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Abstract 

Dynamic parameterization of acoustic environments has drawn widespread attention in the field of audio processing. 
Precise representation of local room acoustic characteristics is crucial when designing audio filters for various audio 
rendering applications. Key parameters in this context include reverberation time (RT60 ) and geometric room volume. 
In recent years, neural networks have been extensively applied in the task of blind room parameter estimation. How-
ever, there remains a question of whether pure attention mechanisms can achieve superior performance in this task. 
To address this issue, this study employs blind room parameter estimation based on monaural noisy speech signals. 
Various model architectures are investigated, including a proposed attention-based model. This model is a convolu-
tion-free Audio Spectrogram Transformer, utilizing patch splitting, attention mechanisms, and cross-modality transfer 
learning from a pretrained Vision Transformer. Experimental results suggest that the proposed attention mechanism-
based model, relying purely on attention mechanisms without using convolution, exhibits significantly improved 
performance across various room parameter estimation tasks, especially with the help of dedicated pretraining 
and data augmentation schemes. Additionally, the model demonstrates more advantageous adaptability and robust-
ness when handling variable-length audio inputs compared to existing methods.

Keywords Acoustic environments, Blind room parameter estimation, Pure attention mechanisms

1 Introduction
In recent years, there has been a growing focus on the 
dynamic parameterization of evolving acoustic envi-
ronments. The parameters that describe local rooms or 
other acoustic spaces hold significance as they can be 
harnessed in the modeling and design of audio filters for 
a diverse range of applications. Understanding the spe-
cific acoustic properties of the surrounding room can be 
applied to improve speech signals and support derever-
beration algorithms, ultimately improving word error 

rate for automatic speech recognition (ASR) and the clar-
ity of voice communication systems [1–3]. Additionally, 
spatial sound reproduction systems could leverage this 
data to enhance their performance in tasks related to 
acoustic room equalization either using predefined filters 
[4, 5] or in an adaptive manner [6].

Furthermore, the successful realization of audio aug-
mented reality (AAR) necessitates the seamless inte-
gration of virtual acoustic objects into the physical 
environment. This integration underscores the impor-
tance of achieving a harmonious alignment between the 
acoustical properties of virtual elements and the char-
acteristics of the local space [7]. In pursuit of this goal, 
a significant challenge lies in the accurate estimation of 
related acoustical parameters of a room to enhance the 
realism of immersive audio. Notably, Jot et al. [8] intro-
duced the concept of a “reverberation fingerprint,” 
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comprising the room’s volume and its frequency-depend-
ent diffuse reverberation decay time. This innovative 
concept was proposed to characterize rooms specifically 
for the realistic binaural rendering achievable with audio 
augmented reality headphones. It is worth noting that 
this fingerprint primarily focuses on the part of rever-
beration that is independent of the position, treating a 
room’s acoustic characteristics in isolation from the ori-
entation and directivity of sound sources and receivers.

Conventionally, room parameters like reverberation 
time (RT60 ) and direct-to-reverberant ratio (DRR) are 
typically obtained through a direct analysis of measured 
room impulse responses (RIRs). Meanwhile, room vol-
ume is closely linked to the determination of a concept 
known as the “critical distance.” This critical distance is 
defined as the distance at which the direct and reverber-
ant power components of a sound source become equal, 
effectively making the DRR reach 0 dB. In cases where 
we assume an ideal diffuse soundfield, the relationship 
between these parameters is mathematically described by 
Sabine’s well-known equation [9]:

where S denotes the total area of the room’s surfaces, and 
α(b) is the area-weighted mean absorption coefficient in 
octave band b.

In practical applications, conducting in  situ measure-
ments of RIRs and determining the volumes of users’ 
local acoustic spaces can often present significant chal-
lenges. A compelling alternative involves blind estima-
tion of room acoustic parameters from audio recordings 
obtained using microphones, even when the sound 
sources are unknown and in the presence of background 
noise. The 2015 ACE challenge [10] established a bench-
mark for blind estimation of RT60 and DRR from noisy 
speech recordings. The leading systems in this challenge 
primarily relied on signal modeling-based approaches 
[11, 12]. Meanwhile, room volume estimation has long 
been formulated as a classification problem [13, 14]. 
Audio forensics systems described in [13, 14] make use 
of Mel-frequency cepstral coefficients (MFCC)-based 
features to identify the specific room associated with 
an environmental sound or speech recording, typically 
within a predefined closed set of possibilities.

