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Abstract 

Recent advancements in deep learning-based speech enhancement models have extensively used attention mecha-
nisms to achieve state-of-the-art methods by demonstrating their effectiveness. This paper proposes a transformer 
attention network based sub-convolutional U-Net (TANSCUNet) for speech enhancement. Instead of adopting con-
ventional RNNs and temporal convolutional networks for sequence modeling, we employ a novel transformer-based 
attention network between the sub-convolutional U-Net encoder and decoder for better feature learning. More spe-
cifically, it is composed of several adaptive time―frequency attention modules and an adaptive hierarchical attention 
module, aiming to capture long-term time-frequency dependencies and further aggregate hierarchical contextual 
information. Additionally, a sub-convolutional encoder-decoder model used different kernel sizes to extract multi-
scale local and contextual features from the noisy speech. The experimental results show that the proposed model 
outperforms several state-of-the-art methods.

Keywords Speech enhancement, Adaptive time-frequency attention transformers, Adaptive hierarchical attention, 
Transformer attention network and Sub-convolutional encoder

1 Introduction
Background noise and other residual sounds reduce the 
quality and intelligibility of recorded speech signal in 
a real-time. The goal of speech enhancement (SE) is to 
restore the intended speech by eliminating distracting 
ambient noise and noisy speech mixes. Single-channel 
speech enhancement refers to the scenario where only 
a single mix is available, which is an extreme case of the 
undetermined problem, i.e., the number of sources is 
greater than the number of mixes. This problem is found 
in many real-world applications, such as mobile com-
munications, automatic speech recognition, and robotics 
[1–5].

Data scarcity is a major challenge when we train the 
deep learning (DL) models. DL demands a large amount 
of data to achieve exceptional performance. Federated 
learning is a distributed deep learning approach that 
allows institutions or hospitals to train a model on their 
data without sharing it, addressing privacy and regula-
tory concerns [6]. Each institution trains a model locally 
and shares the parameters with a central server, which 
aggregates them to create a global model. This process 
is repeated until convergence, improving model perfor-
mance and generalizability by combining data from mul-
tiple institutions. Self-supervised learning [6] is another 
technique that uses unannotated data and a small 
amount of annotated data to train models, pre-training 
them on large datasets and fine-tuning on smaller data-
sets. Knowledge distillation involves training a smaller 
model to mimic a larger model’s behavior, addressing 
data scarcity. Loss functions are critical in DL models, 
and in the case of data scarcity, selecting an appropriate 
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one becomes crucial. Mean squared error, mean absolute 
error, cross-entropy loss, and hinge loss are commonly 
used loss functions for regression, multi-class classifica-
tion, image classification, and binary classification prob-
lems, respectively.

The low complexity spectral enhancement methods 
are very suitable for hearing aids users [7]. The spectral 
subtraction technique, initially introduced by Boll [8], 
uses the assumption of uncorrelated speech and noise 
to remove noise in speech. This approach was further 
enhanced by Berouti et al. [9]. to minimize the artifacts 
caused by noise reduction. These methods can be gen-
eralized to enhance quality by appropriately adjusting 
the parameters [10]. In line with this concept, Sim et al. 
[11] proposed a method for optimal parameter selection 
based on minimum mean squared error. Additionally, 
Hu and Yu [12] suggested an adaptive noise estimation 
method to improve quality.

The multiband spectral subtraction method [13], which 
takes advantage of the non-uniform distribution of noise 
in different frequency bands, allows for adaptive noise 
attenuation in each band, resulting in improved speech 
quality; however, its application in hearing aids is not 
feasible due to their strict low-power and low-latency 
requirements.

Traditional noise reduction designs, although effec-
tive, are limited in their application to hearing aids due 
to their complexity and latency; however, a study in [14] 
presents a sample-based perceptual multiband spectral 
subtraction with a multiplication-based entropy voice 
activity detection, specifically tailored for low-power and 
low-latency requirements of completely-in-the-canal 
hearing aids.

A hearing device’s spectral enhancement requires a 
filter bank with equally spaced narrow frequency bands 
and a stopband attenuation of at least 60 dB, low com-
putational complexity, and a small time delay of less than 
10 ms, which can be achieved using a uniform polyphase 
DFT filter bank implemented through the FFT, with a 
suggested 32-channel filter bank with a time delay of 8 
ms under a sampling rate of 16 kHz [15–17].

In [18], a hearing device filter bank is proposed along 
with a spectral enhancement algorithm, and [19] pro-
vides a description of a low-complexity method for sub-
band decomposition of audio signals in digital hearing 
aids for audibility restoration applications, making it an 
ideal choice for the design of a digital hearing aid. More-
over, the use of a modified discrete Fourier transform 
(MDFT) method with moderate hardware complexity 
[20] can also achieve sound wave decomposition.

There are many different techniques that have been 
proposed for SE. Traditional techniques include statisti-
cal techniques based on statistical modeling of spatial, 

spectral, or temporal properties of the sensor signals, 
such as adaptive Wiener filtering [21] and minimum 
mean square error (MMSE) estimation [22] model. For 
example, by modeling the spectral components of speech 
and noise as statistically independent Gaussian random 
variables, the MMSE estimator achieves an improvement.

In terms of speech enhancement, deep neural net-
works (DNNs) are now considered the state of the art. 
DNN-based algorithms [23–25] to learn the relationship 
between the noisy speech and the target speech through 
training based on masks or maps. Using an ideal binary 
mask (IBM) or an ideal ratio mask (IRM) as the train-
ing target, the trained model is then used to predict the 
target speech through the T-F mask [26–28] or mapping 
[29]. According to recent findings, mapping-based mod-
els perform better than masking-based models [30].

Vanilla DNNs and recurrent neural networks (RNNs) 
have been used for temporal modeling of speech [31], 
which is different from traditional DNNs. Long short-
term memory (LSTM) [32] employed the input, output, 
and reset gates to record the interdependence between 
the past and present frames of noisy speech. This 
increases the estimation accuracy for the mask and map-
ping relations [33]. The bi-directional LSTM (Bi-LSTM) 
has been proposed to replace the LSTM. According to 
earlier findings, it enhances performance under unseen 
speakers [30, 31]. Bi-LSTM considers future frames and 
preserves the long-term interdependence between the 
past, present, and future frames of noisy speech [30].

