar effect.

Acknowledgements
The authors would like to thank all subjects that participated in our study.

Authors’ contributions
R.H.: idea, main author, study design. K.G.: idea refinement, implementation,
study design and execution, proof-reading. A.L.: proof-reading. J.O.: supervi-
sion, proof-reading. R.H. and K.G. declare equal contribution.

Funding
Open Access funding enabled and organized by Projekt DEAL. The research
has not been funded by third parties.

Availability of data and materials
All stimuli of the MUSHRA test and additional audio material can be found
under https:// rhtnt. github. io/ Blind Effec tExtr action/ or https:// seafi le. cloud. uni-
hanno ver. de/d/ 2aafe 578ae 7b4bb 0beaa/.

Declarations

Ethics approval and consent to participate
All subjects gave their informed consent to participate. All subjects agreed to
anonymous usage of their results.

Consent for publication
All subjects gave their informed consent to anonymous usage of their data
and results in scientific publications.

Competing interests
The authors declare that they have no competing interests.

Received: 30 June 2023 Accepted: 22 January 2024

References
 1. T. Wilmering, D. Moffat, A. Milo, M. Sandler, A history of audio effects.

Appl. Sci. 10, 791 (2020). https:// doi. org/ 10. 3390/ app10 030791
 2. A. Sarti, U. Zoelzer, X. Serra, M. Sandler, S. Godsill, Digital audio effects.

EURASIP J. Adv. Signal Proc. 2010(1), 459654 (2011). https:// doi. org/ 10.
1155/ 2010/ 459654

 3. U. Zölzer, DAFX: Digital Audio Effects, 2nd edn. (Wiley, Chichester, 2011)
 4. A.P. McPherson, J.D. Reiss, Audio Effects: Theory, Implementation and Appli-

cation (CRC Press, Boca Raton, 2014)
 5. M. Stein, J. Abeßer, C. Dittmar, G. Schuller, Automatic detection of audio

effects in guitar and bass recordings (J. Audio Eng, Soc, 2010)
 6. H. Jürgens, R. Hinrichs, J. Ostermann, in Proceedings of the 23rd Interna-

tional Conference on Digital Audio Effects (DAFx2020), Recognizing guitar
effects and their parameter settings (2020). https:// www. dafx. de/ paper-
archi ve/ 2020/ proce edings/ papers/ DAFx2 020_ paper_2. pdf. Accessed 30
Jan 2024

 7. R. Hinrichs, K. Gerkens, J. Ostermann, in 11th International Conference on
Artificial Intelligence in Music, Sound, Art and Design (EvoMUSART), Springer,
Classification of guitar effects and extraction of their parameter settings
from instrument mixes using convolutional neural networks (2022).
https:// doi. org/ 10. 1007/ 978-3- 031- 03789-4_7

 8. R. Hinrichs, K. Gerkens, A. Lange, J. Ostermann, Convolutional neural
networks for the classification of guitar effects and extraction of the
parameter settings of single and multi-guitar effects from instrument
mixes. EURASIP J. Audio Speech Music Process. 2022(1) (2022). https://
doi. org/ 10. 1186/ s13636- 022- 00257-4

 9. M. Stein, in 13th International Conference on Digital Audio Effects, DAFx 2010
Proceedings, Automatic detection of multiple, cascaded audio effects in
guitar recordings (2010). https:// dafx. de/ paper- archi ve/ 2010/ DAFx10/
Stein_ DAFx10_ P18. pdf. Accessed 30 Jan 2024

 10. F. Eichas, M. Fink, U. Zölzer, in Proceedings of the 18th International Confer-
ence on Digital Audio Effects (DAFx-15), Feature design for the classification
of audio effect units by input/ output measurements (2015). https://
www. dafx. de/ paper- archi ve/ 2015/ DAFx- 15_ submi ssion_6. pdf. Accessed
30 Jan 2024

