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Abstract 

Accurately representing the sound field with high spatial resolution is crucial for immersive and interactive sound 
field reproduction technology. In recent studies, there has been a notable emphasis on efficiently estimating sound 
fields from a limited number of discrete observations. In particular, kernel-based methods using Gaussian processes 
(GPs) with a covariance function to model spatial correlations have been proposed. However, the current methods 
rely on pre-defined kernels for modeling, requiring the manual identification of optimal kernels and their parameters 
for different sound fields. In this work, we propose a novel approach that parameterizes GPs using a deep neural net-
work based on neural processes (NPs) to reconstruct the magnitude of the sound field. This method has the advan-
tage of dynamically learning kernels from data using an attention mechanism, allowing for greater flexibility 
and adaptability to the acoustic properties of the sound field. Numerical experiments demonstrate that our proposed 
approach outperforms current methods in reconstructing accuracy, providing a promising alternative for sound field 
reconstruction.
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1 Introduction
Accurately describing the characteristics of a sound field, 
including its spatial, temporal, and spectral properties, 
is crucial for spatial audio applications, which aims to 
create realistic auditory environments through loud-
speakers or headphones  [1, 2]. With recent advances 
in immersive and interactive sound field reproduction 
technologies, the ability to render dynamically variable 
sound fields that allow for listener and source movement 
within the audio scene has become increasingly impor-
tant. While obtaining continuous spatial coverage meas-
urements of a sound field over a large area is extremely 

challenging  [3–6], sound field reconstruction offers a 
resourceful approach to estimate the sound field from a 
limited set of discrete observations. Such methods can 
help overcome the limitations of direct measurement 
techniques and enable realistic, immersive audio experi-
ences in real-world applications.

General solutions for sound field reconstruction typi-
cally rely on conventional linear regression, where the 
sound field is measured at multiple points and repre-
sented as a linear combination of basis functions such as 
plane waves, cylindrical or spherical harmonics  [7–10]. 
However, a large number of basis functions are needed 
to accurately represent sound fields over a large spatial 
region using conventional linear regression. Under spe-
cific acoustic assumptions, it is possible to represent the 
sound field using sparse representations, including plane-
wave [11] or spherical wave [12] expansions, and modal 
decomposition  [13, 14], as well as equivalent source 
methods  [15–17]. Many of these techniques employ the 
principle of compressed sensing principles  [18] to esti-
mate undersampled data for sound field reconstruction.
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Another approach, known as kernel ridge regression, 
is based on infinite-dimensional analysis of sound fields 
to address the issue of basis function truncation [19–21]. 
In this field, the hierarchical kernel was proposed   [22], 
which requires manual adjustment of the kernel parame-
ters to align with the specific characteristics of the sound 
field. More recent works [20, 21] have focused on adap-
tive kernels, i.e. the usage of pre-defined kernels or sub-
kernels with adaptively adapted parameters.

Recently, there have been several data-driven methods 
utilizing neural networks (NN) for specific tasks within 
the field of sound field reconstruction [23–28]. Many of 
these methods are inspired primarily by image restora-
tion and segmentation techniques in computer vision. 
For example, convolutional neural network (CNN) archi-
tectures including U-Net  [23] was proposed for recon-
structing sound field magnitude  [23], physics-informed 
CNNs was proposed for reconstructing sound fields 
generated by point sources [26], and MultiResUNet was 
used for microphone array based room impulse response 
interpolation [24].

Our research focuses on reconstructing various types 
of sound fields across an entire spatial region, using a 
limited number of discrete observations. The work is 
based on Gaussian processes (GPs), which are powerful 
probabilistic models that can be used to capture the spa-
tial correlation in the field by employing a kernel func-
tion and also to handle the uncertainty associated with 
the field’s variations. The work in [22] presents a pioneer-
ing approach to using GPs for sound field reconstruction, 
demonstrating the significant potential of this technique. 
However, one crucial aspect that strongly influences the 
performance of GP models is the choice of kernel func-
tion. At the moment, there are still several unresolved 
questions regarding kernel selection. Firstly, the current 
work employs the pre-defined kernels, with the ker-
nel function parameters adapted solely from the obser-
vations, resulting in limited expressiveness. Secondly, 
the current work has primarily focused on sound field 
reconstruction of far-field sources or sparsely distrib-
uted sources in reverberant rooms. The kernel functions 
used in prior work do not adequately capture near-field 
acoustic properties. Hence, there is potential for further 
exploration into various types of sound fields, such as 
near-field sources and standing waves, etc.

In summary, identifying an appropriate kernel with opti-
mal kernel function parameters for various types of sound 
fields can be challenging. To address this issue, this paper 
proposes a novel data-driven approach to reconstruct the 
magnitude of the sound pressure using neural processes 
(NPs) [29]. NPs enable us to parameterize GPs using a deep 
neural network. In addition, we introduce dynamic kernels 
that can effectively adapt to the properties of diverse sound 

fields by leveraging attention mechanisms. Note that here 
the motivations for modeling sound field magnitude as in 
[23] are as follows. (1) The human auditory system is more 
sensitive to changes in sound magnitude than to changes 
in phase. Therefore, capturing and reconstructing the mag-
nitude can often be sufficient for achieving perceptually 
accurate results. (2) Reconstructing only the magnitude 
simplifies the training complexity.