The use of convolutional neural networks (CNN) [34] 
is another potential area of SE research. Convolutional 
encoder-decoder (CED) is proposed to estimate the 
mapping relationship between the noisy and the tar-
get speech. In [35], a deep complex recurrent convolu-
tional neural network (DCCRN) was proposed. It uses 
a complex convolutional encoder and decoder model 
that employs complex LSTM and dense layers between 
the center of the encoder and decoder blocks. A com-
plex LSTM and dense layer are used to extract the tem-
poral dependencies from the complex encoder-decoder 
structure. The multi-resolutional convolutional encoder 
(MRCE) model has been proposed to improve the perfor-
mance of SE by increasing the receptive fields of the net-
work in WaveNet with extended convolutions and using 
a gated mechanism to regulate the information flow [36, 
37]. To enlarge the receptive fields in the time-frequency 
(T-F) domain, the gated residual network (GRN) [30] and 
dilated convolutions (DCN) [38] approaches used with 
1-D dilated convolutions.

The raw waveform is used directly to regenerate the 
enhanced speech without using a T-F representation [35, 
39–43], which avoids the problem of explicit phase esti-
mation. For example, speech enhancement generative 
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adversarial network (SEGAN) [40] proposed a generative 
adversarial network based SE method, in which a denois-
ing generator directly maps the raw waveform of the 
clean speech from the mixed raw waveform by adversar-
ial training. In [43], a temporal convolutional neural net-
work (TCNN) is proposed to improve the performance 
of SE in the time domain. The TCNN utilizes a series of 
1D causal and dilational convolution to capture the long-
range speech context from past and previous frames. A 
multi-scale feature recalibration convolutional GRU net-
work (MCGN) [42] model for SE. Local and contextual 
features can be extracted from the signal using multi-
scale convolutional layers for recalibration. In the recali-
bration network, the information flow between the layers 
is controlled by gating, preserving speech and suppress-
ing noise by weighting the rescaled features.

Some deep learning-based SEs have also employed 
attention mechanisms to control computational costs and 
overall parameters. Attention networks that optimize the 
weights of input features can be achieved with a neural 
attention module to minimize losses. In learning-based 
enhanced frameworks, information can be improved and 
interference from irrelevant information can be reduced. 
The squeeze-and-excitation attention (SEA) model was 
proposed in [44]. The algorithm uses global 2D pooling 
to calculate channel attention and offers impressive per-
formance improvements. In [45], a convolutional block 
attention module is proposed that sequentially improves 
key parts of the input features by channel attention and 
spatial attention. Multi-scale and attention mechanisms 
for end-to-end single-channel speech enhancement 
(MASENet) [46] is a combination of multi-scale convo-
lutional models and temporal convolutional attention 
(TCA) to extract local and global feature information 
from speech. The outputs of the MASENet encoder 
blocks are recalibrated by the attention block and high-
light informative details. In the nested U-Net with self-
attention and dense connectivity (SADNUNet) [47] 
model, the encoder and decoder model uses nested 
U-Net and dense blocks to extract local and contextual 
features from the speech. All encoder group outputs are 
recalibrated by the self-attention (SA) block, which high-
lights informative details and reduces unwanted features.

In the state-of-the-art attention-based methods of 
SE described above, different attention modules are 
used to determine significant features either in the spa-
tial domain or in the channel domain. Attention models 
generate a strong loss of information that affects speech 
intelligibility and quality. To avoid this, we use the trans-
former attention network (TAN).

Transformer-based attention networks, renowned 
for their exceptional performance in the domain of 

speech enhancement, have established their efficacy 
in parallel computation. These networks, as evidenced 
by their impressive results [41, 48, 49], possess the 
unique ability to address the challenge of long-depend-
ency more effectively than traditional recurrent neu-
ral networks (RNN) or convolutional neural networks 
(CNN). The distinguishing feature of transformer-
based attention networks lies in their ability to model 
speech sequences directly, thereby incorporating con-
textual information for a more comprehensive under-
standing of the data.

More specifically, it consists of several adaptive trans-
former-based spectro-temporal attention modules and 
an adaptive hierarchical attention module that aims to 
capture long-term time-frequency dependencies and 
further aggregate intermediate hierarchical context 
information. The loss of information in TAN is very low 
compared to the SEA, TCA, and SA models.

To solve these problems, we propose a sub-convo-
lutional U-Net (SCUNet) with a TAN mechanism for 
speech enhancement (TANSCUNet).

The specific contributions of the proposed sub-con-
volutional U-Net (SCUNet) with TAN mechanism for 
speech enhancement (TANSCUNet) are as follows.

• SCUNet is basically a convolutional encoder-
decoder model that uses different sized kernels in 
each convolutional layer to generate features in dif-
ferent orders of magnitude. This allows each feature 
in each scale to be assigned its own weight, so that 
the speech-related components are preserved while 
the noise-related ones are suppressed, and the 
interdependence between local and global contex-
tual information in speech can be captured.

• The TAN is equipped with three adaptive time-
frequency attention (ATFA) transformers and an 
adaptive hierarchical attention (AHA) module. The 
ATFA transformers can capture local and global 
context information in both the time and frequency 
dimensions, while the AHA module can flexibly 
summarize all the output feature maps of the ATFA 
modules by a global attention weight.

• Finally, the output layer sums the multiscale out-
puts and accelerates convergence. The output layer 
appreciates the improved speech output by provid-
ing access to multiple scales of convolutional oper-
ators that facilitate the training of the network.

The rest of the paper is organized as follows. Section 2 
describes the proposed TANSCUNet method. Sec-
tion 3 describes the analysis of the experimental results. 
Section 4 contains the conclusions.
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2  Proposed model
The proposed TANSCUNet model is shown in Fig.  1. 
The TANSCUNet model consists of a sub-convolutional 
encoder, a decoder, central layers, and an output layer. 
The input of the proposed model is a noisy waveform, 
which is divided into frames using the Hanning window 
in to-Frame block. The output of the to-Frame block is 
fed to the input layer to extract the intermediate fea-
tures. From the output of the input layer, we can extract 
the context information at different scales by using the 
sub-convolutional U-Net. The depth of the U-Net model 
is five (i.e., five sub-convolutional encoder and decoder 
blocks are used). Each block of the sub-convolutional 
encoder (SCE) contains seven different sub-convolution-
als with different kernel sizes to extract the multiscale 
features. The sub-convolutional decoder (SCD) block is a 
mirror version of the SCE block. The output of the last 
SCE block is fed into the transformer attention network.

