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Abstract 

This work constitutes the first approach for automatically classifying the surface that the voiding flow impacts in non-
invasive sound uroflowmetry tests using machine learning. Often, the voiding flow impacts the toilet walls (tradition-
ally made of ceramic) instead of the water in the toilet. This may cause a reduction in the strength of the recorded 
audio signal, leading to a decrease in the amplitude of the extracted envelope. As a result, just from analysing 
the envelope, it is impossible to tell if that reduction in the envelope amplitude is due to a reduction in the void-
ing flow or an impact on the toilet wall. In this work, we study the classification of sound uroflowmetry data in male 
subjects depending on the surface that the urine impacts within the toilet: the three classes are water, ceramic 
and silence (where silence refers to an interruption of the voiding flow). We explore three frequency bands to study 
the feasibility of removing the human-speech band (below 8 kHz) to preserve user privacy. Regarding the classifica-
tion task, three machine learning algorithms were evaluated: the support vector machine, random forest and k-near-
est neighbours. These algorithms obtained accuracies of 96%, 99.46% and 99.05%, respectively. The algorithms were 
trained on a novel dataset consisting of audio signals recorded in four standard Spanish toilets. The dataset consists 
of 6481 1-s audio signals labelled as silence, voiding on ceramics and voiding on water. The obtained results rep-
resent a step forward in evaluating sound uroflowmetry tests without requiring patients to always aim the voiding 
flow at the water. We open the door for future studies that attempt to estimate the flow parameters and reconstruct 
the signal envelope based on the surface that the urine hits in the toilet.

Keywords  Sound uroflowmetry, Machine learning, Automatic classification, Surface automatic classification, Acoustic 
voiding signals

1  Introduction
The growing interest in information and communica-
tion technologies is generating a paradigm shift in cur-
rent health care systems, which are transitioning from 
face-to-face and reactive systems to remote and proac-
tive systems. This has mutual benefits, as it provides 
advantages both for patients living in rural and hard-to-
reach areas who have difficulty accessing such services 
and for healthcare providers, as it allows them to access 
up-to-date medical information and resources quickly 
and efficiently. As a result, the quality of medical care is 
improved and the associated costs are reduced.
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One of the problems currently affecting the ageing 
population is lower urinary tract symptoms (LUTS). 
LUTS affect bladder storage, emptying and postvoiding, 
and they mostly affect the ageing male population and 
are caused by benign prostatic hyperplasia (BPH) [1]. 
LUTS lead to a decreased quality of life and a significant 
expenditure of health care resources [2].

It is estimated that more than 60% of the population of 
men over 60 years of age suffer from LUTS [3]. There is 
a non-invasive clinical test that is widely used to assess 
urinary tract function called uroflowmetry (UF) [4]. UF 
is used to provide objective evidence to evaluate the 
degree of prostate enlargement, overactive bladder, uri-
nary incontinence and neurogenic bladder [5]. UF is per-
formed with a uroflowmeter, a device that measures the 
bladder emptying rate as a function of time, the total vol-
ume voided and the duration of the process. With these 
values, urologists can obtain criteria to determine how 
well the urinary tract is functioning and thus obtain a 
diagnosis. A limitation associated with this test is that it 
generates situational stress in patients; this is known as 
shy bladder syndrome [6]. The patient is asked to void on 
demand in an unnatural environment, often with a very 
full bladder. This situation generates significant variabil-
ity from test to test. As a result, it is recommended that 
more than one test should be performed, requiring sev-
eral visits, which can be time-consuming and costly, to a 
clinic [7].

As an alternative that allows flow parameters to be 
measured remotely and in a natural environment, sound 
uroflowmetry (SU) has emerged; it attempts to estimate 
the flow parameters from the sound generated by the 
impact of urine on the water in the toilet. It has been 
shown that there is a good correlation between the flow 
parameters obtained by UF and those obtained from SU 
and the shapes of the visual flow traces [8, 9]. Multiple 
platforms have been developed to perform SU using vari-
ous hardware configurations. These platforms make use 
of dedicated microphones [10] and use general-purpose 
devices such as smartphones [9, 11, 12], and recently, the 
first platform for performing SU using smart watches was 
developed and validated [13, 14].

