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Abstract 

Audio augmented reality (AAR), a prominent topic in the field of audio, requires understanding the listening environ-
ment of the user for rendering an authentic virtual auditory object. Reverberation time ( RT60 ) is a predominant metric 
for the characterization of room acoustics and numerous approaches have been proposed to estimate it blindly 
from a reverberant speech signal. However, a single RT60 value may not be sufficient to correctly describe and render 
the acoustics of a room. This contribution presents a method for the estimation of multiple room acoustic parameters 
required to render close-to-accurate room acoustics in an unknown environment. It is shown how these param-
eters can be estimated blindly using an audio transformer that can be deployed on a mobile device. Furthermore, 
the paper also discusses the use of the estimated room acoustic parameters to find a similar room from a dataset 
of real BRIRs that can be further used for rendering the virtual audio source. Additionally, a novel binaural room 
impulse response (BRIR) augmentation technique to overcome the limitation of inadequate data is proposed. Finally, 
the proposed method is validated perceptually by means of a listening test.

Keywords BRIR augmentation, Reverberation time estimation, Binaural rendering

1 Introduction
To create a convincing illusion of a virtual auditory 
object in a given environment via headphones, two major 
requirements must be met. The first requirement involves 
placing the object within a space which considers the 
room acoustics and the second involves the anatomy of 
an individual which changes the characteristics of the 
sound before reaching the eardrum [1]. Placing the object 
in a space can be achieved by convolving a dry (or ane-
choic) signal with a room impulse response (RIR). This 
gives the listener a perception of sound originating from 
a specific location within a room, replicating the exact 

conditions under which the RIR was recorded. An RIR 
describes the behaviour of any sound source in a particu-
lar room and condition. It is typically divided into direct 
sound (DS), early reflections (ER), and late reverberations 
(LR) and it is well established that DS and ER have per-
ceptually relevant directional properties [2]. However, 
a single omnidirectional microphone lacks the ability 
to capture the directional information, which makes it 
inadequate to produce an authentic auditory render-
ing. For a realistic rendering of a virtual auditory object, 
binaural room impulse responses (BRIRs) are captured 
which describe how the sound would travel from a sound 
source to the ears of a listener in a particular room [3]. 
An ideal BRIR measurement would require capturing the 
microphone signals at both the eardrums of the listener 
for every possible direction of view (DOV) resulting in 
an individual BRIR dataset. It includes the influences of 
both: the room’s characteristics and the listener’s physical 
presence. When convolved with a dry signal and played 
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back over headphones, it should give that specific listener 
a perfect reconstruction of a virtual sound source. How-
ever, this is a very time-consuming task if it has to be per-
formed for each listener in every listening condition and 
for all possible DOV.

Alternatively, to imitate the effect similar to individ-
ual BRIR, a generic BRIR can be recorded using a head-
and-torso simulator (HATS). The direct sound from this 
BRIR can then be replaced with a head-related trans-
fer function (HRTF) of the particular listener. It is well 
understood that performing binaural rendering with an 
individual HRTF rather than a generic one leads to higher 
plausibility and externalization [4–6]. Additionally, Wer-
ner et  al. have demonstrated that the perceived exter-
nalization also depends on visual cues, due to acoustic 
divergence between the rendered and the listening rooms 
[7]. Hence, for the virtual auditory object to sound plau-
sible and external in audio augmented reality (AAR), it is 
crucial to render a reverberation that is similar to that of 
the listening environment, since an incorrect rendering 
of room acoustics would destroy the illusion of realism 
[8].

However, capturing BRIRs in every possible environ-
ment would require an impractical amount of effort and 
prime apparatus. To overcome this challenge, data-driven 
approaches have been proposed that estimate room 
acoustics directly from noisy reverberant speech signals 
using machine learning (ML)-based techniques which 
can be seen dated as far back as 2001 [9]. In contrast to 
estimating room reverberation, other researchers pro-
pose estimating well-known room acoustic parameters 
such as reverberation time (RT) to get a rough under-
standing of the environment [10].

Apart from wide-band RT, frequency-dependent RT, 
energy decay curve (EDC), clarity ( C50 ), and direct-to-
reverberant ratio (DRR) have been considered the most 
important parameters of a room that assist in the analysis 
of a given scenario [11]. Prior knowledge of these param-
eters could result in a more accurate representation of a 
virtual sound object in any given listening environment. 
But generally these parameters can only be calculated 
from high-quality measured RIRs and as mentioned ear-
lier, measuring RIR is not practical at the user end of the 
applications due to the cost and effort involved. Hence, 
blind estimation of the parameters solely from reverber-
ant speech signals has been of great interest to research-
ers in the field [10, 12–22].
RT60 is often considered as a key parameter to describe 

the acoustics of a space. It is a measure that defines the 
time taken for the sound energy to decrease by 60 dB 
after the source has stopped. As defined by ISO 3382-2 
[23], based on an energy decay curve of an RIR, RT60 can 
be calculated by observing the time taken to reach 60 dB 

below the initial level used. But generally, from an RIR, 
RT60 is extrapolated based on a smaller dynamic range 
such as 30 dB ( T30 ), i.e. by taking twice of T30 value. 
Another well-known method to calculate RT60 of a space 
is given by Sabine’s formula as:

where RT60 is the time in seconds required for a sound 
to decay 60 dB, V is the volume of the room, S is the 
boundary surface area, and α is the average absorption 
coefficient. Numerous methods exist for its estimation 
blindly, i.e. without the use of an RIR, using audio signals 
including both signal processing and ML-based methods 
[10, 13–22]. A review of most of the given algorithms 
can be found in [24]. Another important parameter of 
room acoustic is the early-to-late reverberant ratio (ELR) 
or clarity ( C50 ). It is the ratio of the early sound energy 
(until 50 ms) and the residual energy in an RIR and is 
expressed in dB. As given by [25], C50 can mathematically 
be defined as:

Although C50 is often used as an indicator of speech 
clarity or intelligibility, it may assist in discriminat-
ing rooms with similar RT60 [11]. Several non-intrusive 
approaches exist for its estimation [26] or jointly with 
RT60 [13, 16].

In 2015, The ACE challenge [12, 24] created a bench-
mark for evaluation of RT60 and direct-to-reverberant 
ratio (DRR) estimation approaches. The benchmark 
allows the researchers to fairly evaluate their models 
against the state-of-the-art models. Eaton et al. [24] com-
pared multiple estimation approaches in terms of mean 
squared error (MSE), estimation bias, and Pearson cor-
relation coefficient ( ρ ). MSE is defined as the average of 
squared differences between predicted and real values 
and can be mathematically understood as:

where, xi is the ith observed value, yi is the correspond-
ing predicted value and N is the number of observations. 
Bias is the mean error in the results and is given by:

 Finally, ρ is the Pearson coefficient correlation between 
the estimated and the ground truth results and is defined 
as:

(1)RT60 = 0.161V /Sα

(2)C50 = 10 log

50
0 p2(t)dt
∞

50 p2(t)dt

(3)MSE =
1

N
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(xi − yi)
2

(4)Bias =
1

N
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(xi − yi)
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where, x̄ and ȳ are the means of real and predicted val-
ues respectively. By considering the MSE, bias, and ρ 
together, it is possible to determine how well an estima-
tor performs [12]. Estimation results with a low bias and 
MSE might give an estimate close to the median for every 
speech file. But by examining ρ , it is possible to distin-
guish between such an algorithm ( ρ close to 0). An algo-
rithm which is more accurately estimating the parameter 
will have ρ closer to 1 with low MSE and bias close to 0. 
The results from ACE challenge showed that signal pro-
cessing and ML methods had similar performance for RT 
estimation, while machine learning methods were better 
for DRR estimation at the time of the challenge.