In this paper, the primary objective is to achieve an 
accurate reconstruction of sound field magnitudes using 
minimal observations that are arbitrarily and irregularly 
distributed. The paper is structured as follows. Section  2 
provides a review of the GPs model, including commonly 
used kernel functions, and highlights the limitations of this 
model. Building on this, Section 3 presents the conceptual 
framework and neural network architecture details of the 
proposed approach using NPs. Section 4 outlines the train-
ing procedure and presents results on the reconstruction 
accuracy of the proposed method, in comparison with 
the conventional linear regression models and data-driven 
models.

2  Overview of GPs
2.1  GPs methodology
The problem is defined as reconstructing a sound field 
within a specific area of interest, using only a limited 
and finite set of observations, which are denoted as 
ũ = [ũ(r1,ω), . . . ũ(rN ,ω)] , where r ∈ � is the spatial loca-
tions and ω is the angular frequency. Hereafter, ω is omit-
ted for notation simplicity. The observed pressure ũ(r) at a 
location r is represented as

where the true sound field f (r) cannot be directly 
observed or measured and e(r) denotes the measurement 
noise [22].

Assuming the sound field in the space is a zero mean 
complex GP, that is the distribution of sound pressure 
within that space follows a complex Gaussian distribution

where the covariance function, or the kernel, κ r, r′  of 
the sound pressures between the spatial locations of r 
and r′ is written as

The measurement noise in (1) is also assumed complex 
Gaussian with zero mean

(1)ũ(r) = f (r)+ e(r),

(2)ũ(r) ∼ CGP
(

0, κ
(

r, r′
))

,

(3)κ
(

r, r′
)

= E
[

u(r)u
(

r′
)]

.

(4)e(r) ∼ CGP
(

0, κe
(

r, r′
))

.
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To predict the sound pressure at a new location r∗ , we 
need to compute the posterior distribution of u∗(r) given 
the observed data ũ(r) and the kernel parameters. This 
can be done using the conditional distribution of a multi-
variate normal distribution [30],

where µu∗|ũ(r) is the predictive mean and κu∗|ũ(r, r∗) is 
the kernel between the observed position and predictive 
position.

The optimal sound field reconstruction is the posterior 
mean in (5), that is

where the kernel, κ = [κ(r1, r∗) · · · κ(rN , r∗)] , is the spa-
tial correlation function between the N observed pres-
sures and the predictive locations r∗ , and the covariance 
matrices K and � are defined as [31]

Obviously, the kernel function, which models the spa-
tial correlation between the sound pressure measure-
ments, is a crucial part of sound field reconstruction 
using GP. The choice of kernel function can have a signifi-
cant impact on the accuracy and efficiency of the sound 
field reconstruction.

2.2  Kernel functions
Kernels for sound field representation are typically cate-
gorized based on their properties of stationarity and isot-
ropy. It is vital to choose or develop a kernel function that 
aligns with the characteristics of the sound field in GP 
methodology. For instance, a diffuse field demonstrates 
stationary and isotropic spatial correlation, while a plane 
wave field presents stationary but anisotropic spatial cor-
relation. Below are some frequently applied kernel func-
tions in audio and acoustics research [32].

2.2.1  RBF kernels
The definition of the isotropic radial basis function (RBF) 
kernel is

where α is the scaling factor that adjusts the kernel func-
tions to match the size of the data, ρ is the length scale 
defining the decay rate of the kernel, and δ � r − r′ is the 
Euclidean distance between two points.

The definition of the anisotropic RBF kernel is

(5)u∗(r) | r∗, r, ũ ∼ CGP
(

µu∗|ũ(r), κu∗|ũ(r, r∗)
)

,

(6)µu∗|ũ(r) = κ
H(K + �)−1ũ,

(7)
� = E

[

eeH
]

,

K = E
[

ffH
]

.

(8)κRBFi
(

r, r′
)

= α2 exp

(

−
1

2ρ2
�δ�2

)

,

where the unitary vector ul ∈ R
D defines the lth direction 

and ρl is the length scale of the corresponding direction.
The definition of the periodic RBF kernel, which is 

derived from Eq. (9), gives

where the kernel repeats every wavelength � = 2π/k.

2.2.2  The plane waves kernels
Plane-wave expansions serve as a widely used method in 
sound field reconstruction. By decomposing the sound 
field into a sum of plane waves with varying ampli-
tudes, directions, and frequencies, it becomes possible 
to reconstruct the field by determining their respective 
amplitudes and phases  [14, 17, 33, 34]. That is, at the 
wavenumber k, the field at any point in space r can be 
expressed as

where wl are unknown weights, e−jkTl r is the elementary 
wave function, and kl = kul is the wavenumber vector.