One of the limitations associated with the SU test is 
that the person must aim the voiding flow at the water 
in the toilet at all times. If the voiding flow impacts 
the toilet walls (made of ceramic) instead of the water 
base, the sound units captured by the recording device 
decrease as a result of the change in the physical sur-
face. This results in prediction errors in the flow and 
envelope parameters of the signal: the sound produced 
by the impact of the voiding flow on ceramic could be 
wrongly interpreted as a flow interruption or a decrease 

in the flow rate. This limitation can become a serious 
problem if we consider the fact that the majority of the 
target population undergoing the test are elderly peo-
ple. To address this limitation, in this work, we seek to 
explore SU audio signals from male subjects to extract 
patterns related to their characteristics in the frequency 
domain by using the fast Fourier transform (FFT) to 
identify the voiding flow impact surface. We develop 
a three-class classification algorithm with a high accu-
racy (ACC) for the detection of time intervals in which 
there is voiding against ceramic, voiding against water 
and silence in SU tests.

For this purpose, this work makes use of a set of 
machine learning (ML) algorithms from mixed voiding 
event data obtained during this study. This work hopes 
to provide an essential step forward to improve the per-
formance of SU tests and contribute to increasing their 
reliability by removing the requirement that patients 
always target water in SU tests; instead, this method 
detects the physical environment and acts accordingly.

The paper is organised as follows: Section  2 briefly 
reviews the state of the art for audio feature extrac-
tion and classification using ML; Section  3 presents 
the materials and methods proposed in this research, 
where the specific characteristics of the dataset, fea-
ture selection and the theoretical foundations of the 
ML algorithms used in the classification process are 
described; Section  4 shows the results obtained from 
the proposed methodology; and, finally, Section 5 pro-
vides some concluding remarks.

2 � Related work
2.1 � Feature extraction in audio signals
Feature extraction is the process of identifying the 
distinctive properties of a signal [15], which are sub-
sequently used as inputs for classification methods. 
Features can be extracted from signals in one of three 
domains: the frequency domain, the time domain and 
the time-frequency domain. In the frequency domain, 
spectral components obtained using the FFT [16], mel 
spectrograms [17] and mel frequency cepstral coef-
ficients (MFCCs) [18] are conventionally used. In the 
time domain, several statistics have been used to char-
acterise the discriminant information, such as the zero 
crossing rate (ZCR) and kurtosis [19]. Finally, in [20, 
21], novel approaches for the computational analysis of 
auditory scenes using time-frequency representations 
and discriminative content extraction are performed.

Within all domains, the frequency domain includes a 
wide variety of representations [22], and MFCCs have 
been used extensively with both classical and deep 
learning approaches to obtain a high ACC [23].
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2.2 � Audio signal classification using ML
Audio classification has become a focus of attention in 
audio processing and pattern recognition research. It 
is difficult to find an optimal classifier and to select the 
optimal features from several features extracted from an 
audio fragment. Several methods have been proposed; 
they range from traditional signal processing tech-
niques to more recent techniques using deep learning 
approaches. In [24, 25], support vector machine (SVM)-
based classifiers were proposed for audio signal classifi-
cation. Other works made use of the SVM and random 
forest (RF), and a comparison of the behaviour of both 
classifiers showed that better results are obtained using 
RF [23, 26].

With the advent of deep learning, more advanced tech-
niques have been developed that can learn sound tagging 
tasks exceptionally well; they have become the standard 
in mobile and embedded applications [27]. These tech-
niques include the convolutional neural network (CNN), 
recurrent neural network (RNN) and their variants, such 
as convolutional recurrent neural networks (CRNNs). In 
[28], an extensive study investigating CNN sets for audio 
classification is carried out, and in [29], a study using an 
RNN to classify environmental sound signals is carried 
out; very satisfactory results were obtained in both cases.