 11. M. Schmitt, B. Schuller, in INFORMATIK 2017, Recognising guitar effects -
which acoustic features really matter? (Gesellschaft für Informatik, Bonn,
2017), pp. 177–190. https:// doi. org/ 10. 18420/ in2017_ 12

 12. N. Masuda, D. Saito, in Proceedings of the 24rd International Conference on
Digital Audio Effects (DAFx2021), Quality diversity for synthesizer sound
matching (2021). https:// dafx2 020. mdw. ac. at/ proce edings/ papers/ DAFx2
0in21_ paper_ 46. pdf. Accessed 30 Jan 2024

 13. M.J. Yee-King, L. Fedden, M. d’Inverno, Automatic programming of VST
sound synthesizers using deep networks and other techniques. IEEE
Trans. Emerg. Top. Comput. Intell. 2(2), 150–159 (2018). https:// doi. org/ 10.
1109/ TETCI. 2017. 27838 85

 14. D. Sheng, G. Fazekas, in Proceedings of the 20rd International Conference on
Digital Audio Effects (DAFx2017), Automatic control of the dynamic range
compressor using a regression model and a reference sound (2017).
https:// dafx17. eca. ed. ac. uk/ papers/ DAFx17_ paper_ 44. pdf. Accessed 30
Jan 2024

 15. D. Sheng, G. Fazekas, in 2019 International Joint Conference on Neural Net-
works (IJCNN), A feature learning siamese model for intelligent control of
the dynamic range compressor (2019), pp. 1–8. https:// doi. org/ 10. 1109/
IJCNN. 2019. 88519 50

 16. M. Comunitá, D. Stowell, J.D. Reiss, Guitar effects recognition and param-
eter estimation with convolutional neural networks. J. Audio Eng. Soc.
69(7/8), 594–604 (2021)

 17. S. Lee, J. Park, S. Paik, K. Lee, in ICASSP 2023 - 2023 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), Blind estimation
of audio processing graph (2023), pp. 1–5. https:// doi. org/ 10. 1109/ ICASS
P49357. 2023. 10096 581

 18. C. Peladeau, G. Peeters. Blind estimation of audio effects using an
auto-encoder approach and differentiable signal processing (2023),
arXiv:2310.11781

 19. A. Wright, V. Välimäki, L. Juvela, in ICASSP 2023 - 2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Adversarial
guitar amplifier modelling with unpaired data (2023), pp. 1–5. https:// doi.
org/ 10. 1109/ ICASS P49357. 2023. 10094 600

https://rhtnt.github.io/BlindEffectExtraction/
https://seafile.cloud.uni-hannover.de/d/2aafe578ae7b4bb0beaa/
https://seafile.cloud.uni-hannover.de/d/2aafe578ae7b4bb0beaa/
https://doi.org/10.3390/app10030791
https://doi.org/10.1155/2010/459654
https://doi.org/10.1155/2010/459654
https://www.dafx.de/paper-archive/2020/proceedings/papers/DAFx2020_paper_2.pdf
https://www.dafx.de/paper-archive/2020/proceedings/papers/DAFx2020_paper_2.pdf
https://doi.org/10.1007/978-3-031-03789-4_7
https://doi.org/10.1186/s13636-022-00257-4
https://doi.org/10.1186/s13636-022-00257-4
https://dafx.de/paper-archive/2010/DAFx10/Stein_DAFx10_P18.pdf
https://dafx.de/paper-archive/2010/DAFx10/Stein_DAFx10_P18.pdf
https://www.dafx.de/paper-archive/2015/DAFx-15_submission_6.pdf
https://www.dafx.de/paper-archive/2015/DAFx-15_submission_6.pdf
https://doi.org/10.18420/in2017_12
https://dafx2020.mdw.ac.at/proceedings/papers/DAFx20in21_paper_46.pdf
https://dafx2020.mdw.ac.at/proceedings/papers/DAFx20in21_paper_46.pdf
https://doi.org/10.1109/TETCI.2017.2783885
https://doi.org/10.1109/TETCI.2017.2783885
https://dafx17.eca.ed.ac.uk/papers/DAFx17_paper_44.pdf
https://doi.org/10.1109/IJCNN.2019.8851950
https://doi.org/10.1109/IJCNN.2019.8851950
https://doi.org/10.1109/ICASSP49357.2023.10096581
https://doi.org/10.1109/ICASSP49357.2023.10096581
https://doi.org/10.1109/ICASSP49357.2023.10094600
https://doi.org/10.1109/ICASSP49357.2023.10094600