Due to the recent advancements in deep neural net-
works (DNNs), there is a growing trend to reframe the 
challenge of blind room acoustic parameter estimation 
as a regression problem. This approach leverages convo-
lutional neural network (CNN) models in combination 
with time-frequency representations, offering an increas-
ingly relevant and effective solution. Gamper et  al. [15] 
introduced a CNN designed to directly estimate RT60 

(1)RT60(b) ≈ 0.16
V

α(b) · S
,

from a four-second recording of reverberant speech. The 
experimental results demonstrate that this CNN out-
performs other methods in the ACE challenge, offering 
both superior performance and higher computational 
efficiency. The same approach was also applied to blind 
volume estimation in [16], and results show that it can 
estimate a broad range of volumes from real-measured 
data (with average estimated errors typically ranging 
from half to twice the actual values). CNN-based systems 
with similar methodologies have been put forward for the 
blind estimation of room acoustic parameters, utilizing 
either single-channel [17–19] or multi-channel speech 
signals [20]. These systems have showcased promising 
outcomes in terms of both accurate parameter estimation 
and resilience to temporal variations in dynamic acoustic 
environments. Notably, in contrast to the conventional 
approach of log-energy calculations for spectro-temporal 
features used in prior studies, Ick et  al. [21] introduced 
a set of phase-related features. Their research demon-
strated clear improvements in the context of estimating 
reverberation fingerprints for real-world rooms that had 
not been previously seen, highlighting the enhanced effi-
cacy of this method.

CNNs are widely considered in the fore-mentioned 
approaches due to their suitability for learning two-
dimensional time-frequency signal patterns for end-to-
end modeling. CNNs can be extended by a recurrent 
layer to form convolutional recurrent neural networks 
(CRNN) that exploit sequential dependencies in the 
data [22] and improve the capability of processing input 
sequences of variable length [23]. To further enhance 
the capture of long-range global context, hybrid models 
combining convolutional neural networks (CNNs) with 
self-attention mechanisms have yielded state-of-the-art 
results in a range of tasks, including acoustic event clas-
sification [24, 25] and various audio pattern recognition 
endeavors [26, 27]. Gong et al. [28] pushed the bounda-
ries even further by introducing purely attention-based 
models for audio classification. Their creation, the Audio 
Spectrogram Transformer (AST), was evaluated on sev-
eral audio classification benchmarks, achieving new 
state-of-the-art results. This underscores that CNNs may 
not always be essential in this particular context.

Building on the inspiration derived from the research 
presented in [28], our study introduces a convolution-
free, purely attention-based model for the blind esti-
mation of acoustic room parameters by extending our 
previous work in [29]. To the best of our knowledge, this 
marks the inaugural application of an attention-based 
system in the field of blind acoustic room parameter esti-
mation. The proposed system utilizes Gammatone mag-
nitude spectral coefficients as well as the low-frequency 
phase spectrogram as inputs and captures long-range 
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global context, even in the lower layers of the model. 
Furthermore, to enhance system performance, we apply 
transfer learning through the use of a pretrained trans-
former model from ImageNet. For the evaluation of the 
proposed method, we curate a RIR corpus that includes 
publicly available RIRs, synthesized RIRs, and RIRs 
obtained through in-house measurements of real-world 
rooms. Experimental results clearly demonstrate the 
superiority of our proposed model when compared to 
CNN-based blind acoustic parameter estimation sys-
tems, particularly when dealing with previously unseen 
real-world rooms using single-channel recordings of var-
iable length.

The remainder of the article is organized as follows.
Section 2 introduces the construction of RIR datasets, 

including real-world and simulated datasets. Section  3 
demonstrates the generation of audio data with rever-
beration and noise using constructed RIR datasets, fol-
lowed by data preprocessing, augmentation, and feature 
extraction schemes for neural network training. Section 4 
details the model structures of a CNN-based model, a 
CRNN-based model, the proposed attention-based sys-
tems. Section 5 conducts a comprehensive evaluation of 
the proposed system against state-of-the-art methods in 
various room parameter estimation tasks and its perfor-
mance under variable-length inputs. Section 6 draws the 
conclusion.

2  Data generation pipeline
Applying neural network methods to address blind room 
parameter estimation is a challenging task, as it gener-
ally requires a substantial amount of data. Since this 
task necessitates the need of having audio samples from 
rooms with various acoustic characteristics, manually 
creating a suitably diverse dataset would incur exorbitant 
costs and time. In this work, audio samples are created 
from public real-world RIR datasets, the BJUT Reverb 
dataset, and a room-simulation-based RIR dataset.

2.1  Public real‑world RIR datasets
In this study, six publicly available real-world RIR data-
sets that include 44 authentic rooms are considered, with 
the aim of encompassing a wide range of acoustic room 
parameters.

The majority of the data targets at geometrically regu-
lar rooms, including spaces like offices, classrooms, 
and auditoriums/lecture halls. These datasets include 
the ACE Challenge dataset [10], the Aachen Impulse 
Response (AIR) dataset [30], the Brno University of 
Technology Reverb Database (BUT ReverbDB) [31], 
the C4DM dataset [32], and the dEchorate dataset [33]. 
Additionally, the OpenAIR dataset [34] primarily covers 
larger acoustic spaces, such as churches, nuclear reactor 
halls, and other substantial structures. As a result, a large 
variety of real-world room configurations with different 
volume parameters are incorporated.