In summary, automatic audio classification is an active 
area of research, and there have been significant advances 
in both traditional and deep learning-based approaches. 
In this paper, we develop a classification algorithm to 
determine the surface in SU tests to classify when void-
ing against water or against ceramic is occurring or when 
there is silence (absence of voiding). To the best of our 
knowledge, there are no previous works that use ML for 
surface classification in SU tests. As a result, there are no 
datasets of voiding sounds that include the three sound 
labels, so we have created a dataset of labelled sounds 
that was used to train our ML algorithms.

3 � Materials and methods
3.1 � Dataset description
For the classification task, we have created, from real 
voiding event audio recordings that have been segmented 
into 1-s chunks, a dataset of 6481 1-s audio clips recorded 
with a professional microphone, the Ultramic384. This 
device has a highly sensitive audio sensor that allows a 
sampling rate (SR) of 384 kHz, allowing the study of a 
wide frequency spectrum. All the voiding audio clips 
recorded were obtained from 15 male subjects voiding in 
a standing up position.

The audio recordings were carried out in four Spanish 
domestic bathrooms, where the height of the toilet water 
from the floor was approximately 15 cm. The recording 

device was placed above the water tank of the toilet, with 
an approximate height above the floor of 90 cm. The 
audio clips are composed of three classes: voiding against 
ceramic (ceramic class), voiding against water (water 
class) and silence (silence class). The ceramic, water and 
silence classes represent 32.5 %, 34 % and 33.5 % of the 
total recordings, respectively. The experimental proce-
dures conform to the provisions of the Declaration of 
Helsinki (as revised in Edinburgh in 2000). Table 1 shows 
the proportions of the audio clips recorded in each of the 
bathrooms according to the class and the dimensions of 
each of the bathrooms. The procedure for the collection 
of the audio recordings of each class is detailed below:

•	 Ceramic class: It is composed of 2108 1-s audio clips 
that correspond to 104 voiding events of 15 different 
subjects who were aiming at the toilet wall. Subse-
quently, we took the time intervals of the recordings 
in which only ceramics surface sounds were present 
based on the validation of the participants and frag-
mented the audio recordings into 1-s frames.

•	 Water class: It is composed of 2203 1-s audio clips 
corresponding to 96 audio recordings of 12 subjects 
aiming at the water base. The audio recordings were 
fragmented using the same procedure that was used 
for the ceramic class.

•	 Silence class: This class does not represent a physi-
cal surface as such but is associated with an interrup-
tion of the voiding flow. It is composed of 2170 silent 
audio recordings made while a person was present 
in the bathroom, with the objective of recording the 
characteristics of the breathing process when there is 
an absence of voiding.

3.2 � Feature selection
The first step in audio classification is to select the best 
procedure for characterising each audio sample in the 
dataset. First, we perform a spectral analysis in the entire 
frequency band recorded by our specialised microphone 
(0–192 kHz) to determine where the components that 

Table 1  Proportion of audio clips of each class recorded in each 
bathroom

Bathroom (length-
width-height)

Ceramic 
class (%)

Water class (%) Silence 
class 
(%)

1 (404-175-271 cm) 48.1 23.2 49.4

2 (300-102-255 cm) 14.7 43.1 38.8

3 (230-157-261 cm) 11.3 11.9 11.8

4 (240-150-230 cm) 25.9 21.8 0
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provide the most information in the classification pro-
cess are located. For this purpose, we extract 1000 linear-
binned FFT samples for each 1-s audio clip, where the 
frequency range (0–192 kHz) is divided into 1000 equally 
spaced intervals, and for each interval, we sum the abso-
lute values of the amplitudes of the components present 
in each interval, finally obtaining a vector with 1000 val-
ues that characterises each audio clip. Then, we perform 
supervised feature selection and classification using RF 
and build a model using a Gini impurity-based metric 
[30]. By using the Gini impurity to measure the quality of 
our split criterion, we can quantify the weighted impurity 
of each feature in the tree, indicating its importance. Fig-
ure 1 shows the predictive power of each frequency com-
ponent based on Gini impurities for the ceramic, water 
and silence audio clips in our dataset. This figure shows 
that the bins around 1 kHz, 17 kHz and 30 kHz contain 
the greatest predictive power for the task of distinguish-
ing among the three classes. To develop the ML models, 
we selected the band from 0 to 22.05 kHz because it is 
the frequency band captured by the vast majority of com-
mercial microphones (SR = 44.1 kHz). This represents 
a compromise between the model performance and the 
cost and availability of the microphone being used.