Page 17 of 17Hinrichs et al. EURASIP Journal on Audio, Speech, and Music Processing (2024) 2024:9

 20. J. Imort, G. Fabbro, M.A.M. Ram’irez, S. Uhlich, Y. Koyama, Y. Mitsufuji, in
International Society for Music Information Retrieval Conference (Learning
how to recover the clean signal, Distortion audio effects, 2022)

 21. M. Rice, C.J. Steinmetz, G. Fazekas, J.D. Reiss, in 2023 IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA), General
purpose audio effect removal (2023), pp. 1–5. https:// doi. org/ 10. 1109/
WASPA A58266. 2023. 10248 157

 22. M. Comunitá, C.J. Steinmetz, H. Phan, J.D. Reiss, in ICASSP 2023 - 2023
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Modelling black-box audio effects with time-varying feature
modulation (2023), pp. 1–5. https:// doi. org/ 10. 1109/ ICASS P49357. 2023.
10097 173

 23. A. Défossez, N. Usunier, L. Bottou, F. Bach. Music source separation in the
waveform domain (2021), arXiv:1911.13254

 24. A. Défossez. Hybrid spectrogram and waveform source separation (2022),
arXiv:2111.03600

 25. S. Rouard, F. Massa, A. Défossez, in ICASSP 2023 - 2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Hybrid
transformers for music source separation (2023), pp. 1–5. https:// doi. org/
10. 1109/ ICASS P49357. 2023. 10096 956

 26. T. Vanhatalo, P. Legrand, M. Desainte-Catherine, P. Hanna, A. Brusco,
G. Pille, Y. Bayle, A review of neural network-based emulation of guitar
amplifiers. Appl. Sci. 12(12) (2022). https:// doi. org/ 10. 3390/ app12 125894

 27. A. Wright, E.P. Damskägg, V. Välimäki, in Proceedings of the 22nd Inter-
national Conference on Digital Audio Effects (DAFx-19), Birmingham, UK,
September 2–6, 2019, Real-time black-box modelling with recurrent neural
networks (2019). https:// dafx. de/ paper- archi ve/ 2019/ DAFx2 019_ paper_
43. pdf. Accessed 30 Jan 2024

 28. Facebook. Demucs music source separation. Github, https:// github. com/
faceb ookre search/ demucs. Accessed 18 Mar 2023

 29. Q. Xi, R.M. Bittner, J. Pauwels, X. Ye, J.P. Bello, in International Society for
Music Information Retrieval Conference, Guitarset: a dataset for guitar
transcription (2018). https:// archi ves. ismir. net/ ismir 2018/ paper/ 000188.
pdf. Accessed 30 Jan 2024

 30. Spotify AB. Pedalboard (2022). GitHub, https:// github. com/ spoti fy/ pedal
board. Accessed 20 June 2023

 31. R. Yamamoto, E. Song, J.M. Kim. Probability density distillation with gener-
ative adversarial networks for high-quality parallel waveform generation
(2019), arXiv:1904.04472

 32. C.J. Steinmetz, J.D. Reiss, in Digital Music Research Network One-day
Workshop (DMRN+15), Auraloss: Audio focused loss functions in PyTorch
(2020). https:// stati c1. squar espace. com/ static/ 5554d 97de4 b0ee3 b50a3
ad52/t/ 5fb1e 9031c 70895 51a30 c2e4/ 16054 95044 128/ DMRN1 5__ aural
oss__ Audio_ focus ed_ loss_ funct ions_ in_ PyTor ch. pdf. Accessed 30 Jan
2024