If the weights wl are also modeled as a complex Gauss-
ian process such that

the kernel for the sound field that is generated by multi-
ple sound sources [35, 36] is defined as

where the weights wl share a same variance σ 2
w . For a spe-

cial case that the sound field is generated by only a few 
sources, which is normally characterized as sparse  [37, 
38], and the kernel is defined as

where the variances of the weights wl are independent 
and σl are considered as inverse gamma distributed [39]

(9)κRBFa
(

r, r′
)

= α2 exp

(

−
1

2

L
∑

l=1

∥

∥uTl δ
∥

∥

2

ρ2
l

)

,

(10)

κRBFp
(

r, r′
)

= α2 exp

(

−

L
∑

l=1

1

2ρ2
l

sin2

(

k
∥

∥u
T
l δ

∥

∥

2

))

,

(11)f (x) =

L
∑

l=1

wle
−jkTl r,

(12)wl ∼ CGP
(

0, σ 2
l

)

,

(13)κm
(

r, r′
)

= σ 2
w

L
∑

l=1

e−jkTl δ ,

(14)κs
(

r, r′
)

=

L
∑

l=1

σ 2
l e

−jkTl δ ,

(15)σl ∼ Ŵ−1(a, b) =
ba

Ŵ(a)
(1/σl)

a+1 exp (−b/σl),
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where a > 0 is the shape parameter and b > 0 is the scale 
parameter of the density function. With a fixed prior a, 
smaller values of b promote sparser solutions.

The concept of the hierarchical kernel κh is introduced 
in [22]. In order to adapt to both normal and sparse 
sound field, the parameters σl in (15) is defined as

2.2.3  The diffuse field kernel
For a diffuse field driven by a pure tone, the spatial cor-
relation and coherence can be modeled by the super-
position of an infinite number of random phase plane 
waves [34]. That is, the diffuse field kernel function corre-
sponding to (11) in the limit L → ∞ is written as follows,

For the two-dimensional case, the kernel in (17) is the 
zeroth-order Bessel function

In summary, when attempting sound field reconstruc-
tion using GPs, it is necessary to understand the char-
acteristics of the sound field and select the appropriate 
kernel function. Once the optimal kernel function is 
determined, Eq. (6) can be utilized to obtain the predic-
tive sound field pressure. However, if there is no suitable 
kernel function available, a custom kernel may need to 

(16)σh ∼ Ŵ−1(1, b), b ∼ N (µb, σb).

(17)κf
(

r, r′
)

= σ 2
w lim

L→∞

L
∑

l=1

e−jkTl δ .

(18)

κb
(

r, r′
)

=
σ 2
w

2π

∫ π

−π

e−jk�δ� cosϕdϕ = σ 2
w J0(k�δ�).

be derived. Nevertheless, developing a kernel that can 
effectively adapt to diverse acoustic environments can 
be challenging, particularly when dealing with complex 
sound fields. Additionally, estimating the optimal hyper-
parameters of the kernel through numerous experiments 
can be a time-consuming process.

3  Proposed method
In this work, we propose a novel approach to automati-
cally obtain the optimal kernel from the magnitude of 
the sound field data for reconstruction, using a data-
driven model based on NPs with attention mechanisms. 
Our proposed model generates dynamic kernels that can 
adapt to the unique properties of various sound fields and 
defines distributions over sound field functions similar to 
GPs. This combination provides a probabilistic, data-effi-
cient, flexible, and computationally efficient solution for 
optimal kernel selection.

In this section, we first detail the overall architecture of 
our method in Section 3.1, and then introduce the pro-
posed two-stream encoder and the efficient and light-
weight decoder in Sections 3.2 and 3.3, respectively.

3.1  Architecture
As shown in Fig. 1, the proposed model is composed of 
an encoder and a decoder. Specifically, the encoder con-
tains two paths: a GPs parameterized path, which models 
the global structure of the stochastic process realization, 
and a dynamic kernel path, which captures the spatial 
correlation between observations and predictions.

The encoder takes a limited set of observed sound field 
magnitude measurements along with their corresponding 

Fig. 1 Schematic diagram of the neural network architecture proposed for sound field reconstruction
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locations (r, p̃)i∈C(0,N ) as input, where p = |u| and C 
denotes the set of integers from 0 to N. Within the GPs 
parameterized path, the encoder outputs a latent variable 
z , which encodes the global structure and uncertainty 
of the sound field distributions in the function space. In 
the dynamic kernel path, given the target location r∗ , the 
dynamic kernel mechanism outputs a correlation-specific 
representation v∗ . Since the dynamic kernel models the 
spatial correlation between observations and predictions 
using differentiable attention, which cannot be analyti-
cally obtained and acts as an implicit kernel, we visualize 
it in Section 4.6.

The decoder takes the latent variable z , the correlation-
specific representation v∗ , and the target location r∗ as 
input and produces the predictive sound field magnitude 
p∗ of the target location. This process can be understood 
as analogous to reconstructing the sound field using an 
appropriate kernel, utilizing the neural network to carry 
out the calculation described by (5).

3.2  Encoder
In this section, we introduce the structure and mecha-
nism of the encoder with the two distinct paths.

3.2.1  GPs parameterized using NPs
The GPs parameterized path is designed to learn distri-
butions over sound field functions from observations. To 
represent a GP using a neural network, we assume that 
F(x) ∼ GP(µ, σ) can be parameterized by a high-dimen-
sional random vector z , i.e., the latent variable  [29]. We 
can then write F(x) = g(x, z) for some fixed and learn-
able function g, where z models different realizations of 
the data-generating GPs  [40]. The motivation for intro-
ducing z is to enable our model to capture different types 
of sound fields.