The TAN consists of an adaptive hierarchical atten-
tion module (AHA) and three adaptive time-frequency 
attention modules (ATFA). Together, the ATFA and AHA 
modules create an “attention-in-attention” structure 
based on the adaptive attention weights. The results of 
ATFA can be further improved and integrated by AHA. 
In addition, skip connections are used to improve the 
information flow between the SCE and SCD blocks. The 
stride value is (1,2) in all layers of SCEs and SCDs, except 
in the output layer. In the output layer, the stride value is 
set to (1,1).

2.1  Subconvolutional encoder and decoder block
During CNN training, a high-level feature can be influ-
enced by the receptive field. Local information can be 
extracted from a small receptive field, while contextual 
information can be extracted from a large receptive field 
[30]. Traditionally, CNNs use a fixed kernel size that bal-
ances the extraction of local and contextual information. 
A subconvolutive encoder (SCE) block addresses this 
limitation by capturing information at different scales 
and generating multi-scaled features.

Figure  2 shows the architecture of the SCE block. To 
capture information at different scales, SCE uses different 
convolutional operators of different sizes on the encoder 
side. Small kernel sizes of convolution operators can 
capture the local dependency between neighboring T-F 
points in the short duration. By using the smallest kernel 
size (1,2), two neighboring T-F points can be extracted 
as features. The extraction of features from the long-
duration speech is possible using convolutional opera-
tors with large kernel sizes. Compared to smaller kernels, 
these features contain contextual information. After 
each convolutional operator, the layer normalization and 

LReLU [50] operations are performed. Then, as shown in 
Fig.  2, concatenate outputs of each individual convolu-
tional operation block to generate the input for the next 
steps. The subconvolutional decoder block (SCD) is simi-
lar to the SCE but uses deconvolution operators instead 
of convolution operators.

The SCE block contains m subconvolution operators. 
Each has the same number of channels, but different ker-
nel sizes are used to extract the features. X and K repre-
sent the SCE input and output respectively. The output 
K = [k1, k2, ..., km] represents the mth 2-D sub-convolu-
tion that has a different sized kernel.

2.2  Transformer attention network
According to the findings presented in Fig.  1, the pro-
posed TAN module consists of not only an adaptive hier-
archical attention (AHA) module but also three adaptive 
time-frequency attention (ATFA) modules. As it was pre-
viously stated in the study conducted by [51] , each ATFA 
module has the potential to strengthen long-range spec-
tro-temporal relationships with minimal computational 
cost. This means that the ATFA modules have the capa-
bility to reinforce connections between different points in 
time and frequency in an efficient manner. On the other 
hand, the AHA module plays a crucial role in collecting 
comprehensive contextual information by combining 
numerous intermediate characteristics. By doing so, it is 
able to gather global multi-scale contextual data, which is 
then utilized to enhance and integrate the output of the 
ATFA modules.

The combination of these ATFA and AHA modules 
results in the formation of an intricate “attention-in-
attention” structure, which is primarily based on adap-
tive attention weights. This structure allows for a more 
flexible and dynamic allocation of attention to different 
elements within the input data. Moreover, it enables the 
ATFA modules to benefit from the contextual informa-
tion provided by the AHA module, leading to further 
improvements in their individual outputs. Consequently, 
the AHA module acts as a facilitator in enhancing the 
performance and effectiveness of the ATFA modules. 
Overall, this proposed TAN module exhibits a sophisti-
cated mechanism of adaptive attention that optimizes the 
utilization of contextual information and reinforces spec-
tro-temporal relationships).

2.2.1  Adaptive time‑frequency attention
To mitigate the substantial computational complexity 
of traditional self-attention methods, we propose the 
utilization of an innovative adaptive time-frequency 
attention (ATFA) mechanism as an efficient solution to 
capture the extensive long-range correlations present in 
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Fig. 1 Proposed TANSCUNet model architecture
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both the temporal and spectral dimensions, as deline-
ated in [51, 52].

As clearly depicted in Fig.  3, the ATFAT is bifurcated 
into two distinct sub-branches that operate concur-
rently in the time and frequency axes, namely the adap-
tive temporal attention branch (ATAB) and the adaptive 
frequency attention branch (AFAB). These branches are 
adept at capturing comprehensive global dependencies 
along the temporal and spectral dimensions due to the 
incorporation of two adaptive weights, denoted as α and 
β . In each branch, unlike the conventional transformer, 

we employ a Bi-GRU-based enhanced transformer [41], 
which comprises of multi-head self-attention (MHSA) 
components and a Bi-GRU-based position-wise net-
work. This is followed by the integration of residual con-
nections and layer normalization (LN). The utilization 
of multi-head self-attention has been widely recognized 
and employed in the realms of natural language process-
ing and speech processing due to its ability to effectively 
leverage contextual information contained within feature 
maps (Fig. 4).

In the MHSA modules, the input features undergo a 
series of linear projections h times, resulting in the gen-
eration of queries (Q), keys (K), and values (V) represen-
tations. Here, h denotes the number of heads present in 
the MHSA modules. Subsequently, the scaled dot-prod-
uct attention mechanism is executed for each head, lead-
ing to the acquisition of a weighted sum of the values. 
The weights are obtained through an attention function 
that takes into account the query and the corresponding 
keys. Finally, the attentions of all heads are concatenated 
and linearly transformed to produce the ultimate output.

The resulting output of the SCE block serves as an 
input for the AFAB block, denoted as IN ∈ RB×T×F

′
×C . 

The notation Fin ∈ (B× T )× F ′ × C represents the 
reshaping of the output, where B, T, F, and C signify the 
batch size, frame number, frequency dimension, and 
channel number, respectively.

Our model works with four heads in this context. Fol-
lowing the effectiveness of Bi-GRU-based transformers 
in speech separation and denoising highlighted in previ-
ous studies [41, 48], we introduce a modification of the 
feed-forward network (FN) in the vanilla transformer by 
replacing its first fully connected layer with a Bi-GRU. 
The final output is computed by feeding the output of 
the multi-head self-attention block (MHSA) into the Bi-
GRU-based feed-forward network, followed by the inclu-
sion of residual connections and layer normalization 
(LN). The notation FN() denotes the output of the Bi-
GRU-based linear feed-forward network, and W1 stands 
for the weight of the linear transformation and B1 for the 

(1)Fin = Reshape(IN )

(2)hi = Attention(qi, ki, vi),

(3)MHSA = Concatenation(h1, h2, .., hi)W
O

(4)FMHSA = LN (Fin +MHSA)

(5)FN (FMHSA) = LeakyReLU(Bi − GRU(FMHSA)W1 + B1

(6)OutputAFAB = LN (FMHSA + FN (FMHSA))

Fig. 2 Architecture of subconvolutional encoder blocks

Fig. 3 Architecture of ATFA block
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bias. It is important to note that C is set to a value of 64 in 
this module. Then, the final output of the AFAB module 
is transformed back to the original size, represented as 
OutputAFAB ∈ RB×T×F

′
×C.