For the study of the 0–22.05 kHz band, we extract a 
20-linear-bin FFT. Next, to visualise the degree of sepa-
rability between the three classes, we apply the dimen-
sionality reduction technique t-distributed stochastic 
neighbour embedding (t-SNE) [31], which converts 
similarities between data points into joint probabilities. 
The results are shown in Fig. 2; they demonstrate a high 
degree of separability between the three classes.

3.3 � Sound classification model
In this subsection, we build three supervised ML algo-
rithms to classify the physical void impact surface in an 
SU test. We have selected three models for our study: 

an SVM, an RF and a k-nearest neighbours (k-NN) clas-
sifier. We applied the stratified k-fold cross-validation 
method with k = 10 to divide our data into training and 
testing sets for each of the algorithms used. This valida-
tion method provides a robust and reliable estimate of 
a model’s performance on unseen data and ensures that 
each split maintains a class distribution similar to that 
of the original dataset. These models have been selected 
because our dataset is too small to apply deep learning 
techniques. Below, we detail why we chose each model:

•	 SVM: It is a supervised learning algorithm used 
mostly for classification purposes. This algorithm 
is easy to use and will provide the best output, even 
when it is tested on limited-size training datasets 
[23]. The only data-dependent step is the choice of 
the kernel and the corresponding feature space [32]. 
In our case, we have used the polynomial kernel 
since it generally performs better in classifying high-

Fig. 1  Predictive power (importance) of each frequency component in the classification task with three classes: ceramic, water and silence. The 
frequency band selected in our algorithms is shown in blue. The importance is calculated using the Gini impurity with a random forest model

Fig. 2  t-SNE plot that shows that the ceramic (blue), water (green) 
and silent (red) classes can be distinguished well
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dimensional data when the data are not linearly sepa-
rable, which is the case for the data in this paper.

•	 RF: This method is used for popular ML tasks related 
to regression and classification in any domain of 
interest. RF works by constructing an outsized quan-
tity of decision trees. Random decision forests pre-
vent decision trees from overfitting the training data 
[23]. For the selection of the number of estimators, a 
parameter that indicates the number of trees in the 
forest, we have experimentally tested different values 
and selected a value of 10 trees.

•	 k-NN: It is one of the simplest and most common 
classifiers, yet it can compete with the most com-
plex classifiers in the literature [33]. k-NN is based 
on the idea of clustering data of the same nature. In 
other words, objects of the same category should be 
closer in terms of distance [34]. The core of this clas-
sifier depends mainly on measuring the distance or 
similarity between the tested examples and the train-
ing examples. To use the classifier, it is necessary to 
determine the number of neighbours; in our case, it 
is three.

Figure 3 shows a graphical pipeline diagram of the pro-
posed methodology. Our input data are the SU audio sig-
nals. First, the audio signal is segmented into 1-s frames. 
Next, the FFT is applied to each of the frames to process 
the data in the frequency domain, and 20 linear bins are 
extracted. These bins are the input features of the clas-
sification algorithms. Finally, the algorithm outputs the 
classification results: the signal is predicted to be in the 
ceramic class, water class or silence class.

4 � Results and discussion
We next evaluate the three different ML algorithms using 
three different frequency bands. The first band, 0–22.05 
kHz, covers the entire band available for the vast major-
ity of commercial recording devices (SR = 44.1 kHz); 
this includes devices integrated into smartphones and 

smartwatches and dedicated devices. The second one 
corresponds to 0–8 kHz, which includes only informa-
tion within the human speech band. Finally, the third one 
from 8 to 22.05 kHz is selected to evaluate the algorithms 
for the case in which it is necessary to preserve the users’ 
privacy by eliminating human speech components.