In the GPs parameterized path, the observed sound 
field magnitudes in the frequency-spatial domain (r, p̃)i 
are embedded from the input space to the represen-
tation space using fully connected layers with Gauss-
ian Error Linear Unit (GELU)  [41] activation functions. 
In our approach, we incorporate a self-attention (SA) 
mechanism  [42], denoted as si = SA(ri, p̃i) , to model 
higher-order interactions within the sound field. The SA 
mechanism allows us to capture the interactions among 
the observations, enabling the learning of global struc-
tural features of the sound field, and obtaining richer 
representations of the observations. The mean aggre-
gator is used to combine the features as s = m(si)  and 
generate a single global representation by Multi-Layer 
Perceptron (MLP), which parameterizes the latent dis-
tribution z ∼ GP(µz , σ z) . Finally, each sample of z corre-
sponds to one realization of the GPs, capturing the global 
uncertainty.

In summary, the GPs parameterized path learns the 
mapping from the observed data to the latent distribu-
tion of the GPs, representing Eq. (5) by the neural net-
work. Following this framework, the kernel function  
is not explicitly defined but is learned through the  
neural network’s parameters, which is described in detail 
below.

3.2.2  Dynamic kernel‑based attention mechanism
In GPs, the kernel function captures the relationship 
between pairs of inputs by computing the dot product 
between their corresponding feature maps. Here, the ker-
nel is defined as κ

(

x, , x′
)

=
〈

�(x),�
(

x′
)〉

= �(x)⊤�
(

x′
)

 , 
where � represents the feature map that maps the inputs 
into a higher-dimensional feature space. The advantage 
of using such a kernel is that it allows us to design algo-
rithms based on dot-product spaces [43]. In our approach, 
we introduce a dynamic kernel mechanism inspired by 
the Scaled Dot-Product Attention (SDPA)  [42]. This 
dynamic kernel mechanism enables us to model the  
spatial correlation presented in diverse sound fields. More 
specifically, the target location r∗ is treated as a query, 
while the observations (r, v)i are treated as key-value 
pairs. Here, vi represents the transformation of p̃i into a 
higher-dimensional space through embedding. Similarly, 
both ri and r∗ undergo embedding within the dynamic 
kernel mechanism. The SDPA mechanism allows us to 
calculate weights that determine the correlation of each 
observation with respect to the target location, enabling 
accurate prediction of the sound field magnitude p∗ at the 
target location.

Suppose we have n key-value pairs arranged as matri-
ces R ∈ R

n×dr , V ∈ R
n×dv , and m queries R∗ ∈ R

m×dr . 
The dynamic kernel mechanism calculates correlation 
weights κd by taking the dot-product of the queries and 
keys scaled by dr , i.e., the kernel form [44], and assigns κd 
to V to obtain the output V∗ , which gives

In addition to using a single dynamic kernel, we further 
propose using a multi-dynamic kernel to achieve linear 
smoother query values [42, 44]. As shown in Eq. (20), the 
multi-dynamic kernel is obtained by the sum of h kernels 
mapping with different weights W , defined by

For each target location r∗ , the dynamic kernel gener-
ates an attention map between r∗ and observations (r, p̃)i , 

(19)
κd = softmax

(

R∗R
⊤/

√

dr

)

,

V∗ = κdV ∈ R
dv .

(20)
κ i = softmax

(

R∗W∗i(RWi)
⊤/

√

dk

)

,

V∗ = (κ1, . . . , κh)V ∈ R
dv , i ∈ [1, h].
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which are totally learned from the data. This allows our 
proposed model to make more accurate predictions in 
environments with different acoustic properties. The vis-
ualization of this part is shown in Section 4.6.

3.3  Decoder
The decoder takes the latent variable z , the correlation-
specific representation v∗ , and the target location r∗ as 
input. We define a Gaussian likelihood to describe the 
decoder, that is

where z is a global latent variable, gθ (r∗, z) is a decoder 
function to generate a prediction for target sound field 
magnitude p∗ at a location r∗ , which is implemented 
as a deep neural network with parameters θ , and τ−1 is 
the variance of observation noise [29, 45]. Specifically, 
the likelihood π(p∗ | z, v∗, r∗) is defined as a factorized 
Gaussian distribution across the predictions (r∗,p∗) with 
mean and variance determined by z and correlation-spe-
cific representation v∗.

To generate the predictive sound field magnitude p∗ , 
the proposed model is defined by

Since the conditional prior π(z | s) in Eq.  (22) is 
intractable, it is approximated using the variational 
posterior [29]

where m(·) is a mean aggregator function, and µω(·) and 
σω(·) parameterize a normal distribution from which z is 
sampled.

3.4  Loss function
The parameters of the encoder and decoder are learned 
by maximizing the evidence lower-bound (ELBO),

The objective function consists of two terms. The first 
term is the reconstruction error (RE), which is equivalent 
to the mean squared error (MSE)  [46]. We denote this 
term as LD , and it measures the discrepancy between the 
predicted output p∗ and the corresponding ground truth 
p• . The MSE is computed over all the elements, denoted 
as N  . The second term is called the Kullback-Leibler(KL) 
divergence [47], which is a measure of dissimilarity 
between two probability distributions. It quantifies the 
difference between the distribution of observed data 

(21)π(p∗ | z, v∗, r∗) = N
(

p∗ | gθ (r∗, z), v∗, τ
−1I

)

,

(22)
π(p∗, z | v∗, r∗) = π(z | s)N

(

p∗ | gθ (r∗, z), v∗, τ
−1I

)

.