2  Related works
Since the ACE challenge, a handful of publications have 
demonstrated the use of ML to estimate RT60 from noisy 
reverberant speech signals [14, 15, 18–20]. In 2018, 
Gamper and Tashev used convolutional neural networks 
(CNN) to predict the average RT60 of a reverberant sig-
nal using Gammatone filtered time-frequency spectrum 
[15] which outperformed the best method from ACE 
challenge. In 2020, Looney and Gaubitch [17] showed 
promising results in the joint blind estimation of RT60, 
DRR, and signal-to-noise ratio (SNR). On the other 
hand, Bryan [18] proposes a method to generate aug-
mented training datasets from real RIRs which showed 
improvement in RT60 and DRR predictions. Ick et al. [21] 
introduced a series of phase-relate features and demon-
strated clear improvements in the context of reverbera-
tion fingerprint estimation on unseen real-world rooms. 
However, one common limitation of most of the afore-
mentioned works is that they only provide broadband 
parameter values, rather than frequency-dependent ones. 
This is an oversimplification of the room acoustics model 
which can potentially limit the rendering realism in the 
context of AAR.

Instead of using speech inputs, a few researchers have 
tried estimating acoustic parameters from wide-band 
inputs such as music signals [27]. The results demonstrate 
lower estimation accuracy in signals with music input 
than those with speech only. According to the authors, 
one of the reasons for this is the additional reverb used in 
the music content during the mixing process, which adds 
up in the input signal when convolving with the room 
reverb. In the study by Götz et al. [28], authors extended 
the work from [19] to estimate sub-band RT60 and C50 
in dynamic conditions using convolutional recurrent 
neural networks (CRNN). When considering estima-
tion results for music input, the model improves greatly 

(5)ρ =

∑

(xi − x̄)(yi − ȳ)
√

∑

(xi − x̄)2
∑

(yi − ȳ)2

in estimating RT60 under dynamic conditions over static 
conditions. This shows the ability of a model to differenti-
ate between room reverberation and reverb from music 
when more than one condition is presented. The model 
trained with dynamic data shows improved performance 
even under static conditions. Although the results show 
estimation error being well under the just noticeable dif-
ference (JND) for RT60 , the model fails to predict C50 as 
accurately for C50 > 15 dB. The training and evaluation 
are however only performed on noiseless data. Further-
more, as pointed out by authors, the model only consid-
ers single-channel signals which lack spatial information 
and could be an aspect of future works.

The parameters estimated by ML methods can also be 
used to drive artificial reverberators to reconstruct the 
RIR properties of the space. For example, the method 
from Srivastava et al. [22] predicts not only RT60 but also 
room volume and total surface area, which could be use-
ful parameters for the configuration of artificial rever-
berations. Alternatively, some methods also aim at the 
selection of an RIR from a database [11, 29].

On the other hand, few researchers have focused on 
directly estimating the RIR leveraging the audio-visual 
cues [30, 31]. Although it is a valuable approach to match 
the room acoustics of the current room for the case of 
augmented reality (AR), relying on visual cues might not 
be practical in scenarios like headphone listening where 
visual input is not available. Additionally, 10 s required 
to optimize the material [30] is unsuitable for real-time 
rendering where the listener moves between different 
rooms.

Steinmetz et al. proposed to estimate time-domain RIR 
solely from reverberant speech using filtered noise shap-
ing in [32]. The approach shows a nearly perfect recon-
struction of RIR from speech. However, the estimation 
of single-channel RIRs demonstrated in the publications 
may not be sufficient for auralization of spatial audio. 
Ratnarajah et al. [33] proposed M3-AUDIODEC, a neural 
network-based multi-channel multi-speaker audio codec 
which overcomes the limitation of generating single-
channel RIR. The approach compresses multi-channel 
audio while retaining spatial information. The approach 
can also aid in solving acoustic scene-matching prob-
lems. The method not only allows the reconstruction of 
reverberant speech but also provides the separation of 
clean speech and the BRIR that can be utilized to aural-
ize other signals. The approach is however only tested on 
simulated data and the spatial coherence of other BRIRs 
in the same room has not been yet evaluated.

Most of the neural network approaches mentioned 
earlier make use of traditional CNN models with time-
frequency representations (STFT, mel, etc.). In acous-
tic characterization, CNN is usually applied to solve the 
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blind acoustic parameter estimation problem as a regres-
sion task. CNNs are suitable for learning two-dimen-
sional time-frequency signal patterns for end-to-end 
modelling, which is why they are widely used in afore-
mentioned approaches. To capture long-range global 
context better, hybrid models that combine CNN with 
a self-attention mechanism have been proposed. These 
models have achieved state-of-the-art results for various 
tasks such as acoustic event classification and other audio 
pattern recognition topics [34].

Gong et  al. [35] recently proposed a purely attention-
based model for audio classification, called audio spec-
trogram transformer (AST). They evaluated AST against 
different audio classification benchmarks to achieve 
state-of-the-art results, which shows that CNNs are not 
always necessary in this context. However, transform-
ers such as AST require a huge amount of computation 
power due to their complexity. To tackle this, in [13], a 
mobile audio transformer (AudMobNet) was proposed, 
which not only is independent of the length of the 
sequence but is also more robust against noise and com-
putationally less expensive. The approach is only verified 
for broadband RT60 and C50 values. Upon further inspec-
tion, it was found that instead of only estimating single 
broadband RT60 value, sub-band RT60 and C50 can be 
beneficial in understanding the tonal characteristics of 
the room.

In this work, we aim to focus on estimating the acoustic 
parameters that correlate more with perceived plausibil-
ity. We extend our model (AudMobNet) presented in [13] 
to jointly estimate broadband and sub-band RT60 and 
C50 from noisy reverberant binaural speech signals. We 
also propose to improve the existing model architecture 
and use additional features such as phase and continu-
ity differences to improve the performance of the model. 
Additionally, a novel multi-channel data augmentation 

technique to enhance the generalization capability of the 
network in sub-band RT estimation is presented. Lastly, 
leveraging on prior works [11, 13], an end-to-end blind 
spatial audio rendering setup is developed (Fig.  1) that 
takes a noisy speech recording as input to output a plau-
sible binaural rendering of an arbitrary signal by means 
of BRIR selection. We use the estimated parameters to 
find closely related rooms from a dataset of high-qual-
ity BRIRs using linear discriminant analysis (LDA). The 
selected rooms are further used for rendering a virtual 
auditory object. Contrary to existing approaches men-
tioned earlier, our method solely relies on reverberant 
speech to binauralize the listening room and selection of 
360 degrees BRIR set allows head rotation without any 
audible artefacts.

3  Proposed method
Our proposed blind end-to-end spatial audio rendering 
setup consists of 4 modules, namely recorder, estimator, 
selector and renderer (see Fig.  1). The estimator oper-
ates in a frame-wise manner in parallel with the recorder, 
and the input buffer length can be adjusted as needed. A 
longer buffer will lead to increased latency in the room 
parameter estimation (when in real-time), whereas a too-
short buffer might produce inaccurate or unstable predic-
tions. The estimated parameters are then used to select a 
set of 360 degrees BRIRs recorded in a real environment 
using the technique proposed in [11]. The selected set is 
then used for rendering the virtual object over the head-
phones through convolution. This end-to-end setup is 
used to evaluate the perceptual relevance of the proposed 
method (Section 4.4).

The most important module in the end-to-end setup 
is the Estimator which makes use of earlier presented 
AudMobNet [13] and extends it to the application of 
AAR rendering. Exploiting the binaural recording feature 

Fig. 1 The end-to-end blind rendering setup of the proposed method
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of new-age consumer end microphones, we can blindly 
estimate the room acoustics parameters that can be used 
to find a similar high-quality BRIR set from the data-
base. This high-quality measured BRIR set ensures that 
the intra-set spatial coherence is preserved. We believe 
if the parameters of rendered BRIR are close enough to 
that of the listening room, the room divergence effect will 
be mitigated, resulting in a plausible virtual sound source 
[36]. Furthermore, it is believed that the head-tracking 
may also lead to a more authentic virtual sound source 
[37].