Likewise, the compressed input features undergo a 
transformation process, resulting in B× T  vectors of 
dimension F ′

× C , which are then fed into ATAB to cal-
culate the output, denoted as OutputATAB , in parallel 
along the temporal axis. Finally, the output features from 
the two branches, as well as the original features, are 
combined using two adaptive weights σ and γ in order to 
derive the ultimate output of the ATFA module. Math-
ematically, this can be formulated as follows:

where σ and γ are initialized to 1 and automatically 
assigned appropriate values.

2.2.2  Adaptive hierarchical attention
In the AHA, a technique is used to obtain comprehensive 
global context information by cascading all intermedi-
ate results of the individual ATFA modules. This global 
context information is denoted by the symbol Fm=1,2,3...N , 
where N stands for the number of ATFA modules, which 
is set to 3 in the proposed method. To ensure efficient 
compression of the output features of each ATFA, a 
two-step process is performed. First, an average pooling 
layer is applied to compress the output feature of each 
ATFA into a compact representation. Second, a 1× 1 
convolutional layer is applied to further compress the 

(7)
OutputATFA = Fin + σOutputATAB + γOutputAFAB

information. These compressed representations are then 
cascaded with the outputs of the 1× 1 convolutional lay-
ers. The extraction of the hierarchical attention informa-
tion is facilitated by using a softmax function that results 
in the hierarchical attention weights, denoted by WAHA . 
These attention weights play a crucial role in capturing 
the importance of the different features in the hierar-
chical structure. The definition of WAHA is derived from 
the softmax function, which ensures that the attention 
weights sum to one and effectively emphasize the rel-
evant features.

A weighted pooled output, denoted as WAHA , has 
been established for the mth value which ranges from 
1 to N. Following this, a matrix multiplication is per-
formed between the hierarchical attention weight, 
WAHA , and the global contextual information model, Fm . 
This ensures that the relationship between the two vari-
ables is accounted for and their interaction is taken into 
consideration.

The variable GAHA ∈ RB×T×F
′
×C denotes the aggrega-

tion of the global contextual feature map. To obtain the 
final output, denoted as OutputAHA ∈ RB×T×F

′
×C the 

(8)WAHA =
exp(Conv1×1(Avg .Pool(Fm)))

�N
m=1

(Conv1×1(Avg .Pool(Fm)))

GAHA = WAHA ⊙ Fm

(9)GAHA = �N
m=1

exp(Conv1×1(Avg .Pool(Fm)))

�N
m=1

(Conv1×1(Avg .Pool(Fm)))
⊙ Fm

Fig. 4 Architecture of AHA block
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output of the last ATFA block FN is added to GAHA . This 
combination of the output of the last ATFA block and the 
summation of the global contextual feature map results 
in the final output.

2.3  Output Layer
As shown in Fig.  1, the skip connection is used to pro-
vide input to the output layer. Based on the size of the 
noisy input mixture and the information flow of the pre-
vious layer, the output layer can predict clean speech. 
In the output layer 1× 1 convolution layers are used. By 
utilizing the overlap addition method, we predict the 
enhanced waveform.

3  Experimental result analysis
3.1  Datasets
To test our model, we use the Common Voice [53] corpus, 
a publicly available speech database. The database con-
tains 1.6 million utterances from 84,659 speakers. From 
these, we select the Common Voice Corpus 13.0 under 
the English category. It consists of 3209 recorded hours, 
2429 h of validation, and the total number of utterances 
is 86,942. We randomly select 70% of utterances for the 
training set and 30% of utterances for the validation set. 
The test set is also from the CommonVoiceCorpus13.0, 
which consists of 4000 utterances. We created training 
and validation sets with 125 different types of noise and 
different signal signal to noise ratios (SNR) values from 
− 5 to +5 dB. Clean words, noise, and SNR are randomly 
selected in each mixed method.

We created two test sets to evaluate the generaliza-
tion capability of the model, one for seen noise condi-
tions and the other for unseen noise conditions. From the 
NOIZEUS [54] database, we collected street, restaurant, 
and babble noises for seen noise condition test, while 
train, exhibition hall, and airport noises selected for 

(10)OutputAHA = FN + GAHA

unseen noise condition test. To test the noise mixture, we 
used three SNR levels: − 5 dB, 0 dB, and 5 dB.

Speech enhancement performance is measured using 
the following metrics: signal-to-distortion ratio (SDR) 
[55], perceptual evaluation of speech quality (PESQ) 
[56], and short-time objective intelligibility (STOI) [57]. 
The SDR is derived from the estimated speech SDR value 
minus the noisy mixture SDR value. A PESQ score ranges 
from − 0.5 to 4.5, indicating the quality of speech percep-
tion. STOI measures the quality of human speech intel-
ligibility and ranges from 0 to 1. Higher values indicate 
better enhancement performance.

3.2  Experimental setup and baselines
All utterances are sampled at 16 kHz. For model building, 
individual utterances are converted into stacks of utter-
ances and then employed the 512 length of a hanning 
window with a hop length of 256. The model is trained 
over 60 epochs, the optimizer is Adam [58], learning rate 
is 0.002, and batch size is 32 throughout each epoch.

Performance comparison the following baselines used 
namely Bi-LSTM [31], Bi-CRN [39], GRN [30],SEGAN 
[40], DCN [38], TSTNN [41], DCCRN[35], MCGN [42], 
MASENet [46], SADNUNet [47], and DBT-Net [51]. 
Note that we re-implement all baselines with non-causal 
configurations in order to ensure fair comparisons.