(23)q(z | s) = N
(

z | µz(m(si)), σ z(m(si))
)

.

(24)
LELBO = − Eq(z|s∗)[log π(p∗ | z, v∗, r∗)]

+ KL(q(z | s∗)�q(z | s)).

q(z | s) and the distribution of predicted data q(z | s∗) dur-
ing the training process.

To achieve a balance between data reconstruction and 
meaningful representation learning, we assign equal 
weights to both terms during training.

4  Simulation experiments
We evaluated the performance of our proposed sound 
field reconstruction model in comparison to the GPs and 
data-driven models. The sound fields we reconstructed 
included both spatially stationary and non-stationary 
fields, such as a diffuse field and point sources in the 
near-field. Additionally, we reconstructed simulated 
room transfer functions (RTFs) using the image source 
method [48] and modal theory [34]. Our reconstruction 
was carried out on a two-dimensional grid composed 
of 32 by 32 uniformly spaced points along the relevant 
dimensions. The absolute distance between input points 
is determined by the room size. Specifically, the distance 
between points along the x-axis is lx/32 , and the distance 
between points along the y-axis is ly/32 . To ensure scale 
independence in the learning process, it is common to 
standardize the input for each frequency. This standardi-
zation involves transforming the input values such that 
they have a mean of 0 and a standard deviation of 1.

4.1  Evaluation metrics
We use two metrics to evaluate the performance of our 
models. The first metric is the normalized mean square 
error (NMSE) between the ground truth p• and the pre-
dictions p∗ for each frequency point k, which is calcu-
lated as follows

 The second metric is the Modal Assurance Criterion 
(MAC) [49] for each frequency point k, which is defined 
as follows,

 The MAC measure evaluates the level of spatial simi-
larity by determining how well the model predicts 
the overall shape of the pressure distribution in the 
sound field for each frequency point. The MAC values 
range from 0 (indicating maximum dissimilarity) to 1 

(25)LD =
1

N

∑

i∈N

|p∗(ri)− p•(ri)|
2.

(26)NMSEk =
1

N

N
∑

i=1

∥

∥p•(ri,ωk)− p∗(ri,ωk)�
2
2

�p•(ri,ωk)�
2
2

.

(27)MACk =

∥

∥pT
•kp∗k

∥

∥

2

2
(

pT
•kp•k

)(

pT
∗kp∗k

) .
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(representing identical shapes), providing a quantitative 
measure of the quality of the model’s predictions.

4.2  Training procedure
Our proposed model can be trained end-to-end on simu-
lated data. To optimize the model, we use the Adam opti-
mizer [50] and train it for 300 epochs. The base learning 
rate is initially set to 1e−4 and decays to 1e−5 after 200 
epochs. Moreover, to achieve better performance and 
stability during the training process, we implement an 
exponential warm-up strategy throughout the first 20 
epochs.

4.3  Spatially stationary field
In this section, we explore the reconstruction of the dif-
fuse field, which is modeled by the superposition of an 
infinite number of random phase plane waves, as shown 
in Eq. (17). This type of sound field is particularly relevant 
to the sound field present in reverberation rooms [51].

To evaluate the performance of our proposed model, 
we conduct experiments on simulated data. Specifically, 
we estimate the sound field magnitudes in the frequency 
band [30, 500] Hz on a 32 by 32 grid, given 10 observa-
tions arbitrarily placed. The simulated data is generated 
by using m plane waves with unit magnitude and random 
phase, i.e., ∠ul ∼ U [0, 2π) and random direction of prop-
agation, i.e., kl ∼ U [−k , k] . Here, m is randomly sampled 
from the range of m ∈ (1000, 3000) . To train our pro-
posed model, we use a diverse set of 8000 diffuse fields 
according to the above parameter settings.

In order to evaluate the effectiveness of our pro-
posed model, we compare it against GPs with different 

kernels, including the Bessel kernel, hierarchical ker-
nel, and RBF kernels. The prior densities of param-
eters in Eq. (8)–(10) are defined as α ∼ N (0, 1) , ρ and 
ρl ∼ Ŵ−1

(

aρ , bρ
)

 , where aρ = 5 and bρ = 5 . For the 
hierarchical kernel in Eq.  (16), the parameters are set 
as b = 10−blog and blog ∼ N (2, 1) [22]. In order for the 
mean magnitude of the fields to be 1 Pa, the fields are 
normalized. The parameters settings and scaling align 
with the original work [52].

In Table  1, we present the mean performance of our 
proposed model compared to GPs on a diverse set of 
1000 diffuse fields. The results clearly demonstrate that 
our model exhibits significantly improved reconstruction 
performance. To provide a detailed visualization of the 
reconstruction process, we selected a sound field from 
the test set. Figure 2 depicts the sound field magnitudes 
of the reconstructed data at various frequencies. The Bes-
sel kernel performs relatively well due to its aptitude to 
coincide with the diffuse field. The hierarchical kernel 
exhibits a certain level of adaptability to the property of 
the sound field, enabling it to capture the structure of 
the diffuse field. However, in regions where there are no 
observations, such as the upper left corner, all kernels 
poorly extrapolate the sound field, particularly at 500 Hz. 
This phenomenon highlights the limitations of the GPs 
method in accurately capturing the complex behavior of 
the sound field in sparsely sampled regions.