3.1  Model and feature input
The effectiveness of mobile transformers for estimat-
ing room acoustic parameters has already been demon-
strated by the AudMobNet model proposed in [13]. Here, 
we propose using AudMobNet with additional changes 
for estimating room acoustic parameters from binaural 
signals. Instead of using mel-spectrograms as the only 
input to the network, we propose using inter-channel dif-
ferences, exploiting the binaural nature of the problem, 
in addition to the logarithmic mel-spectrogram. It has 
been well established that for localizing a sound source, 
inter-channel (aural) phase differences (IPD) are the 
main contributors in low frequencies (< 1500 Hz) while 
the Inter-channel Level Differences (ILD) contributes in 
frequencies above 1500 Hz [38]. Furthermore, Ick et  al. 
demonstrates that using phase and continuity features 
assist in improving RT60 estimation in low frequencies 
[21]. Similarly, results from Srivastava et al. [22] showed 
how using inter-channel features such as ILD and IPD 
lead to better parameter estimation over the networks 
where only single-channel features (STFT) are utilized. 
Hence, we believe that using IPD would help the network 
in understanding the low-frequency components. Fur-
thermore, continuity features are used to track the phase 
variations across time which might help in understanding 
the overall context of the spectrum when estimating sub-
band parameters. For boosting the generalization ability 
of the network and achieving full potential for estimating 
sub-band parameters, a BRIR augmentation technique is 
also presented which is discussed later in the section.

For the input data, the 2-channel raw audio is trans-
formed into spectrograms using STFT with a sampling 
rate of 16,000 Hz and in frames with a 50% overlap using 
a Hann window. The STFT is further filtered with mel fil-
terbanks generating a mel-spectrogram of the shape M × 
L, where M is the number of mel bins and L is the length 
of the resultant spectrogram. Here, L depends on the 
frame size F, used for calculating STFT. For faster train-
ing and ease of evaluation, we keep M fixed to 64 bins but 
two different frame sizes are studied, 256 and 512. The 
mel-spectrograms are further used for generating phase 

and continuity features as in [21]. The mel features are 
then transformed to a logarithmic scale. The sine and 
cosine phase features from the left and right channels are 
then utilized to generate IPD as:

where, θt,f = ∠xt,f ,l − ∠xt,f ,r is the inter-channel phase 
difference between the mel-spectrogram xl and xr at time 
t and frequency f of the signals at microphones l and r. 
The second-order derivatives of IPDs are then calculated 
which we call Inter-channel Continuity Difference (ICD) 
and are given by:

 As shown in Fig. 2, the features (sine and cosine IPDs; 
and sine and cosine ICDs) are stacked with logarith-
mic mel-spectrograms to generate 6-channel inputs. 
The 6-channel inputs are then masked with a time and 
frequency mask of size 64 and 16 respectively. During 
training, the mask is applied to the input randomly mask-
ing 64 timesteps and 16 mel sub-bands. This allows the 
model not to rely upon specific regions in the audio. It 
can be regarded as the usual and widespread dropout, 
but applied to the input and an example can be seen in 
Fig. 2a.

Also, since the input already has more than 1 chan-
nel, the spectrum could not be utilized to shorten the 
sequence into patches. Hence, to generate 16 patch 
embeddings for the model input as in [13], a 3 × 3 con-
volution layer is used instead. The convolution provides 
us with 16 representations of the 6-channel masked input 
as can be noted in Fig.  2. These patch embeddings are 
used as inputs for AudMobNet. The output linear layer 
produces 27 embeddings which include a single full-band 
RT60 , 8 sub-band RT60 s, and similarly 9 C50 values for 
each channel.

3.2  Datasets
Multiple publicly available datasets [39, 40] of measured 
BRIRs were used, resulting in an overall of 571 real BRIRs 
across 45 rooms. In addition, a highly detailed internal 
dataset of 6 rooms presented in [11] with 1440 real BRIRs 
was utilized. To balance the dataset, only 200 BRIRs were 
chosen from the latter, resulting in a total of 771 BRIRs. 
Different speech corpus [41, 42] and anechoic noise 

(6)sinIPD(t, f ) = sin(θt,f )

(7)cosIPD(t, f ) = cos(θt,f )

(8)sinICD(t, f ) = lim
i→0

lim
j→0

sin(θt,f )− sin(θt+i,f+j)

θt,f − θt+i,f+j

(9)cosICD(t, f ) = lim
i→0

lim
j→0

cos(θt,f )− cos(θt+i,f+j)

θt,f − θt+i,f+j



Page 6 of 24Saini et al. EURASIP Journal on Audio, Speech, and Music Processing         (2024) 2024:16 

dataset [43] were used to generate final samples. Babble 
noise was also simulated using a different speech dataset 
[44]. The BRIR, Speech and Noise datasets were split into 
training and evaluation sets to avoid any overlapping. For 
example, all BRIRs from 5 different rooms were taken in 
the evaluation set, and the speech samples were taken 
from the ACE evaluation set [12]. Further, in order to 
expand the size of the dataset and to tackle over-fitting, 
a novel BRIR augmentation technique was also incorpo-
rated. It shall be noted that the augmentation technique 
was only applied to the training set.

3.2.1  BRIR augmentation
We augment our BRIR dataset by parametrically modi-
fying the diffuse tail (after mixing time) of the original 
BRIRs in different frequency bands, which allows us to 
mimic various tonal absorption patterns of rooms that 
are not present in the dataset. In [18], Bryan proposes 
replacing the later reverberation tail with a synthetic ver-
sion generated using a Gaussian noise. Our technique 
is based on [18] with a few key differences. Firstly, our 

artificially generated Gaussian reverberation tail length 
varies in different sub-bands mimicking various tonal 
absorption patterns of sound in real rooms, in contrast to 
[18] where no frequency domain adaptation is incorpo-
rated. Secondly, due to the convolution with the original 
reverberation, our augmentation method also works for 
multi-channel RIRs. Finally, we also incorporated differ-
ent decay types such as linear or logarithmic, taking into 
consideration more absorptive or reflective rooms.

In our augmentation approach, a circular set of BRIR 
is augmented by changing the reverberation tail. This 
circular set consists of 360/n BRIRs, where n is the 
spatial resolution in degrees which varies from room 
to room depending on the dataset. As shown in Fig. 3, 
to generate a reverberation tail, the original BRIR is fil-
tered with mel-filterbank and RT is calculated for each 
mel sub-band. Then, a Gaussian noise with a similar 
length to that of the BRIR is generated. The noise is 
then convolved with the diffused part of the original 
BRIR to achieve a similar decorrelation between the 
left and right channels. The resulting binaural noise is 

Fig. 2 Overview of the proposed model architecture. The top row (a) illustrates the pre-processing step where features are extracted 
from the binaural speech signal and stacked with the logarithmic mel-spectrogram resulting in the input shape of 6 × 64 × 1000 (C × H × 
W). Further, a time and frequency mask is applied to the input spectrum and the resultant is convolved with 16 kernels of size 3 producing 16 
representations of size 32 × 500 which is treated as input to the transformer. The middle row (b) describes the architecture of the transformer 
where MV2 means MobileNetV2 block and ↓ means a reduction in the input size. N is the size of the kernel and M is the number of the linear 
transformers in the MobileViTV3 block. The bottom row (c) shows the architecture of each MobileViTV3 block where N and M are dependent 
upon the position of the block
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filtered with the same mel filterbank and the sub-band 
noise shaping is performed using different EQ gains 
for each sub-band. Back in the time domain, a decay 
filter is applied for each band using either a linear or a 
logarithmic decay with ±500 ms RT of that of the orig-
inal sub-band band RT. All the sub-band tails are then 
added up to generate the full-band BRIR tail. The old 
tails are then replaced in all the BRIRs from the same 
room after the mixing time. The augmented BRIR hr(t) 
is generated from the real BRIR h(t) by replacing the 
later tail with haug (t) using a crossfade that can be 
interpreted as:

where, tm is the approximate mixing time as given by 
[45] and calculated as tm = 80 · RT500Hz . wn(t) is the first 
half of a Hanning window of 0.2 ( 2 · tw ) s and we(t) is the 
later half of the window. Note that this augmentation 
technique can be applied to RIRs with any number of 
channels but due to the scope of research, only BRIR aug-
mentation is demonstrated. Approximately 20,000 BRIRs 
were generated out of 671 real BRIRs using a single posi-
tion from 40 rooms and the generated responses can be 
seen in Fig. 4.