For each of the three bands, we used 20 linear-binned 
FFT features. We used stratified 10-fold validation to 
ensure that each fold of the dataset is class-balanced 
across labels. For each model, we report the following 
performance metrics: the F1-score, ACC, standard devia-
tion (SD), false positive rate (FPR) and false negative rate 
(FNR). Figure 4 shows the confusion matrices for each of 
the three models in the three frequency bands analysed. 
Table 2 shows the results obtained. This table shows that 
similar results are obtained for the three models, with the 
values of the ACC and F1-score ranging from 89.38 to 
99.46% for the three models across the three frequency 
bands. Overall, the RF model presents the best perfor-
mance results for each frequency band for the task of 
classifying the physical surface in SU tests. Furthermore, 
we can safely remove the human speech frequency band 
and consider the range 8–22.0 kHz, since the RF model 
maintains a high ACC (93.29%) and F1-score (93.30%). 
We believe that the removal of human speech could be 
a requirement for some users who want privacy in their 
SU test.

These positive results reinforce the decision in this 
work to consider frequencies below 22.05 kHz, eliminat-
ing the need for specialised microphones. This demon-
strates that the surface can be classified accurately in SU 
tests using commercial recording devices. Therefore, it is 
not necessary to use specialised and expensive recording 
equipment with sample rates above 44.1 kHz.

4.1 � Surface classification in mixed‑surface SU audio clips
Next, we need to validate our models for the typical void-
ing event in which, within the same voiding event, the 
urine impacts both the water and the ceramic surface. 

Fig. 3  Diagram showing the pipeline of the proposed methodology



Page 6 of 10Alvarez et al. EURASIP Journal on Audio, Speech, and Music Processing         (2024) 2024:12 

We collected 15 voiding events in two bathrooms cor-
responding to bathrooms 2 and 3 in Table 1. The audio 
recordings for these tests were not used in the training 
phases of our models. The participants were asked to aim 
the voiding flow at the toilet ceramic and water within 
the same voiding event. Table 3 summarises the charac-
teristics of the voiding forms performed.

During the tests, there were time intervals, especially 
at the end of some tests, in which the flow gradually 

Fig. 4  Confusion matrices for three-class classification models: ceramic class (0), water class (1) and silence class (2)

Table 2  Evaluation of models by frequency range in terms of the classification ACC, F1-score, SD, FPR and FNR

Frequency range ACC (%) F1-score (%) SD (%) FPR (%) FNR (%)

SVM [0–8 kHz] 94.17 94.18 0.82 2.92 5.89

SVM [0–22.05 kHz] 96.00 96.01 0.65 2.00 4.01

SVM [8–22.05 kHz] 89.38 89.27 1.15 5.30 10.63

RF [0–8 kHz] 98.50 98.50 0.36 0.75 1.51
RF [0–22.05 kHz] 99.46 99.46 0.32 0.27 0.54
RF [8–22.05 kHz] 93.29 93.30 0.72 3.35 6.71
k-NN [0–8 kHz] 98.58 98.63 0.44 0.71 1.44

k-NN [0–22.05 kHz] 99.05 99.05 0.33 0.47 0.95

k-NN [8–22.05 kHz] 90.88 90.82 1.36 4.57 9.20

Table 3  Voiding characteristics

Signal Physical surface combinations Repetitions

1 Silence-water-ceramic-water-silence 2

2 Silence-ceramic-water-ceramic-silence 2

3 Silence-water-ceramic-silence 3

4 Silence-ceramic-water-silence 2

5 Silence-water-silence 2

6 Silence-ceramic-silence 4
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decreased until it became a dribble. We considered 
this indeterminate and did not take it into account in 
the evaluation of the algorithm (see Fig.  5, where the 
indeterminate time is marked with grey dots). This is 
because it was impossible for the volunteers who per-
formed the test to determine accurately whether these 
seconds corresponded to voiding against ceramic 
or water. It is important to note that this time inter-
val contains a mixture of dribbling against water and 
ceramic.