3.3  Ablation study of TANSCUNet model
Table  1 shows an ablation study of the proposed model. 
The performance of the proposed model is evaluated in 
terms of SDR, STOI, and PESQ metrics. The U-Net model 
is a basic encoder-decoder model, having convolutions 
and deconvolutions with the same kernel size. The depth 
(N) of U-Net varies from 2 to 7 when evaluating mean 
square error (MSE) loss for 50 epochs [59]. The model loss 
is significantly decreased when the depth of the model is 
chosen from 2 to 5. From N = 6 to 7 loss values are scat-
tered. So, we chose the depth of the U-Net as 5.

Table 1 Ablation study of the proposed model is shown in terms of averaged SDR, STOI, and PESQ metrics. The proposed model is 
indicated in the BOLD Italic text. N indicated the depth of UNet

Metrics TAN model Par. (M) PESQ STOI (%) SDR (in dB)

SNR (in dB) ATAB AFAB AHA - − 5.00 0.00 5.00 Avg. − 5.00 0.00 5.00 Avg. − 5.00 0.00 5.00 Avg.

Raw speech x x x x 1.48 1.66 1.87 1.67 32.14 41.24 50.17 41.18 − 2.98 0.14 3.15 0.10

SCUNet (N = 5) x x x 13.20 2.18 2.41 2.68 2.42 62.01 69.46 76.04 69.17 5.78 8.03 10.56 8.12

TANSCUNet � x x 3.25 2.31 2.69 2.91 2.63 64.35 71.05 78.32 71.24 6.89 9.07 11.09 9.02

TANSCUNet x � x 3.25 2.53 2.78 3.02 2.78 66.16 73.26 80.72 73.38 7.83 10.18 11.57 9.86

TANSCUNet � � x 3.51 2.66 2.91 3.16 2.90 68.33 75.54 82.26 75.38 8.55 10.91 12.13 10.53

TANSCUNet � � � 3.51 2.85 3.12 3.37 3.08 72.52 79.65 84.36 78.84 9.81 11.85 13.62 11.76



Page 9 of 15Yecchuri and Vanambathina  EURASIP Journal on Audio, Speech, and Music Processing          (2024) 2024:8  

Next, we replaced the U-Net encoder and decoder with 
SCE and SCD, which we named SCUNet. The SCE con-
tains seven sub-convolutional layers with the same size 
and different kernel sizes. SCUNet provides a significant 
improvement in SDR, PESQ, and STOI. The total train-
able parameters of SCUNet is 13.20 million, so the com-
putational cost is very high.

Next, TAN is incorporated into SCUNet, i.e., TANS-
CUNet. The TAN consist of three ATFA blocks and an 
AHA block. Each ATFA block is a combination of ATAB 
and ATFB, which are capable of capturing the global 
dependencies along the temporal and frequency axis. 
Case I: from Table 2, in TAN, select only ATAB to extract 
useful significant multi-scale temporal context. By incor-
porating ATAB, the model parameters are reduced to 
3.25 million. The model performance also improves 
significantly over the SCUNet, i.e., 0.90 in SDR, 2.07 in 
STOI, and 0.21 in PESQ.

Case II: We select only AFAB in TAN. Now, the TAN 
is capable of capturing the global dependencies in fre-
quency axis and also extracts the significant multi-scale 
context. The model performance significantly improves 
over the ATAB based TAN, i.e., 0.84 in SDR, 2.14 in 
STOI, and 0.15 in PESQ.

Case III: We select both ATAB and AFAB block to form 
a ATFA in TAN. Now, the ATFA is capable of capturing 
the global dependencies in temporal-frequency axis. By 
incorporating ATFA, the model parameters are increased 
0.3 million, but the model performance improves signifi-
cantly, i.e., 0.67 in SDR, 2 in STOI, and 0.12 in PESQ.

Case IV: Finally, we select the ATFA and AHA blocks. 
AHA module can combine many intermediate char-
acteristics to collect global multi-scale contextual 
data. Together, the ATFA and AHA modules create a 
“attention-in-attention” structure based on the adap-
tive attention weights; the output of ATFA may be fur-
ther improved and integrated by AHA. By incorporating 

AHA, model performance improves significantly, i.e., 
1.23 in SDR, 3.46 in STOI, and 0.18 in PESQ.

3.4  Multi-kernel analysis
Our next experiment examines how kernel size affects 
performance under seen and unseen noise conditions at 
0dB SNR. As shown in Table2, performance also depends 
on the choice of kernel size. We test different kernel sizes 
from 1 × 1 to 10 × 10 to exploit different receptive fields. 
When the kernel size is larger than 7× 7 , the perfor-
mance in terms of SDR, STOI, and PESQ may decrease. 
Multi-kernel utilizes the diffrent kernels to allows the 
model to capture features at different scales, thereby 
exploiting both local and contextual information. The 
smoothing effect becomes stronger at larger kernel sizes, 
mitigating noise, while smaller kernel sizes preserve 
finer spectral structures. With a bank of kernels, the 
model has a greater probability of capturing and differ-
entiating features of noise and speech, improving speech 
enhancement.

3.5  Performance comparison with baselines under seen 
condition

The model is already trained with test speeches and 
noises under seen conditions. Babble, street, and restau-
rant noises are used to test the model. Tables  3, 4, and 
5 show the performance of the proposed method with 
baselines in terms of PESQ, STOI, and SDR metrics.

Bi-LSTM and Bi-CRN are magnitude-based methods, 
whereas the bi-directional RNN-based SE models adopt a 
typical CRN with an encoder-decoder model.

Bi-LSTM produces the lowest enhancement perfor-
mance with an average of 6.23 dB of SDR, 73.53 % of 
STOI, and 2.15 PESQ. The Bi-CRN uses a multi-resolu-
tion convolutional encoder-decoder and shows a slight 
increase in SDR, STOI, and PESQ over the Bi-LSTM. 
Bi-CRN achieves 6.63 dB SDR, 75.32 % STOI, and 2.31 
PESQ. Due to its ability to capture global spatial patterns. 
Additionally, LSTM layers incorporate past and cur-
rent temporal frames into the CRN to exploit temporal 
dependency. CRN has more trainable parameters. Each 
LSTM requires four linear layers (MLP layers) per cell to 
run at each time step. Linear layers require large memory 
bandwidth. During training, LSTM faces the “vanishing 
gradient” problem.

The GRN model produces 7.42 dB of SDR, 77.83 % of 
STOI, and 2.51 PESQ values. The GRN model is con-
structed with residual and dilated convolution blocks 
and has been shown to perform well in many applica-
tions. The main drawback is that a deep network usually 
requires weeks of training, making it practically infea-
sible in real-time applications, and learning can be very 
inefficient if the network is too shallow.