(10)

hr(t) =







h(t), t0 ≤ t ≤ tm − tw
h(t).we(t)+ haug (t).wn(t), tm − tw < t ≤ tm + tw
haug (t), tm + tw < t

3.2.2  Data pre‑processing
It is worth mentioning that the convolution of each aug-
mented BRIR (20,000) with each speech sample (6000) 
requires an impractical amount of disk space. Hence, 
during the generation of the training sets, the BRIRs were 
convolved with 50 random speech signals. For the real 
BRIR training dataset, 671 BRIRs were convolved with 
random speech signals resulting in 35,000 real samples 
and for evaluation set consisted of 1000 real samples gen-
erated from measurements from 7 separate rooms. The 
number of total generated samples are given in Table 1. 
The ground truth values were computed as defined by 
the ISO [23]. The RT60 is extrapolated by taking twice the 
T30 value as suggested by the ISO. To obtain sub-band 
RT60s , the BRIR was first filtered with a mel-frequency 
filterbank and a RT60 value for each filtered BRIR was cal-
culated similarly. Sub-band and wide-band C50 were cal-
culated according to Eq. 2.

To simulate acoustic signals, the BRIR was convolved 
to each dry speech signal, s(t), and then noise n(t) was 
added as,

where, ∗ shows the convolution operator. For generat-
ing noise realistically, all available BRIRs in one room 
are selected. Afterwards, 30 random speech samples are 

(11)x(t) = h(t) ∗ s(t)+ a.n(t)

Fig. 3 Brief illustration of BRIR augmentation process
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picked from the noise-generation set mentioned in Sec-
tion 3.2. Random EQ gains and overall gains are applied 
to the samples. The resultant samples are convolved with 
randomly chosen BRIR from the room. The convolution 
is done with only the diffuse tail of the real BRIR allow-
ing us to generate diffused and spatial noise. The silent 
parts are removed from the signals to have continuous 
noise. Other noises, such as static ambient noise, bab-
ble noise, or office noises are also created similarly. The 
generated spatial noises ( n(t) ) are then multiplied with a 
gain constant ( a ) and added to the convolved speech sig-
nal at random SNR ranging from 6 to 30 dB. Although 
the network is able to adapt to variable-length sequences, 
to allow batch training, the input signals were trimmed/
zero-padded to the length of 4 s. Another reason for 
choosing this length is the 4-s duration of most speech 
samples. Further, BRIRs with RT60 < 2 s were considered 
which involves most of the real scenarios and the 4-s sig-
nal is enough to contain all the necessary information.

3.3  Training setup
After generating the input signals mentioned in the 
previous section, the 6-channel features are extracted 
(as shown in Section  3.1) which are used as inputs 
for the neural network. As seen in Table  5, 4 different 

configurations are presented to evaluate the effectiveness 
of the proposed method. In the first configuration, a sin-
gle AudMobNet is used as in [13] to generate 29 embed-
dings (8 sub-band and a wide-band RT60 and 8 sub-band 
and a wide-band C50 for each channel) but instead of 
using the single channel mel-spectrogram input, we used 
2-channel logarithmic mel-spectrogram inputs. In the 
second and third configurations, we use additional mel 
Phase and Continuity features for each channel similar to 
Ick et. al. [21], along with logarithmic mel-spectrograms 
producing 4-channel and 6-channel inputs respectively. 
In the final configuration, we propose using sine and 
cosine IPDs along with ICDs together with logarithmic 
mel-spectrograms of both channels as explained earlier 
to produce 6-channel inputs. Rather than looking at the 
features as two separate channels as in the third configu-
ration, in the proposed method the difference of the sine 
and cosine phase components gives the network a better 
understanding of the behaviour of low frequencies. By 
stacking these features together, we can compare the per-
formance differences of these features while keeping the 
same model complexity.

3.4  BRIR selection and rendering
In order to evaluate the proposed method, an end-to-
end system was built as explained at the end of Section 1, 
which takes a noisy speech recording as input and is able 
to output a plausible binaural rendering of an arbitrary 
signal through BRIR selection. As mentioned in Sec-
tion  3.2.2, to allow batch training, the training samples 
were trimmed/padded to the length of 4 s, allowing the 
network to generalize better for this specific length. Fur-
thermore, the results suggest higher accuracy for longer 
input samples when compared against signals shorter 

Fig. 4 Six hundred seventy-one training, 100 evaluation and 20,000 augmented BRIRs

Table 1 Summary of data used during training and evaluation

Data split Number 
of rooms

Number of BRIRs Total 
generated 
samples

Real training set 40 671 35,000

Augmented training set - 20,000 200,000

Evaluation set 7 100 1000
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than 3 s (see Table 2). However, it is not efficient to use 
30-s-long input sequences for making a single prediction. 
Hence, the samples are chopped into shorter lengths 
such as 4-s-long segments to get more stable estima-
tions using multiple predictions in the Estimator module 
(Fig. 1). A hop size of 0.5 s was found to be a good trade-
off between latency and accuracy, hence this is chosen as 
the hop size for the buffer for further evaluation. Finally, 
the median values of predictions for the full input signal 
length are chosen to be the best estimates.

After the Estimator module (Fig. 1), the Selector mod-
ule selects 2 best-matching room based on the parame-
ters. Similar to the technique presented by Treybig et al. 
[11], linear discriminant analysis (LDA) is performed on 
the dataset of all real BRIRs. This separates all the rooms 
in the latent space based on parameters provided. The 
latent space is then stored in the disk along with eigen-
vectors. During the runtime, the predicted parameters 
are plotted in the same space using the saved eigenvec-
tors. The closest measurements to the predicted param-
eters are selected as the best matching rooms using the 
nearest neighbour technique which are further used in 
the Renderer.

Since the dataset consists of BRIR measurements that 
have irregular spatial resolution, we employ a BRIR inter-
polation technique to obtain 1° resolution for all the 
BRIR circular sets. We follow the dynamic time warping 
(DTW)-based interpolation technique as presented by 
[46, 47]. The Renderer module performs binaural ren-
dering by convolving dry audio signals with the selected 
BRIR pair utilizing partition convolution [48]. The BRIR 
pair is swapped in real-time according to the listener yaw 
orientation, which is tracked with a MotionNode inertial-
measurement-unit head tracker (5-ms latency).

4  Evaluation
We present a concise evaluation of the room parameter 
estimation and the BRIR augmentation techniques sepa-
rately to understand their contribution.