In comparison, the proposed model achieves the 
best performance due to the proposed attention-based 
dynamic kernel mechanism, which enables the model 
to effectively capture the global sound field and obtain 
richer representations. This enhances the model’s 

Fig. 2 Reconstructed diffuse-field magnitudes of different frequencies given 10 observations arbitrarily placed. The red dots indicate the locations 
used for reconstructing predicted sound field magnitudes
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overall performance, enabling it to outperform other 
approaches.

4.4  Spatially non‑stationary field
In this section, we discuss the process of reconstructing 
the sound field in the near-field created by multiple point 
sources. This type of sound field is particularly relevant 
to the direct component of the Room Impulse Response 
(RIR) [21, 53]. The direct component of the RIR provides 
critical information about the room geometry [54].

To train our model, we created a dataset consist-
ing of 8000 simulated sound fields. Each field is com-
posed of a random number of point sources, denoted as 
j ∼ U [1, 6] , which are randomly distributed. Each point 
source is positioned at a radial distance, represented by 
d ∼ U(�, 3�) , from the central point of the reconstruc-
tion area. The parameters of GPs method are set as 
Section 4.3.

Table 2 shows the mean performance of our proposed 
model and GPs on a diverse set of 1000 near-fields. To 

provide a detailed reconstruction demonstration, we 
selected a sound field from the test set for visualization. 
Figure 3 shows the reconstruction of the near-field pro-
duced by five point sources evenly distributed at 2� m 
from the center of the reconstructed area. From the fig-
ure, we see that the GPs method with existing kernels 
fails to accurately follow the distance inverse law in terms 
of the pressure amplitude reconstruction. This discrep-
ancy arises from the mismatch between the kernel func-
tions and the properties of the sound field. Specifically, 
the magnitude of the reconstructed sound field is rela-
tively small near the sources (i.e., the edge of the recon-
struction area), while the magnitude is excessively large 
at locations further away from the sources (i.e., the center 
of the reconstruction area). In addition, the kernels are 
poor for source localization, making it difficult to distin-
guish the location or even the number of sound sources 
from Fig. 3.

As predicted, the proposed model demonstrates 
superior performance in accurately reconstructing 

Table 1 The mean of NMSE and MAC of diffuse-field test dataset of different frequencies given 10 observations arbitrarily placed

NMSE (dB) MAC

 Method 150 Hz 307 Hz 500 Hz 150 Hz 307 Hz 500 Hz

Proposed −22.8639 −19.6237 −11.3852 0.9948 0.9893 0.9278
Bessel  −9.5050  −7.6729  −1.2261 0.9227 0.9642 0.7874

Hierarchical  −10.2242  −7.9026  −1.4814 0.9305 0.9648 0.7877

RBF isotropic  −7.1763  −0.0536  −0.0431 0.9224 0.0080 0.0112

RBF anisotropic 2.9634 1.3958 2.4845 0.8075 0.1106 0.0063

RBF periodic  −2.0407 1.4845 1.8934 0.8606 0.7885 0.6728

Fig. 3 Reconstructed near-field magnitudes of different frequencies given 10 observations arbitrarily placed. The red dots indicate the location 
used for reconstructing predicted sound field magnitude
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sources with varying numbers, orientations, and dis-
tances, particularly at 500 Hz. This outcome highlights 
the remarkable ability of the proposed model to gener-
alize effectively and reconstruct diverse sound fields.

4.5  RTF magnitude reconstruction
RTFs are a crucial component for achieving immer-
sive and interactive sound field reproduction in virtual 
reality applications [13]. They represent the frequency-
domain representation of RIRs, which typically com-
prise direct and reverberant components that can be 
modeled by spherical waves and diffuse fields, respec-
tively   [31]. In Sections  4.3 and 4.4, we demonstrated 
the remarkable superiority of our proposed model 
over the GPs method in both near-field and diffuse-
field sound field reconstruction. To provide a fair 
comparison, we further compare our proposed model 
with a data-driven sound field reconstruction method 
based on a U-net-like neural network   [23]. The train-
ing process and settings are in line with the original 
work  [55]. We employed two simulation methods, the 
Image-Source Method (ISM) and Modal Theory (MT), 
to generate RTF datasets. We tested the ability of our 
model to reconstruct sound fields in simple small-sized 
rooms, as well as complex rooms with standing waves. 
Note that the trained networks are not specific to any 
particular room geometries or wall reflective properties 
but only leverage the limited set of observations within 
the reconstruction area of interest, demonstrating the 
versatility and practicality of our proposed approach.

4.5.1  ISM‑RTFs dataset
The ISM for generating RIRs is widely used in sound field 
reconstruction [56, 57], with the RIR generator [48] being 
a popular tool due to its simplicity and computational 
efficiency. The ISM-based approach is well-suited for 
small room sizes and simple geometries. In the frequency 
domain, the generated RTFs are represented as

where rβ are the vectors corresponding to the permuta-
tions of 

(

x0 ± x, y0 ± y, z0 ± z
)

 , γ is the integer vector tri-
plet (nx, ny, nz) , and rγ = 2(nxLx, ny, nzLz) [31].