Table 2 Multi-kernel size analysis

Kernel size SDR STOI PESQ

1× 2 10.43 71.06 1.74

2× 2 10.61 71.79 1.81

2× 3 10.65 72.16 1.88

3× 4 10.76 73.54 1.96

4× 5 10.94 74.38 2.01

5× 6 11.05 75.67 2.12

6× 7 11.14 76.04 2.37

7× 7 11.32 77.41 2.41

10× 10 11.21 75.16 2.33

Multi‑kernel 12.03 79.65 2.73
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The DCN model produces 7.82 dB of SDR, 79.15% of 
STOI, and 2.60 PESQ values. The DCN model builds on 
a stack of dilated convolutions that summarize contex-
tual information at multiple levels without losing resolu-
tion. The dilated convolution is constructed by inserting 
zeros into the convolution kernel, which can increase the 
receptive field and the resolution of the outputs. How-
ever, a stack of dilated convolutions can lead to a “grid-
ding” problem.

The DCCRN model produces 8.19 dB of SDR, 80.36 % 
of STOI, and 2.71 PESQ values. The model is constructed 

with complex CED and dense layers. With a dense 
layer, the receptive area is increased, and more tempo-
ral dependencies are extracted from the complex CED 
model. DCCRN’s limitation is that kernel sizes increase 
exponentially in dense blocks, which can lead to aliasing.

The TSTNN model produces an average 8.56 dB of 
SDR, 81.63 % of STOI, and 2.84 of PESQ. The TSTNN 
utilizes a sequence of four two-stage transformer blocks 
to model local and global information from the encoder. 
The encoder uses the dilated dense block to exploit more 
receptive fields, which causes aliasing.

Table 3 SDR values of all baseline models under seen noises. Proposed model represented by bold and italic letters

Metric SDR

Noise Babble Street Restaurant

SNR (dB) − 5 0 5 Avg. − 5 0 5 Avg. − 5 0 5 Avg.

Noisy mixture 2.12 4.01 5.89 4.01 1.82 3.65 5.62 3.70 2.16 4.18 6.13 4.16

Bi-LSTM [31] 4.32 6.65 7.92 6.30 4.12 6.01 7.39 5.84 4.56 6.88 8.23 6.56

Bi-CRN [34] 4.79 6.94 8.37 6.70 4.51 6.43 7.88 6.27 4.87 7.26 8.6 6.91

SEGAN [40] 5.03 7.22 8.72 6.99 4.92 6.89 8.42 6.74 5.12 7.63 8.91 7.22

GRN [30] 5.25 7.59 9.22 7.35 5.23 7.26 8.87 7.12 5.97 7.97 9.44 7.79

DCN [38] 5.85 7.99 9.64 7.83 5.56 7.84 9.18 7.53 6.22 8.23 9.83 8.09

DCCRN [35] 6.13 8.34 9.96 8.14 5.89 8.26 9.53 7.89 6.79 8.59 10.25 8.54

TSTNN [41] 6.57 8.74 10.42 8.58 6.11 8.59 9.85 8.18 7.16 8.92 10.69 8.92

MASENet [46] 6.94 9.12 10.84 8.97 6.61 8.83 10.21 8.55 7.54 9.36 10.95 9.28

SADNUNet [47] 7.32 9.51 11.11 9.31 6.97 9.15 10.60 8.91 7.89 9.74 11.31 9.65

MCGN [42] 7.61 9.87 11.53 9.67 7.36 9.54 10.94 9.28 8.02 10.09 11.75 9.95

DBT-Net [51] 7.92 10.03 11.82 9.92 7.64 9.86 11.10 9.53 8.22 10.24 11.97 10.14

TANSCUNet 8.62 10.69 12.57 10.63 8.37 10.48 11.58 10.14 8.81 10.86 12.71 10.79

Table 4 STOI values of all baseline models under seen noises. Proposed model represented by bold and italic letters

Metric STOI

Noise Babble Street Restaurant

SNR (dB) − 5 0 5 Avg. − 5 0 5 Avg. − 5 0 5 Avg.

Noisy mixture 56.75 62.04 68.55 62.45 55.41 61.26 69.17 61.95 58.57 66.47 73.15 66.06

Bi-LSTM [31] 67.79 74.22 78.57 73.53 67.26 71.35 77.14 71.92 68.26 76.43 80.76 75.15

Bi-CRN [34] 68.51 75.35 80.87 74.91 68.68 73.97 79.54 74.06 70.26 78.43 82.23 76.97

SEGAN [40] 69.93 76.69 81.69 76.10 69.59 75.03 81.19 75.27 72.26 79.13 83.08 78.16

GRN [30] 70.12 78.94 82.05 77.04 70.34 76.36 82.88 76.53 74.96 80.05 84.81 79.94

DCN [38] 72.09 80.11 83.77 78.66 71.26 78.91 83.68 77.95 75.19 81.74 85.64 80.86

DCCRN [35] 74.13 81.54 84.98 80.22 73.56 79.34 84.06 78.99 76.46 82.16 86.97 81.86

TSTNN [41] 75.41 83.16 86.53 81.70 74.59 81.23 85.14 80.32 77.39 83.69 87.56 82.88

MASENet [46] 77.32 84.04 87.15 82.84 76.68 82.24 86.85 81.92 78.18 84.47 88.18 83.61

SADNUNet [47] 78.51 86.43 88.11 84.35 77.61 84.41 87.56 83.19 79.52 86.63 90.21 85.45

MCGN [42] 80.31 87.78 90.03 86.04 78.54 85.69 88.94 84.39 80.13 88.33 91.83 86.76

DBT-Net [51] 80.92 88.03 91.12 86.69 79.64 86.71 89.40 85.25 81.22 89.24 92.47 87.64

TANSCUNet 82.62 89.71 92.72 88.35 81.69 88.12 91.94 87.25 82.56 90.81 93.86 89.08
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MASENet is a combination of convolutional multi-
scale and temporal convolutional attention models to 
extract local and global feature information from speech. 
MASENet encoder block group outputs are calibrated by 
the attention block and emphasize informative details. As 
a result, the model generates 8.93 dB of SDR, 82.79 % of 
STOI, and 2.94 PESQ values on average. The model limits 
more features depending on temporal channel attention, 
which affects speech intelligibility.