4.1  Model selection and input features
4.1.1  Preliminary model evaluation
In Saini and Peissig [13], we presented a mobile audio 
transformer to estimate wide-band RT60 and C50 from 
single-channel noisy reverberant speech signals. We 
evaluated the model against the relevant baselines using 
the benchmark evaluation criteria and dataset provided 
by the ACE Challenge [12]. The results (Table 3) demon-
strate that using the proposed mobile audio transformer 
effectively improves the estimation accuracy of both the 
parameters. It is to be noted that these models only esti-
mate wide-band parameters from single-channel signals. 
Apart from high accuracy, another advantage of this 
method is its ability to adapt to variable length input due 
to its unique hybrid transformer architecture. The model 
achieves higher accuracy even in low SNR levels (Fig. 5) 
while keeping the model complexity low (see Table  4). 
estimation compared to Baseline

4.1.2  Input features
In this work, we extend the AudMobNet L model to esti-
mate sub-band parameters from noisy reverberant bin-
aural speech signals (see Section  3.1). To evaluate our 
feature extraction method, we compared it against two 
approaches. The first approach involves the previously 
employed technique that involves mel-spectrogram as 
the only input feature proposed in [13] and in the sec-
ond approach we use an input feature extraction tech-
nique similar to [21]. The proposed feature extraction 
technique is compared against both of the methods men-
tioned above in Table  5. All the methods are compared 
for 2 different frame sizes (256 and 512 samples) result-
ing in a total of 8 configurations to be evaluated.

The models round up to 1.2 million trainable parameters 
for each configuration with approximately 500 MFLOPS, 
making it suitable for deploying on mobile devices. All 
configurations were trained on the same 35,000 samples 
(with only real BRIRs) so they could be fairly assessed. 

Table 2 RT60 predictions from AudMobNet [6] at 1 kHz for 
different input durations samples from ACE challenge

Input duration [s] MSE ρ Bias

Shorter than 2 0.015 0.86 − 0.019

3 0.018 0.85  − 0.021

4 0.015 0.94 0.018

Longer Than 4 0.012 0.91 0.016

Table 3 Evaluation results from [13] on the ACE challenge evaluation set [12] for wide-band RT60 predictions from single-channel 
noisy speech signals. On the left is a comparison against Baseline [17] and best-performing method [49] from the ACE challenge and 
on the right for wide-band C50 estimation compared to Baseline [26]

Model ρ MSE Bias [s] Model ρ RMSE [dB]

RT Baseline [17] 0.84 − − C50 Baseline [26] 0.77 3.05

QA Reverb [49] 0.77 0.07  − 0.07 - - -

AudMobNet S 0.89 0.03 0.13 AudMobNet S 0.81 2.8

AudMobNet L 0.90 0.02 − 0.05 AudMobNet L 0.85 2.3
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The evaluation set consisted of 1000 real samples from 7 
unique rooms generated in a similar manner as the training 
set but with the ACE evaluation speech dataset [12]. The 

distribution of wide-band parameters and an LDA using 
wide-band and sub-band parameters is given in Fig.  15 
(Appendix). The training uses stochastic gradient descent 
on the mean-squared loss with an initial learning rate of 
0.001 using an Adam optimizer. Since the parameters differ 
in units (s and dB), the training set was first standardized 
using min-max normalization. This gives each parameter 
equal weight when calculating loss. Batch size was selected 
manually to get the best out of each model and the available 
resources. Models were trained until convergence and the 
best-performing epoch was selected for each configuration.

The evaluation results presented in Table  5 demon-
strate that using extra features improves the overall esti-
mation compared to where only mel-spectrograms are 
utilized as input to the network. Although calculating 
the phase and continuity features as [21] is straightfor-
ward and improves the wide-band parameter estima-
tion, it may not be the best choice for RT60 estimation, 
be it wide-band or low-frequency sub-bands (Fig.  6). 
The strongest correlation can be observed between 500 
Hz and 2 kHz across all the models, aligning with the 
findings from the ACE challenge [24]. The reason for 
this behaviour can be partially attributed to the spectral 
distribution of energy present in speech signals. Further, 
the results from Fig.  6 agree with our hypothesis that 
the use of sine and cosine IPD and ICD assist the net-
work in understanding low-frequency reflection better, 
resulting in higher ρ value for parameter estimation in 
the low frequencies especially below 1500 Hz. Using the 

Fig. 5 Effects of SNR levels [dB] on the performance of the AudMobNet variations and baseline models evaluated on the ACE evaluation set. 
The top graph displays ρ for RT60 estimates in comparison to the RT Baseline [17] while the lower graph illustrates the RMSE [dB] for C50 estimates 
compared to the Baseline [26]. The comparison metrics were selected based on those provided in the respective baseline

Table 4 Number of trainable parameters and floating point 
operations per second (FLOPS) in millions per sample

Model description Params MFLOPS

AudMobNet S 61 K 70
AudMobNet L 1.2 M 501

Baseline RT [17] 4 M 1950

Baseline C50 [26] 74 K 135

Table 5 Evaluation results for wide-band RT60 and C50 (left 
channel only) for the models trained only with real training data. 
The input features describe the type of inputs and the size of the 
window

Model and input feature ρRT MSERT[s] ρC50 RMSEC50[dB]

Mel256 [13] 0.74 0.04 0.82 3.1

Mel512 [13] 0.67 0.03 0.80 3.3

+ Phase256 [21] 0.76 0.04 0.88 2.7

+ Phase512 [21] 0.75 0.04 0.79 3.1

+ Phase and continuity256 [21] 0.78 0.03 0.85 1.8
+ Phase and continuity512 [21] 0.79 0.03 0.88 2.4

+ IPD and ICD256 0.87 0.01 0.93 1.9

+ IPD and ICD512 0.85 0.01 0.84 2.9



Page 11 of 24Saini et al. EURASIP Journal on Audio, Speech, and Music Processing         (2024) 2024:16  

inter-channel differences not only improves the low-fre-
quency prediction but also tends to improve the wide-
band estimation accuracy. The lower value of MSE for 
the sub-band as well as wide-band parameters further 
confirms our hypothesis. One reason for this could be 
higher inter-channel decorrelation in rooms where more 
energy in late reverberation is present leading to a longer 
RT60 and a smaller C50 . However, this shall be investi-
gated in independent research.

4.1.3  Model output
During the course of this research, we also compared if 
estimating the sub-band parameters has any advantage 
over estimating only wide-band parameters. The results 
from Table 6 show that even if only mel-spectrograms are 
utilized as feature inputs to estimate the parameters, the 
model tends to have a better understanding of the input 
and wide-band parameters estimations to be more accu-
rate. A similar trend can be seen for estimations made 
with additional inter-channel differences.

4.1.4  Input sample size
In many scenarios, such as in real-time, it may not be 
possible to pre-process and predict having a small win-
dow size (256 samples) resulting in slower computation. 

Hence, using the window size of 512 samples when 
generating STFTs could reduce the computational 
complexity of the network by almost a factor of 2 when 
compared to the STFTs generated using 256 samples 
as well as the overall prediction time by at least a fac-
tor of 1.5. Using a longer window also drastically brings 
down the computation time since the matrix multipli-
cation with the filterbank when computing the mel-
spectrogram also reduces. Furthermore, the IPD and 
ICD calculation of smaller samples (spectrograms with 
bigger window size) is considerably faster due to fewer 
samples in the time axis. As a drawback, predictions for 
C50 are not as accurate because of the larger window 

Fig. 6 Sub-band RT60 and C50 estimation evaluation only for the models with real training data (window size of 256 samples)

Table 6 Wide-band parameter ( RT60 and C50 ) estimation results 
for the proposed model (AudMobNet + IPD for sub-band 
parameter estimation) compared to the same model for wide-
band parameter estimation

Model ρ MSE ρ RMSE [dB]

Mel wide-band [13] 0.75 0.02 0.82 3.1

Mel sub-band [13] 0.81 0.05 0.84 3.0

+IPD wide-band 0.83 0.01 0.89 2.2

+IPD sub-band 0.87 0.01 0.93 1.9
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size used due to energy binning involved (see Table 5). 
Smaller windows would have more time information 
which is useful for the calculation of C50 . This energy is 
binned together when larger windows are used for the 
calculation of STFT resulting in lesser time information 
available for the network. Overall, the performance of 
the proposed method with a window size of 512 sam-
ples is comparable to the model presented in [13] with 
a window size of 256. Furthermore, the proposed net-
work outperforms the existing model by accuracy in 
broadband as well as sub-band parameters but at a cost 
of 1.2 times slower inference time that is required to 
calculate IPD and ICD features.