Furthermore, RT60 values vary widely, ranging from 
less than half a second to over ten seconds, and these val-
ues are calculated using the Schroeder method [35].

In addition to the public datasets described above, 
RIRs from 11 distinct rooms at the campus of Beijing 
University of Technology were measured, including ele-
vator shafts, classrooms, auditoriums, seminar rooms, 
and more. The parameters of these selected rooms were 
recorded. The aim of this endeavor is to bridge the natu-
ral gap in available real-world acoustic spaces within the 
volume range of 12  m3 to 7000  m3. Three RIR measure-
ments were conducted at different positions within the 
selected rooms. Specifically, measurements were taken 
at the geometric center of the room, a location near the 
wall, and a position near the corner, to capture the RIR 
with a sequence length of 4 s. The microphone and loud-
speaker positions are illustrated in Fig. 1.

2.2  Simulated RIR dataset
The real-world data is supplemented by introducing 30 
simulated RIRs derived from virtual rooms with various 

Fig. 1 Room measurement layout diagram
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geometries. This aims to enhance the dataset’s repre-
sentation of less frequently encountered room volumes, 
thereby achieving a normal distribution of total volume.

The specific approach involves simulating a single 
sound source positioned near the center of each vir-
tual room and evenly distributing five-point receivers 
throughout the volume of each room. To create this syn-
thetic dataset, the pyroomacoustics [36] software pack-
age is deployed, which utilizes the image-source model to 
simulate RIRs for rooms with specific volumes. Although 
this geometric model does not account for phenomena 
like diffraction and scattering, empirical evidence dem-
onstrates that the utilization of simulated data contrib-
utes to enhancing the model’s performance, enabling it to 
effectively generalize to real-world data [16].

3  Preprocessing
In this section, we provide a detailed explanation of how 
audio data with reverberation and noise is generated. We 
started with convolving acoustic response with audio sig-
nals and adding various types of noises for subsequent 
neural network comparisons.

To ensure the quality and consistency of the dataset, 
we performed a series of data preprocessing. Firstly, we 
partitioned the audio signals into training, validation, and 
test sets. Only real-world RIRs were selected in the test 
set to asses system performance on unseen non-simu-
lated rooms.

Furthermore, we employed a data augmentation tech-
nique called SpecAugment that aims to enhance the neu-
ral network’s ability to generalize in unknown rooms and 
noisy environments.

Lastly, we discussed the method for audio feature 
extraction. Gammatone ERB filterbank was used to gen-
erate time-frequency representations. After process-
ing, these features resulted in a two-dimensional feature 
block used as input to the neural network, allowing it to 
handle various datasets and provide accurate blind room 
parameter estimation performance.

3.1  Audio generation
In the acquired RIR dataset, a total of 55 real-world 
rooms and 30 simulated rooms are included, compris-
ing a total of 570 RIRs. The volume labels span from 
11.88  m3  to 21,000  m3, while the range of RT60 varies 
from 0.41 s to 19.68 s. Due to the significant differences 
in volume labels spanning multiple orders of magnitude, 
we chose to represent them using a logarithmic base 10 
scale. Additionally, to ensure consistency across all data-
sets, all RIRs were downsampled to 16 kHz. The distribu-
tion of volume and RT60 in different datasets is shown in 
Fig. 2.

From a given RIR dataset with room parameter labels, 
we generated audio data with reverberation and noise for 
the purpose of feeding it into different neural networks 
for comparison. To achieve this, we mapped the acoustic 
response r(t) of different types of rooms in the RIR data-
set onto the audio signal y(t).

We used source speech signals x(t) recorded in ane-
choic chambers without reverberation and convolve 
them with r(t) in the time domain. The source speech sig-
nals x(t) are obtained from the ACE dataset [10], where 
samples are recorded without reverberation, and include 
both male and female speakers. In the RIR dataset, some 
rooms have more RIR measurements than others. To 
ensure a uniform representation, each room is equally 
sampled, so that the distribution of audio samples in 
our dataset matches the volume distribution in our RIR 
dataset.

Additional noise signals n(t) were added to simulate 
recordings at four different signal-to-noise ratio (SNR) 
levels, including [+ 30, + 20, + 10, + 0] decibels. The 
noise n(t) comprises two types of noise, namely white 
noise and babble noise [37].

In summary, the audio signal y(t) is constructed by 
convolving source speech signals x(t) with room impulse 
response r(t) and adding additional noise n(t), repre-
sented as:

Here, t represents the discrete time index. s(t) repre-
sents the reverberation audio signal without noise.