In our simulations, we investigated point source radia-
tion in 2D rooms within the frequency range of [30, 500] 
Hz, where B = 4 and z = 0 as specified in Eq.  (28). We 
conducted the simulations in 11,000 rectangular rooms 
with floor areas randomly sampled from 12  to 20 m 2 . 
In each room, an omnidirectional source was placed in 
a uniformly sampled random location. We set reverbera-
tion time T60 = 0.4s , the sampling frequency to fs = 48 
kHz, and simulate reflections up to the 3rd order. To 
assess the performance of our proposed model with a 
limited number of observations, we placed 10, 30, and 50 
microphones in a 32 by 32 grid in an arbitrary manner. 
We used 10,000 and 1000 rooms for training and testing 
the model, respectively, from the dataset. We then ana-
lyzed the mean performance of the model across these 
test rooms.

As shown in Fig. 4, our proposed algorithm consistently 
outperforms the U-net model. Specifically, the proposed 
model achieves similar results with only 30 observations, 
while U-net requires 50 observations to achieve compa-
rable performance. This improvement can be attributed 
to the dynamic kernel that incorporates global informa-
tion more comprehensively than the partial convolution 
employed in U-net [58]. This demonstrates the potential 
of our proposed model to reduce the number of required 
samples while maintaining its effectiveness.

Furthermore, we observe that the performance of 
our proposed model improves as the number of avail-
able observations increases. Although the performance 
slightly degrades with increasing frequency, the model 
still exhibits good performance in reconstructing RTFs 
in small rooms across most frequencies. These outcomes 
suggest that our algorithm is effective for reconstructing 
RTFs in small rooms.

(28)p(ω, r | r0) =

B
∑

β

∞
∑

γ=−∞

A(ω)
ej(ωt−k�rβ+rγ�)

4π
∥

∥rβ + rγ
∥

∥

,

Table 2 The mean of NMSE and MAC of near-field test dataset of different frequencies given 10 observations arbitrarily placed

NMSE (dB) MAC

Method 150 Hz 307 Hz 500 Hz 150 Hz 307 Hz 500 Hz

Proposed −17.8494 −10.5829 −7.0664 0.9872 0.9134 0.8077
Bessel −13.7646 −1.5615 2.4769 0.9793 0.9272 0.7050

Hierarchical −15.1681 −1.7293 2.2114 0.9849 0.9294 0.7083

RBF isotropic −15.7987 −1.1729 3.1793 0.9753 0.0088 0.0112

RBF anisotropic −8.7447 3.9365 3.6229 0.9387 0.0946 0.0019

RBF periodic −15.1838 −1.1221 3.2672 0.9866 0.9136 0.5357
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4.5.2  MT‑RTFs dataset
In order to investigate the potential of our proposed 
model for reconstructing complex sound field with 
standing waves, we generated a dataset using MT  [55], 
i.e., the following equation

where 
∑

N is a triple summation across the modal order 
in each dimension (nx, ny, nz) of the room, V is the room 
volume, ψN (·) is the eigenfunctions (representing the 
mode shape), and ωN denotes eigenfrequencies (repre-
senting the resonance frequency). The time constant τN 
represents the characteristic time for a specific mode 
in a room to decay. It is a constant obtained by divid-
ing the total sound energy in the room by the sound 
power absorbed by the walls related to that particular 
mode. Specifically, for each mode, τN is calculated from 
the absorption coefficient determined using Sabine’s 
equation  [23]. Here, we focus on 2D rectangular rooms 

(29)

G(r, r0,w) ≈ −
1

V

∑

N

ψN (r)ψN (r0)

(ω/c)2 − (ωN /c)
2 − jω/τN

,

within the frequency band [30, 500] Hz. We incorporate 
all room modes with eigenfrequencies fm below 600 Hz, 
and specifically set nz to 0 in Eq. (29). Consequently, the 
total number of modes can be calculated using the for-
mula N = fm

2/(c2/4nxny)  [34]. A reverberation time of 
T60 = 0.4s is assumed. The training and test sets are split, 
and the room size and sound source location settings are 
the same as in Section 4.5.1.

Figure  5 depicts the mean performance of the pro-
posed model in reconstructing MT’s RTF dataset. 
The performance of the proposed model given 10, 
30, and 50 observations consistently outperforms 
the U-net, indicating its potential for effectively 
reconstructing standing waves. Particularly in the 
low-frequency range, the proposed model exhibits a 
significant advantage. As the reconstruction frequency 
approaches the highest eigenfrequency, the complex-
ity of the modes increases, which leads to a decrease 
in the reconstruction performance. This phenomenon 
aligns with theoretical expectations, suggesting that a 
higher number of observations is required to improve 

Fig. 4 Normalized mean square error (NMSE) in dB and Modal Assurance Criterion (MAC) estimated from ISM’s RTF dataset given 10, 30, and 50 
observations arbitrarily placed
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robustness and overcome the challenges posed by 
undersampling [23, 59].