These intervals generate some uncertainty in the clas-
sification task but become somewhat meaningless if we 
consider that, according to urologists’ criteria, the final 
seconds of the voiding event do not provide relevant 
information for screening or diagnosis.

In the 15 audio recordings processed, 700 s were 
analysed, corresponding to 258, 222 and 220 s of the 
ceramic, water and silence classes, respectively. To evalu-
ate the automatic classification of the impact surface, 
we used the RF classifier with the features extracted 
for the 0–20.05 kHz band. We selected this configu-
ration because it provided the best overall classifica-
tion results. Additionally, most commercial recording 
devices allow recording in this band, which facilitates its 
implementation.

Figures  5, 6 and 7 show the results obtained by the 
algorithm for three selected voiding events. Red, blue and 
green represent the silence, ceramic and water classes, 
respectively, for each 1-s interval. The circles repre-
sent the ground truth, while the diamonds represent 

Fig. 5  Results for signal four, repetition one (see Table 3)

Fig. 6  Results for signal six, repetition two (see Table 3)
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the inference made by the RF algorithm. By comparing 
the ground truth and the output of the RF model, we 
obtained a classification ACC of 98.17 %.

5 � Conclusions
This work addresses the problem of the automatic clas-
sification of the physical voiding flow impact surface in 
SU tests. One of the SU requirements is that the voiding 
flow must always impact the water in the bowl of the toi-
let. However, in a real-world scenario, the voiding flow 
impacts the toilet wall often. This requirement represents 
a constraint, especially for elderly people and children. 
If this requirement is not met, the estimation of the flow 
parameters will be negatively affected.

We built a dataset of 6481 1-s audio clips labelled as 
silent (no voiding), ceramic (voiding against ceramic) and 
water (voiding against water) to train three automatic 
classification models. Three algorithms were trained to 
automatically evaluate the classification of the surface 
in three frequency bands within the 0–22.05 kHz com-
mercial band: the SVM, RF and k-NN. The results show 
that the RF classifier using the FFT-based features in the 
frequency range of 0–22.05 kHz obtains a classification 
ACC of 99.46 % for distinguishing among voiding events 
against ceramic or water and silence (absence of void-
ing flow). Furthermore, we can safely remove the human 
speech frequency band and consider the range 8–22.05 
kHz, since the RF model maintains a high ACC (93.29%) 
and F1-score (93.30%).

Next, we collected data from 15 real SU tests performed 
by three male subjects in three different bathrooms. The 
subjects were instructed to change the impact surface 
during the voiding event. We validated the positive infer-
ence performance of the model for differentiating among 

the three surfaces. With this work, we open the door for 
new studies that will allow the analysis of the voiding 
flow and the extraction of the envelope parameters as a 
function of the surface that the urine impacts. The results 
will allow SU tests to be performed without the existing 
limitation of always targeting the water in the toilet.

5.1 � Future work
For future work, our goal is to study the estimation of 
the voiding parameters (flow rate and volume) as a func-
tion of the surface that the voiding flow impacts (water 
or ceramic) and to be able to eliminate the requirement 
in current SU tests to always aim at the water in the toi-
let bowl. Additionally, we will analyse the reconstruc-
tion of the signal envelope in the time intervals in which 
the voiding flow impacts a ceramic surface, as if it had 
impacted water. This will allow us to automatically clas-
sify the voiding patterns according to the four existing 
patterns in the literature, normal, intermittent, fluctuat-
ing and plateau, which each represent a set of underlying 
dysfunctions, regardless of the voiding impact surface.

Abbreviations
LUTS	� Lower urinary tract symptoms
BPH	� Benign prostatic hyperplasia
UF	� Uroflowmetry
SU	� Sound uroflowmetry
FFT	� Fast Fourier transform
ML	� Machine learning
MFCCs	� Mel frequency cepstral coefficients
SVM	� Support vector machine
RF	� Random forest
CNN	� Convolutional neural network
RNN	� Recurrent neural network
SR	� Sampling rate
t-SNE	� t-distributed stochastic neighbour embedding
k-NN	� K-nearest neighbours

Fig. 7  Results for signal two, repetition one (see Table 3)
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