The SADNUNet model produces an average of 9.29 dB 
of SDR, 84.33 % of STOI, and 3.03 PESQ. SADNUNet is 
a nested U-Net model. Each encoder-decoder uses the 
dense block to extract local and contextual features from 
speech. The self-attention block calibrates the encoder 
output to improve the temporal context while reduce 
unwanted parameters. SADNUNet’s limitation is that 
the dense block increases the kernel size exponentially to 
cover large receptive areas, which leads aliasing.

The MCGN model produces an average of 9.63 dB of 
SDR, 85.73 % of STOI, and 3.13 PESQ values. Local and 
contextual features can be extracted from the signal using 
multi-scale recalibration convolutional layers. In the cali-
bration network, control the information flow between 
layers, thus improving the speech quality. MCGN has 
more trainable parameters (around 77 million), which 
require large amounts of memory bandwidth.

In comparison with the baseline methods, the pro-
posed TANSCUNet model achieves, on average, 10.52 
dB of SDR, 88.23 % of STOI, and 3.36 PESQ. These val-
ues are 0.66 dB, 1.72 % , and 0.23 higher relative to the 
DBT-Net model. TANSCUNet learns residual mapping 

relationships from raw data at different scales. Small 
kernel sizes of sub-convolutional layers capture local 
dependencies, while large kernel sizes determine the 
global dependency between larger regions. This allows 
us to enlarge TANSCUNet’s receptive field and assign 
different weights to the various scaled features. In addi-
tion, TAN is introduced to link the sub-convolutional 
encoder and decoder, which exploits the interdepend-
ence between the past, present, and future frames.

3.6  Objective comparison of baseline models 
under unseen noises

The performance of the proposed method is shown in 
Tables  6, 7, and 8 under unseen noise conditions. The 
unseen speakers and noises were used for testing. Trains, 
airports, and exhibition hall noises are unseen noises. 
The proposed TANSCUNet model achieves, on average, 
10.12 dB of SDR, 87.14 % of STOI, and 3.24 PESQ. These 
values are 0.85 dB, 1.6 % , and 0.15 higher relative to the 
DBT-Net model. Similarly, compared with all baselines, 
the proposed method shows significant improvement in 
terms of SDR, STOi, and PESQ metrics. In TANSCUNet, 
small kernel sizes of sub-convolutional layers capture 
local dependencies, while large kernel sizes determine 
the global dependency between larger regions. This 
allows us to enlarge TANSCUNet’s receptive field and 
assign different weights to the various scaled features. In 
addition, TAN are introduced to link the sub-convolu-
tional encoder and decoder, which exploits the interde-
pendence between the past, present, and future frames.

Table 5 PESQ values of all baseline models under seen noises. Proposed model represented by bold and italic letters

Metric PESQ

Noise Babble Street Restaurant

SNR (dB) − 5 0 5 Avg. − 5 0 5 Avg. − 5 0 5 Avg.

Noisy mixture 1.23 1.52 1.83 1.53 1.51 1.83 2.02 1.79 1.66 1.88 2.01 1.85

Bi-LSTM [31] 1.85 1.97 2.44 2.09 1.84 2.02 2.49 2.12 1.98 2.11 2.66 2.25

Bi-CRN [34] 1.92 2.13 2.53 2.19 1.93 2.21 2.57 2.23 2.03 2.21 2.77 2.34

SEGAN [40] 1.99 2.21 2.66 2.29 2.05 2.29 2.68 2.34 2.15 2.38 2.83 2.45

GRN [30] 2.08 2.29 2.71 2.36 2.12 2.45 2.75 2.44 2.23 2.49 2.96 2.56

DCN [38] 2.17 2.38 2.85 2.47 2.22 2.49 2.87 2.52 2.31 2.63 3.04 2.66

DCCRN [35] 2.24 2.51 2.94 2.56 2.37 2.65 2.95 2.66 2.47 2.74 3.11 2.77

TSTNN [41] 2.36 2.62 3.07 2.68 2.48 2.73 3.09 2.76 2.55 2.99 3.25 2.93

MASENet [46] 2.45 2.76 3.13 2.78 2.59 2.83 3.16 2.87 2.68 3.08 3.37 3.04

SADNUNet [47] 2.58 2.83 3.24 2.88 2.66 2.94 3.27 2.96 2.72 3.16 3.46 3.11

MCGN [42] 2.64 2.90 3.32 2.95 2.79 3.11 3.35 3.08 2.81 3.27 3.53 3.20

DBT-Net [51] 2.69 2.97 3.38 3.01 2.84 3.16 3.40 3.13 2.87 3.34 3.59 3.23

TANSCUNet 2.95  3.12 3.52  3.20 2.97 3.31 3.56 3.44 2.98 3.49 3.84 3.44
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4  Conclusion
In this paper, a novel framework has been proposed 
for single-channel speech enhancement. Several novel 
strategies were incorporated into the proposed TANS-
CUNet model very effectively to control information 
loss and also improve the performance of speech qual-
ity and intelligibility. The sub-convolutional encoder and 
decoder model uses different-sized kernels in each con-
volutional layer and produces features at various scales. 
Therefore, it captures the interdependency between 
local and global contextual information within speech. 

The multi-kernel achieves 12.03 SDR, 79.65% STOI, and 
2.73 PESQ. It indicates that multi-kernel provides sig-
nificant improvement compared to individual kernel size 
analysis. The combination of ATFA and AHA blocks in 
the TAN model is made. Stack of ATFA blocks in TAN 
effectively extracts global context and highlighted infor-
mation in temporal and spectral dimensions with the 
help of MHSA and Bi-GRU layers and also highlighted 
contextual information is controlled with adaptive fac-
tors ( α and β ). AHA cascades all ATFA block outputs 
and extracts hierarchical attention information. From the 

Table 6 SDR values of baselines under unseen noise condition. Proposed model represented by bold and italic letters

Metric SDR

Noise Train Airport Exhibition hall

SNR (dB) − 5 0 5 Avg. − 5 0 5 Avg. − 5 0 5 Avg.