 33. M. Schoeffler, S. Bartoschek, F.R. Stöter, M. Roess, S. Westphal, B. Edler,
J. Herre, webMUSHRA — a comprehensive framework for web-based
listening tests. J. Open Res. Softw. (2018). https:// doi. org/ 10. 5334/ jors. 187

 34. ITU-R, Algorithms to measure audio programme loudness and true-peak
audio level. Tech. Rep. BS.1770-4 (International Telecommunication
Union, 2015), https:// www. itu. int/ dms_ pubrec/ itu-r/ rec/ bs/R- REC- BS.
1770-4- 201510- I!!PDF-E. pdf

 35. K. Abed-Meraim, W. Qiu, Y. Hua, Blind system identification. Proc. IEEE
85(8), 1310–1322 (1997). https:// doi. org/ 10. 1109/5. 622507

 36. C. Chan, K. Qian, Y. Zhang, M. Hasegawa-Johnson, in 2022 IEEE International
Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Pro-
ceedings, Speechsplit2.0: unsupervised speech disentanglement for voice
conversion without tuning autoencoder bottlenecks (United States, 2022),
pp. 5243–5247. https:// doi. org/ 10. 1109/ ICASS P43922. 2022. 97477 63

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/WASPAA58266.2023.10248157
https://doi.org/10.1109/WASPAA58266.2023.10248157
https://doi.org/10.1109/ICASSP49357.2023.10097173
https://doi.org/10.1109/ICASSP49357.2023.10097173
https://doi.org/10.1109/ICASSP49357.2023.10096956
https://doi.org/10.1109/ICASSP49357.2023.10096956
https://doi.org/10.3390/app12125894
https://dafx.de/paper-archive/2019/DAFx2019_paper_43.pdf
https://dafx.de/paper-archive/2019/DAFx2019_paper_43.pdf
https://github.com/facebookresearch/demucs
https://github.com/facebookresearch/demucs
https://archives.ismir.net/ismir2018/paper/000188.pdf
https://archives.ismir.net/ismir2018/paper/000188.pdf
https://github.com/spotify/pedalboard
https://github.com/spotify/pedalboard
https://static1.squarespace.com/static/5554d97de4b0ee3b50a3ad52/t/5fb1e9031c7089551a30c2e4/1605495044128/DMRN15__auraloss__Audio_focused_loss_functions_in_PyTorch.pdf
https://static1.squarespace.com/static/5554d97de4b0ee3b50a3ad52/t/5fb1e9031c7089551a30c2e4/1605495044128/DMRN15__auraloss__Audio_focused_loss_functions_in_PyTorch.pdf
https://static1.squarespace.com/static/5554d97de4b0ee3b50a3ad52/t/5fb1e9031c7089551a30c2e4/1605495044128/DMRN15__auraloss__Audio_focused_loss_functions_in_PyTorch.pdf
https://doi.org/10.5334/jors.187
https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1770-4-201510-I%21%21PDF-E.pdf
https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1770-4-201510-I%21%21PDF-E.pdf
https://doi.org/10.1109/5.622507
https://doi.org/10.1109/ICASSP43922.2022.9747763

	Blind extraction of guitar effects through blind system inversion and neural guitar effect modeling
	Abstract
	1 Introduction
	1.1 Background
	1.2 Contribution

	2 Fundamentals
	2.1 Problem description
	2.1.1 Hybrid transformer demucs
	2.1.2 Gated convolution network with temporal FiLM
	2.1.3 Configuration of HT Demucs and the GCNTF

	2.2 Datasets and plugins
	2.3 Training
	2.4 Listening test
	2.4.1 Conditions
	2.4.2 Stimuli

	2.5 Objective evaluation

	3 Results
	3.1 Listening test
	3.2 Objective evaluation

	4 Discussion
	4.1 Comparison to other work
	4.2 Limitations
	4.3 Future work

	5 Conclusions
	Acknowledgements
	References