4.2  Data augmentation
To show the effectiveness of the proposed data augmen-
tation technique, the best network, i.e. the configuration 
with IPD and ICD and with a frame size of 256, was addi-
tionally trained with 200,000 samples generated using 
the technique presented in Section  3.2.1. The model 
from [13] was trained on the same data as a baseline for 
comparison.

Figure 7 demonstrates the MSE between ground truth 
and predicted values for each sub-band from 20 to 8000 
Hz. The effectiveness of incorporating noise shaping in 
frequency sub-bands within our augmentation technique 
is clearly evident, as indicated by the low mean squared 
error (MSE) value. Furthermore, the results presented in 
Table 7 suggest an improvement in full band RT60 predic-
tion as well when compared to the models trained with 
real data only. Finally, employing different decay types 
benefits the model in predicting full-band C50 bringing 
the ρ value as high as 0.94.

4.3  BRIR selection
In Section  3.4, we propose a BRIR selection method 
based on the output from the proposed neural network 
model that allows us to select a set of 360-degree BRIRs 
from a database of 45 rooms which are closest to the 
estimated parameters utilizing LDA of the dataset. The 
selected BRIR set is further used for rendering a virtual 

Table 7 Evaluation results for the proposed model trained with 
real data and augmented data compared to the baseline wide-
band RT60

Training data type MSE ρ Bias

Mel256 [13] 0.044 0.74 0.014

Mel256 [13] + augmented data 0.013 0.85  − 0.038

+ IPD and ICD256 0.014 0.87  − 0.04

+ Augmented data 0.006 0.93 − 0.001

Fig. 7 Evaluation results of models trained with only real data compared to the models additionally trained with augmented data
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sound source. The closest approach to extracting a BRIR 
solely from speech signal was recently presented by Rat-
narajah et  al. ( M3 − AUDIODEC ) [33]. Although, as 
mentioned in Section 2, the method is designed for neu-
ral compression of binaural signals, it may also be applied 
to extract BRIR from the signal. Hence, we use it as the 
baseline for evaluation of our BRIR selection.

To evaluate our selection method against [28], we gen-
erated 30,000 new samples with the script provided in 
the GitHub repository1 and fine-tuned our model on 
these samples. One major reason for this being unable to 
train M3 − AUDIODEC on our data due to its huge size. 
The test set consisted of 752 samples generated using 
VCTK Speech Corpus [50] and BRIRs simulated with 
Pygsound2.

Table  8 reports the mean of absolute errors (MAE) 
between the real and estimated parameters for 4 cases. 
The first case is selector only, i.e. when a BRIR is selected 
from the dataset directly using ground truth values in the 
LDA space. The second case considers the output of our 
neural network model. In this case, the model was fine-
tuned and modified to output 4 embeddings, i.e. each 
parameter for each channel. The third case selects a room 
using LDA based on the output of the proposed model 
as used in our end-to-end approach. Principal compo-
nent analysis (PCA) is also performed in this case, simi-
lar to [11] to find the best-matching BRIR in the selected 
room so that the C50 error is minimum. To be noted, the 
room selected (in cases 1 and 3) is from the dataset of 
real BRIRs and hence might not be as accurate as gener-
ating a BRIR resulting in larger errors (see bottom image 
in Fig. 8). This does not mean that our method performs 
worse than [33] but is a limitation of the size of the data-
set to select a BRIR from. On the other hand, the BRIR 
predicted by [33] shows neural network noise (top image 
in Fig.  8 after 40,000 samples) and hence to calculate 
the parameters, only the first 0.25 s of the whole BRIR is 
used.

Table  9 presents feature comparisons of the base-
line [33] and the proposed method. We can see that our 
model being approximately 500th of the baseline in terms 
of parameters, shows faster estimation resulting in a 
very small RTF value. This shows us that the model can 
be deployed on a mobile device while providing accu-
rate real-time parameter estimation. Our model is also 
robust against noise as can be seen in Fig. 5 as opposed 
to the baseline, which was trained on simulated data with 
no additional noise added to the input. Furthermore, 
the BRIR set selected through our approach consists of 
high-quality 360-degree BRIR sets which were recorded 
in different rooms at multiple positions and hence can be 
used for spatial auralization of an object providing some 
degrees of freedom of head rotation without introducing 
any audible artefacts. This also leads to a more plausible 
illusion of a virtual object, as shown in the next section.

4.4  Perceptual evaluation
We measured 360-degree BRIR sets in two different 
rooms with non-identical acoustical characteristics to 
test the effectiveness of the proposed method perceptu-
ally. These measured sets were used as the hidden refer-
ences in the listening test.

4.4.1  Listening test measurement setup
To measure the rooms, a dummy head was placed at a 
distance of 3 m from a Genelec 8020 speaker and circu-
lar sets of BRIRs were measured in the two rooms. Both 
rooms are different in shape, size and reverberation pat-
terns. The rooms are shown in Fig. 9. Room A imitates a 
living room environment and is dry while Room B com-
plements it as a reverberant meeting room. Room A has 
an average RT60 of 0.29 s with the room dimensions of 
10.5 m x 5.25 m x 2.75 m (L x B x H) while Room B has 
an average RT60 of 0.65 s with the room dimensions of 
12.5 m x 5.75 m x 2.75 m. The measurements from Room 
A have a C50 of 17 dB while that of Room B is 10 dB. A 
comparison of IRs and sub-band RT60 from both rooms 
is given in Fig.  10. A glance into the figure reveals how 
Room B has strong first two reflections and a long decay 
time. A meeting table in the middle of the measurement 

Table 8 MAE for wide-band RT60 and C50 estimation (left channel) 
of each mentioned scenario and ground truth

M
3
− AUDIODEC  [33] RT60 C50

BRIR selection (Selector only) 23.8 1.36

Estimator only (AudMobNet + IPD) 15.6 0.67
Estimator + selector 26.5 1.5

22.7 0.79

Table 9 Comparision of baseline and proposed method on 
different grounds

- M
3
− AUDIODEC [33] Proposed

Real-time factor (RTF) 0.046 <0.01
Parameters 500 M 1.1 M
Input type Clean reverberant 

speech
Noisy reverberant 
speech

BRIR output Noisy BRIR HQ 360-degree BRIR 
set

1 https:// github. com/ anton- jeran/ MULTI- AUDIO DEC
2 https:// github. com/ GAMMA- UMD/ pygso und

https://github.com/anton-jeran/MULTI-AUDIODEC
https://github.com/GAMMA-UMD/pygsound
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setup creating a strong first reflection can be noticed in 
the impulse response of Room B adjacent to the direct 
sound. On the other hand, Room A has prominent early 
reflections but a shorter decay time due to the type of 
material used in the room such as carpet and absorbing 
curtains.

We recorded 30 s of speech using Genelec 8030 CP 
loudspeakers in both rooms using the same measurement 
setup described above. For best results, the recorded 
signal is then chopped into multiple 4-s-long sequences 
with a hop size of 1 s. The distribution of all the full-band 
RT60 and C50 predictions made by the proposed model 
for both rooms can be seen in Fig. 11. Furthermore, the 
comparison in Table  10 demonstrates the differences in 
predicted median values and ground truth. Finally, the 
sub-band RT60 predictions can be noted in Fig. 12. All the 
median values are then used to find the two best match-
ing rooms using the Selector described in Section 3.4.