Noisy mixture 1.83 3.52 5.53 3.63 2.11 3.83 5.82 3.92 2.66 3.98 5.94 4.19

Bi-LSTM [31] 3.71 5.75 6.41 5.29 3.81 5.93 6.81 5.52 3.93 5.59 6.89 5.47

Bi-CRN [34] 4.05 6.19 6.75 5.66 4.25 6.37 7.08 5.90 4.27 6.94 7.21 6.14

SEGAN [40] 4.45 6.63 7.29 6.12 4.69 6.71 7.69 6.36 4.71 7.21 7.59 6.50

GRN [30] 4.99 6.89 7.72 6.53 5.12 6.97 7.92 6.67 5.12 7.52 7.89 6.84

DCN [38] 5.52 7.13 8.02 6.89 5.69 7.33 8.29 7.10 5.43 7.85 8.34 7.21

DCCRN [35] 5.81 7.39 8.36 7.22 5.91 7.62 8.67 7.41 5.71 8.11 8.59 7.47

TSTNN [41] 6.15 7.58 8.80 7.51 6.23 7.95 8.93 7.70 6.03 8.43 8.84 7.77

MASENet [46] 6.32 7.87 9.23 7.81 6.54 8.24 9.33 8.03 6.35 8.79 9.14 8.09

SADNUNet [47] 6.61 8.24 9.65 8.17 6.86 8.51 9.65 8.34 6.77 9.02 9.77 8.52

MCGN [42] 6.95 8.62 10.01 8.53 7.17 8.47 10.23 8.62 7.19 9.37 10.47 9.01

DBT-Net [51] 7.42 9.27 10.74 9.14 7.53 8.84 10.80 9.05 7.82 10.14 10.90 9.62

TANSCUNet 7.42 9.81 11.21 9.48 7.73 10.13 11.64 10.89 7.89 10.17 11.93 10.00

Table 7 STOI values of baselines under unseen noise condition. Proposed model represented by bold and italic letters

Metric STOI

Noise Train Airport Exhibition hall

SNR (dB) − 5 0 5 Avg. − 5 0 5 Avg. − 5 0 5 Avg.

Noisy mixture 53.54 59.14 66.55 59.74 57.57 63.16 68.84 63.19 59.17 65.61 69.28 64.69

Bi-LSTM [31] 68.31 72.47 76.19 72.32 69.25 73.11 78.05 73.47 69.42 74.14 78.53 74.03

Bi-CRN [34] 69.59 73.55 77.45 73.53 70.76 75.53 79.34 75.21 70.14 75.98 80.31 75.48

SEGAN [40] 70.61 75.44 79.75 75.27 71.26 76.81 81.76 76.61 71.43 77.76 81.66 76.95

GRN [30] 71.57 76.51 81.58 76.55 73.39 78.63 82.37 78.13 73.13 79.36 82.22 78.24

DCN [38] 73.25 78.62 83.64 78.50 74.86 79.15 83.19 79.07 75.86 80.04 84.18 80.03

DCCRN [35] 74.62 79.35 84.03 79.33 75.29 80.73 84.54 80.19 77.04 81.23 86.55 81.61

TSTNN [41] 75.31 80.45 85.71 80.49 76.36 81.92 85.35 81.21 78.36 83.15 87.94 83.15

MASENet [46] 77.29 81.04 86.16 81.50 78.29 83.79 87.43 83.17 79.47 84.26 88.23 83.99

SADNUNet [47] 78.14 83.87 87.08 83.03 79.08 84.64 88.02 83.91 80.24 85.23 89.03 84.83

MCGN [42] 79.86 84.73 88.14 84.24 79.64 85.53 89.01 84.72 80.82 86.01 90.42 85.75

DBT-Net [51] 80.41 85.07 89.11 84.86 80.57 86.23 89.38 85.39 81.02 86.73 91.31 86.35

TANSCUNet 81.91 86.59 90.95 86.48 82.61 87.85 91.06 87.17 83.14 87.97 92.21 87.77
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ablation study, the combination of ATFA and AHA pro-
vides significant improvement compared to individual 
ATFA and AHA block performance. Analyze the effec-
tiveness of the proposed method under unseen speaker 
conditions, including both seen and unseen noise. The 
proposed TANSCUNet model achieves under seen noise 
conditions, on average, 10.52 dB of SDR, 88.23% of STOI, 
and 3.36 of PESQ. Similarly, under unseen noise condi-
tions, on average, there was 10.12 dB of SDR, 87.14% of 
STOI, and 3.24 of PESQ. Compared with all baselines, 
the proposed method’s performance is significantly 
improved in terms of STOI, PESQ, and SDR.
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Table 8 PESQ values of baselines under unseen noise condition. Proposed model represented by bold and italic letters

Metric PESQ

Noise Train Airport Exhibition hall

SNR (dB) − 5 0 5 Avg. − 5 0 5 Avg. − 5 0 5 Avg.

Noisy mixture 1.17 1.41 1.74 1.44 1.31 1.67 1.93 1.64 1.64 1.88 2.15 1.89

Bi-LSTM [31] 1.85 2.16 2.49 2.17 1.98 2.26 2.58 2.27 2.18 2.31 2.66 2.38

Bi-CRN [34] 1.94 2.21 2.57 2.24 2.06 2.34 2.64 2.35 2.27 2.44 2.77 2.49

SEGAN [40] 2.02 2.32 2.66 2.33 2.19 2.46 2.75 2.47 2.38 2.57 2.93 2.63

GRN [30] 2.08 2.44 2.71 2.41 2.26 2.55 2.84 2.55 2.47 2.63 3.06 2.72

DCN [38] 2.17 2.59 2.85 2.54 2.34 2.61 2.96 2.64 2.55 2.77 3.14 2.82

DCCRN [35] 2.29 2.65 2.94 2.63 2.42 2.69 3.04 2.72 2.61 2.86 3.20 2.89

TSTNN [41] 2.36 2.71 3.01 2.69 2.51 2.76 3.11 2.79 2.69 2.93 3.24 2.95

MASENet [46] 2.42 2..77 3.08 2.75 2.63 2.84 3.18 2.88 2.76 3.01 3.29 3.02

SADNUNet [47] 2.55 2.83 3.17 2.85 2.71 2.92 3.26 2.96 2.81 3.06 3.33 3.07

MCGN [42] 2.61 2.89 3.21 2.90 2.78 3.04 3.34 3.05 2.85 3.16 3.42 3.14

DBT-Net [51] 2.67 2.92 3.27 2.96 2.82 3.09 3.37 3.09 2.89 3.24 3.49 3.20

TANSCUNet 2.89 3.07 3.46 3.14 2.93 3.25 3.58 3.25 3.01 3.35 3.62 3.33

http://ecs.utdallas.edu/loizou/speech/noizeus/
https://commonvoice.mozilla.org/en
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