In addition, comparing Figs. 4 and 5, the method’s per-
formance deteriorates with increasing frequency, which 
is more noticeable in Fig. 5. The reason for this phenom-
enon is the ISM-RTFs dataset is more homogeneous than 
the MT-RTFs dataset. Specifically, the sound fields gener-
ated by IMS are produced in shoebox rooms with image 
reflections up to the 3rd order. This indicates a relatively 
sparse sound field with wavefronts in the space-time 
domain. Due to the transient nature of the wavefronts, 
this type of sound field is dense in the frequency domain. 
In contrast, the sound fields generated by MT are rela-
tively sparse in the modal region of the sound field (up 
to Schroeder’s frequency). As frequency approaches 
Schroeder’s frequency, the sound fields have increasingly 
more modes and eventually become diffuse.

4.6  Dynamic kernel visualization
In this section, we demonstrate the spatial correlation 
between observations and target locations using the 

proposed dynamic kernel Eq.  (19). We select multiple 
rooms from both IMS-RTFs and MT-RTFs datasets to 
visualize the sound field and their spatial correlation at 
specific frequencies.

Figure  6a and b demonstrate that for the IMS-RTFs 
dataset, the correlation is stronger between observa-
tions in close proximity to the target location. Addition-
ally, the dynamic kernel assigns relatively more attention 
to locations where the sound source is situated, i.e., the 
bottom left of Fig. 6a and the middle left of Fig. 6b, and 
less to areas where the sound field characteristics are less 
prominent, such as the top side of Fig. 6a and right side 
of Fig. 6b. This reflects the validity of the dynamic kernel 
in apportioning attention to the global sound field. Addi-
tionally, it provides an explanation for the experimental 
results in Section 4.3, as the sound field reconstructed by 
the proposed method reflects the locations of sources.

For the MT-RTFs dataset shown in Fig. 6c and d, simi-
lar conclusions can be drawn, with closer observations 
displaying a stronger correlation with the target loca-
tion. Interestingly, the observations that correlate most 

Fig. 5 Normalized mean square error (NMSE) in dB and Modal Assurance Criterion (MAC) estimated from MT’s RTF dataset given 10, 30, and 50 
observations arbitrarily placed
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strongly with the target point are not in proximity to it 
but rather at the left bottom of the Fig. 6c and the bottom 
of the Fig. 6d, where the structural features of the sound 
field are noticeable. This highlights the dynamic kernel’s 
ability to learn from data. Furthermore, it is apparent that 
the sound field environment in the MT-RTFs dataset is 
more intricate than that of the IMS-RTFs dataset at the 
same frequency. This difference explains the proposed 
model’s performance degradation in reconstructing the 
MT-RTFs dataset at higher frequencies.

4.7  Model generalization
To assess the generalization ability of our model, we com-
bined the four datasets mentioned in Sections  4.3, 4.4, 
and 4.5 into a diverse dataset for both training and test-
ing. We conducted experiments on four types of sound 
fields, where 10 observations were arbitrarily placed. In 
our comparisons between U-net and GPs, we employed 
the best-performing hierarchical kernel for GPs.

As illustrated in Fig.  7, we observed a decline in per-
formance for the model trained on the diverse dataset 
when compared to training on each individual dataset 

separately. This decline can be attributed to the varying 
data distributions present in each dataset. However, it is 
important to note that even with this decline, our pro-
posed model still exhibited strong performance, particu-
larly in terms of robustness at high frequencies.

This outcome serves as a testament to our model’s abil-
ity to learn from diverse data and highlights its applica-
bility across various sound field scenarios. While the 
varying data distributions affected the model’s perfor-
mance to some extent, our model showcased resilience 
and delivered notable results, particularly in capturing 
sound characteristics at higher frequencies.

4.8  Computational complexity analysis
Apart from enhancing the accuracy of reconstruction, 
the proposed model also offers a significant advantage 
in terms of computational complexity during the infer-
ence process. With a model size of 4.3 million param-
eters, the deterministic inference time is around 0.016 
s on a Nvidia Tesla K80 GPU. This estimation is based 
on the observation of 1000 different room predictions. 
In our experiments, we conducted model training for 

Fig. 6 Visualization of spatial correlation of RTFs at a specific frequency. The dots indicate the location of the observations that were used 
to reconstruct the output of our model, and the white square denotes the target location that needs to predict its magnitude. The color of the dots 
reflects the strength of the correlation between the observations and the target
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300 epochs on the training set. Each type of sound field 
required approximately 12 h of training time. The U-net 
model size is 3.9 million parameters resulting in a deter-
ministic inference time of approximately 0.083 s on a 
Nvidia Tesla K80 GPU. Each type of sound field required 
approximately 24 h of training time for 300 epochs.

5  Conclusion
In this work, we proposed a novel method that param-
eterizes GPs using a deep neural network based on Neu-
ral Processes. Our method allows for the learning of 
dynamic kernels from simulated data with the introduc-
tion of attention, enabling the method to obtain a kernel 
that adapts to the acoustic properties of the sound field 
without many functional design restrictions. Numeri-
cal experiment results demonstrate that our proposed 
method outperforms current methods in terms of recon-
structing accuracy for a diverse range of sound fields. 
Future work involves validating our approach using real-
world data and further developing the methodology for 
complex sound field reconstruction.
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