For each scenario, the two best matching rooms were 
selected from the dataset of real BRIRs using the method 
proposed in Section  3.4 for the listening test. A com-
parison of sub-band RT60 of the best matching rooms are 

given in Fig. 12 and wide-band RT60 and C50 are given in 
Table  11. Although it is evident from Table  10 that the 
predicted wide-band parameters are well under the JND 
of 5% and 1.1 dB for RT60 [51] and C50 [52], the best-
matched rooms (Table 11 and Fig. 12) may not be. At 1 
kHz, the RT60 for 2nd best-matched room of room B is 
almost 24% longer which is slightly longer than the JND 
of 22% defined by [53]. Similarly, the wide-band RT60 and 
C50 values for best-matching rooms fall outside of JNDs.

To validate the proposed approach, a subjective lis-
tening test similar to MUSHRA [54] was employed 
(see Fig.  13). The audio signal was convolved with 
the selected BRIR sets in real time to be able to pro-
vide head-tracked binaural output. Participants were 
asked to rate the plausibility of the sound source on a 
scale from 1 to 5. For naive listeners, the explanation 
of plausibility was the perceived size of the room com-
pared to the reference where 1 was much smaller and 
5 was much bigger. The listening setup had automatic 
switching, so when the listener would take off the head-
phones, the reference loudspeaker would play. Beyerdy-
namic’s DT 990 pro headphones were utilized for the 

Fig. 8 Comparison of BRIR output (top) and MAE for RT60 estimates from proposed methods against M3 − AUDIODEC [33]. Noise in the output BRIR 
from baseline can be noted after 40,000 samples. The test data consists of 752 samples generated using the script provided in [33]
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Fig. 9 Measurement setup for listening test in room A (left) and room B (right)

Fig. 10 Comparision of sub-band RT60 (top) and impulse responses (bottom) for room A and room B
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listening test due to their openness characteristics and 
flatter response. A headphone equalization was also 
applied before playing back the stimuli through the 
headphones.

The listening test consisted of 4 parts, i.e. listening in 
two different rooms: room A and room B; and with two 
different stimuli types: female speech and music. The 
female speech was taken from the ACE challenge data-
set [12] and “Get Lucky” by Daft Punk was chosen as 
the pop music piece. Initially, in room A, a small train-
ing session was done where the listener was presented 
a speech signal convolved with BRIR sets from rooms 
with very different acoustics were used to demonstrate 
the difference in reverberation in rooms (see Fig.  13, 
left).

In the actual test, the listeners were asked to blindly 
compare 5 BRIR sets in each room including 2 best 
matches (of the listening room), 2 anchors (reverber-
ant and dry) and a BRIR set of the listening room (see 
Table  11). The anchors remain the same in both the 
listening rooms. Twelve listeners participated in the 
listening test including 7 audio and acoustic experts, 
2 with audio background and 3 naive listeners. To be  
noted, the BRIR sets used for training were different  
than the ones in the test and the order was also 
randomized.

Fig. 11 Distribution of 30 RT60 and C50 predictions from the model for room A (left) and room B (right). Violet means no estimation was made 
for the value and yellow represents the most number of estimations

Table 10 Calculated and estimated parameters from room A 
and room B

Room Ground 
truth RT60

Prediction RT60 Ground 
truth C50

Prediction C50

Room A 0.29 0.244 17 16.24

Room B 0.65 0.63 10 10.5

Fig. 12 Sub-Band RT60 for the listening room (ground truth), median-predicted (by the model) and selected rooms

Table 11 Ground truth parameters of all the rooms used in the 
listening test

RT60 RT60 C50 C50

Reverberant condition Room A Room B Room A Room B

Reference 0.29 0.65 17 10

Dry anchor 0.1 0.1 29 29

Reverberant anchor 0.57 0.57 6 6

Best match 1 0.27 0.67 15 7

Best match 2 0.35 0.69 16 6
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4.4.2  Results and discussion
A repeated measure analysis of variance (RM-ANOVA) 
test was performed on the data of each paired com-
parison to study the effect of the different variables and 
their interactions. An RM-ANOVA test gives us statis-
tically significant differences in three or more depend-
ent samples. In our case, three such cases can be seen: 
listening room, type of stimulus, and presented rever-
berant condition. Two values, i.e. the p-value and the 
F-value are presented from RM-ANOVA tests. The 
F-value in an RM-ANOVA represents the ratio of the 
variance between the groups to the variance within 
the groups. It tests the null hypothesis that there is 
no significant difference between the means of the 
groups, and a larger F-value indicates that the differ-
ence between the means is more likely to be significant. 
The p-value associated with the F-value represents the 
probability of observing such an extreme F-value by 
chance if the null hypothesis were true. Therefore, a 
smaller p-value indicates that the result is more statisti-
cally significant.

Not to be missed, the data from the listening did not 
pass the Mauchly sphericity test (p  < 0.001) and the 
Greenhouse-Geisser epsilon was 0.69, which is smaller 
than 0.75, so the Greenhouse-Geisser correction was 
applied, following the ITU-R MUSHRA recommenda-
tion [55]. Afterwards, the data was grouped based on the 
results and a t-test was performed for each group. A sig-
nificance value ( α ) of 0.05 was used.

Effect of the listening room and stimulus: The 
RM-ANOVA found no significant effect of the listen-
ing room on listeners’ ratings [F(1,11) = 0.6074, p 
= 0.4522]. Further, no significant effect of the choice of 
stimulus was found [F(1,11) = 2.8209, p = 0.1212]. The 
interactions between the listening room and stimulus 
also yielded a higher p-value resulting in no significant 
difference [F(1,11) = 0.2558, p = 0.6230].

Effect of the reverberant condition: The RM-
ANOVA found a significant effect of different reverber-
ant conditions on listeners’ ratings [F(4,44) = 133.5074, 
p  < 0.001]. Furthermore, significant interaction with 
listening room [F(4,44) = 109.3112, p < 0.001], type of 

Fig. 13 Schematic of graphical user interface for the listening test
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stimulus [F(4,44) = 5.6823, p < 0.001] and all three vari-
ables [F(4,44) = 5.9779, p = 0.0006] were also found.

Post hoc pairwise t-tests were run on data separated 
by listening room and type of stimulus for each rever-
berant condition using a corrected significance level of 
α′ = 0.01. All the p-values are presented in Tables  12, 
13, 14 and 15. Furthermore, for the ease of understand-
ing, all pairs with no significant differences are marked 
with arrows in Fig.  14. The t-test found no significant 
difference in listeners’ ratings for the reference and best 
match 1 in all the scenarios except for the case when 
listening to music in room B. It is apparent from Fig. 14 
that many listeners found the room bigger than the 
reference in this case. One reason for this is a longer 
reverberation time in the low frequencies for best 
match 1 (0.8 s at 150 Hz) when compared to the ground 
truth (0.5 s) which is more prominent in the case of 

music with drums and bass rather than female speech 
as can be seen in Fig. 12.

The t-test between reference and best match 2 follows 
a similar trend showing no significant difference in lis-
tener’s ratings. Although for music in room A and speech 
in room B, results show significant differences, it shall 
be noted the p-value (0.0095) is very close to α′ in both 
cases. A general trend of best match 2 being slightly big-
ger than the reference can be noted. The reason for this 
could be longer RT60 (20% for best match 2 in room A) 
or lower C50 (4 dB for best match 2 in room B) than the 
JNDs in such cases. Furthermore, the results also show 
no significant difference between best match 1 and 
best match 2 under all circumstances. Similarities with 
respective anchors in each room can be noted in Fig. 14 
but significant differences were found except for the dry 
anchor to the reference when listening to music in room 

Table 12 p-values of paired t-test performed on listener’s ratings on speech for all reverberant conditions in room A

Reverberant anchor Dry anchor Best match 1 Best match 2

Reference < 0.001 < 0.001 0.678 0.591
Reverberant anchor - < 0.001 < 0.001 < 0.001

Dry anchor - - < 0.001 0.003

Best match 1 - - - 0.343

Table 13 p-values of paired t-test performed on listener’s ratings on music for all reverberant conditions in room A

Reverberant anchor Dry anchor Best match 1 Best match 2

Reference < 0.001 0.014 0.244 0.009

Reverberant anchor - < 0.001 < 0.001 0.001

Dry anchor - - < 0.001 < 0.001

Best match 1 - - - 0.508

Table 14 p-values of paired t-test performed on listener’s ratings on speech for all reverberant conditions in room B

Reverberant anchor Dry anchor Best match 1 Best match 2

Reference < 0.001 < 0.001 0.555 0.009

Reverberant anchor - < 0.001 < 0.001 < 0.001

Dry anchor - - < 0.001 0.003

Best match 1 - - - 0.095

Table 15 p-values of paired t-test performed on listener’s ratings on music for all reverberant conditions in room B

Reverberant anchor Dry anchor Best match 1 Best match 2

Reference < 0.001 < 0.001 0.003 0.343
Reverberant anchor - < 0.001 0.269 0.088
Dry anchor - - < 0.001 < 0.001

Best match 1 - - - 0.024
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Fig. 14 Violin plots for the listening test results. The top image shows the results for the listeners’ ratings in room A and the bottom one 
demonstrates ratings in room B. The respective coloured arrow means no significant difference was found in the listeners’ ratings between the pair 
of the listening condition
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A, but the anchor was mostly rated as smaller than the 
reference. This reason could be due to presence of reverb 
in the music piece itself that adds up to the room reverb.

5  Discussion
This study demonstrates the possibility of rendering 
a virtual sound source blindly from noisy reverberant 
speech signals. The presented results show that the pro-
posed method is able to render a sound source which 
sounds similar to a physical sound source in the room. In 
Section  4, objective and subjective evaluations are pre-
sented. A thorough evaluation of each proposed method 
is given which shows the effectiveness of the method. 
From the objective perspective, our Estimator module 
shows improvements against the state-of-the-art models 
in overall estimation accuracy (wide-band and sub-band), 
inference speed and robustness against noise. Further, 
it was confirmed that predicting sub-band parameters 
along with wide-band parameters helps the network to 
understand the data better. We also discussed the impact 
of different window sizes used to calculate feature inputs. 
Finally, the overall end-to-end setup was evaluated objec-
tively against the relevant baseline which shows the 
advantages and disadvantages of the proposed method. 
From the listening test results, we discovered that in 
most cases, especially when rendering speech, the pro-
posed method is able to produce such results that the lis-
teners perceived the best matching room to be the same 
size as (or similar to) the actual listening room. However, 
the same cannot be said for the music signals. There are 
reasons involved in each stage.

Input signal: Although the proposed network out-
performs the state-of-the-art estimation techniques, 
its dependence solely on speech signal input affects the 
sub-band RT60 estimation. The absence of low frequen-
cies (< 85 Hz) in the speech signals makes it difficult for 
the network to estimate the parameters precisely in this 
frequency range. This can also be seen in Fig. 7. Although 
the proposed method improves the estimation accuracy 
in low frequencies, it may still result in incorrect estima-
tion leading to an incorrect choice of BRIR. One solution 
for this could be estimating the parameters using signals 
with a wider frequency spectrum [27, 28] however it 
comes with a drawback of overall lower estimation accu-
racy as described in Section 2.

Estimated parameters: As seen from the results 
(Fig. 14), the convergent case, i.e. where the listening room 
is the same as the BRIR set, has mostly been rated most 
similar. Next to the convergent case, the best-match BRIR 
sets obtained the most similar ratings to the reference 
room. While the estimated parameters may relate closely to 
the perceptual differences, they still might not be enough to 
accurately describe a room. For example, even though the 

estimated parameters are similar when listening in room 
B, significant differences with the reference were found in 
listener ratings with the best matching rooms. This could 
be due to the early reflections coming from the meeting 
table which may have influenced the C50 but since more 
weight is given to sub-band RT60 in LDA [11], the matched 
room results in a C50 smaller than the JND. As a result, the 
matched scenarios sound distant, unreal, or bigger. Hence, 
the perceptual relevance of other parameters such as inter-
aural cross correlation (IACC) and/or Initial Time Delay 
Gap (ITDG) shall also be investigated.

Lack of real BRIR dataset: Another possibility of how 
these perceptual differences could have been avoided is 
by the inclusion of more BRIR sets. Currently, the data-
set consists of only 45 real rooms (with only a single or a 
few positions per room) that may or may not be closely 
related to the listening room as also discussed in Sec-
tion 4.3. In the future, the estimation and augmentation 
techniques could be improved by considering more per-
ceptually relevant acoustic features. However, further 
research is still needed on this topic, to better understand 
the mapping between objective acoustic metrics and the 
perception of room similarity. An alternative approach 
to this problem could be to modify/optimize the selected 
dataset to fill the gap between the predicted parameters 
and the selected rooms’s parameters.

6  Conclusions
In this work, we propose a novel technique to blindly ren-
der any given listening environment from a speech signal. 
This is done in two steps. Firstly, the parameters are esti-
mated from a noisy reverberant binaural speech signal using 
a mobile audio transformer. We propose improvements to 
the previously presented model AudMobNet for the estima-
tion of the parameters such as by using additional features 
(phase and continuity) and supporting binaural signals. We 
demonstrate how using input features such as inter-channel 
phase difference (IPD) and its second-order derivative can 
effectively improve the overall performance of the net-
work, especially in low frequencies RT estimation. To fur-
ther improve the performance of the estimation technique, 
we propose a BRIR augmentation technique which can be 
further used to augment any multi-channel RIRs. Our aug-
mentation approach demonstrates major improvement 
when compared to the state of the art in the sub-band RT60 
estimation as well as the full-band RT60 and C50 estima-
tion. Secondly, the estimated parameters are then utilized to 
select a circular set of BRIR from a given dataset using LDA 
that is used for rendering a virtual sound source. A percep-
tual evaluation was also carried out during the study and the 
results demonstrate the selected BRIRs to be as plausible as 
one based on a BRIR recorded in the actual listening room. 
Finally, we discuss the gaps in the presented method.
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Appendix

Fig. 15 Acoustic parameter distribution of all the BRIRs used in evaluation set (top) and the LDA using all the parameters (bottom)
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AAR   Audio augmented reality
AR  Augmented reality
AST  Audio spectrogram transformer
BRIR  Binaural room impulse response
CNN  Convolutional neural network
CRNN  Convolutional recurrent neural network
DOV  Direction of view
DRR  Direct-to-reververant ratio
DS  Direct sound
DTW  Dynamic time warping
ELR  Early-to-late reverberant ratio
EDC  Energy decay curve
EQ  Equalization
ER  Early reflections
HATS  Head and torso simulator
HRTF  Head-related transfer function
IACC   Inter-channel cross correlation
ICD  Inter-channel continuity difference
ILD  Inter-channel level difference
IPD  Inter-channel phase difference
ITDG  Initial time delay gap
JND  Just noticeable difference
LDA  Linear discriminant analysis
LR  Late reverberations
MAE  Mean absolute error
MFLOPS  Million floating point operations per second
ML  Machine learning
MSE  Mean squared error
PCA  Principal component analysis
RIR  Room impulse response
RM-ANOVA  Repeated measures analysis of variance
RMSE  Root mean squared error
RT  Reverberation time
SNR  Signal-to-noise ratio
STFT  Short-term Fourier transform
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