We split 32,000 audio signals y(t) into training, valida-
tion, and test sets in a 6-2-2 ratio. During the training 
process, we randomly sampled a subset from both real 
and simulated rooms for room validation. A subset was 
also extracted from real-world unseen rooms for room 
testing. Rooms with these specific parameters were not 
included in the training set. The purpose of this step is 
to assess whether the model, when confronted with room 
parameters not encountered during the training pro-
cess, can still demonstrate robust predictive performance 
under noisy and reverberant conditions. Overall, Dataset 
I is formulated as listed in Table 1.

3.2  Audio augmentation
To enhance the generalizability of neural networks in 
unknown rooms and noisy environments, we employed 
the widely-used data augmentation technique known as 
SpecAugment [38]. This method enhances the model’s 
robustness to unknown conditions through modifications 
and augmentations to the available training data. Specifi-
cally, we selected reverberation signals without noise s(t) 
as described in Eq.  2. Subsequently, these audio signals 

(2)
y(t) = x(t) ∗ r(t)+ n(t)

= s(t)+ n(t)
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were transformed into log Mel-frequency spectrograms 
and subjected to time warping, frequency masking, and 
time masking, as shown in Fig. 3.

Time warping was implemented using Tensor-
Flow’s sparse image warping function. For a log Mel-
frequency spectrogram with τ time steps, we treated 
it as an image with the time axis horizontal and the 
frequency axis vertical. In the image, we randomly 
selected points within the interval [Wm, τ −Wm] 

located between time steps and applied random warp-
ing. The warping distance, w, was chosen uniformly 
from the range [0,Wm] , where Wm is the time warp 
parameter. Six anchor points were fixed at the bound-
aries of the image, including the four corners and the 
midpoints of the vertical edges.

Frequency masking was applied as follows: a continu-
ous set of Mel frequency channels [f0, f0 + f1) is masked, 
where f1 is initially chosen from a uniform distribution 
[0, Fm] , and f0 is chosen from [0, ν − f1) , where Fm is the 
frequency mask parameter, and ν is the number of Mel 
frequency channels.

Time masking was applied in a similar manner: a 
continuous set of time steps [t0, t0 + t1) is masked, with 
t1 being initially chosen from a uniform distribution 
[0,Tm] , and t0 chosen from [0, τ − t1) , where Tm is the 
time mask parameter, and τ is the total number of time 
steps. The Mel-frequency spectrogram with masking 

Fig. 2 The distribution graphs of volume and RT60 in different datasets

Table 1 Summary of data splits for datasets I and II 

Data # of # of Real Simulated
Split Dataset I Dataset II Rooms Rooms

Train 19200 24000 34 18

Validation 6400 6400 21 12

Test 6400 6400 21 0
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applied is then converted back to the time-domain 
signal.

Finally, 4800 speech sequences with these masking 
effects were added to the original training dataset for 
neural network training, and this dataset is labeled as 
Dataset II, as shown in Table 1. Constrained by com-
putational resources, it is important to note that Spe-
cAugment is not applied on-the-fly during each epoch. 
Instead, it undergoes offline processing on the data 
and is subsequently integrated directly into the train-
ing set. This approach aims to strike a balance between 
computational costs and the effectiveness of data aug-
mentation. This comprehensive data augmentation 
strategy aims to help the neural network better adapt 
to various environments and conditions, ultimately 
improving its generalization performance.

3.3  Featurization
Audio feature extraction is crucial in convolutional neu-
ral networks, as it directly influences the model’s perfor-
mance. However, combining multiple feature extraction 
methods into one model led to complex models and 
requires a substantial amount of data and expensive 
training costs. Therefore, it is necessary to balance the 
addition of feature extraction methods while retain-
ing key acoustic information to ensure that the model 
can handle a variety of datasets and provide general and 
accurate blind room parameter estimation performance.

Prior works in [15, 16, 39] emphasize the impor-
tance of low-frequency information for room acoustic 
parameter estimation. Consequently, feature repre-
sentation is restricted to the relatively low-frequency 
range (< 2000 kHz). The Gammatone ERB filterbank 

Fig. 3 Augmentation schemes applied to reverberation signals without noise
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is used to generate time-frequency representations, 
comprising 20 frequency bands covering the frequency 
range from 50 to 2000 Hz. The audio is computed 
using a 64-sample Hann window with a 32-sample 
hop size, resulting in a 20× 1997 complex Gammatone 
spectrogram.

Furthermore, the phase information extracted from the 
audio is also retained following the work in [21]. Phase 
angles are computed for each time-frequency bin to gen-
erate phase features. These features are then truncated 
to include only the frequency bands associated with 
frequencies below 500 Hz (i.e., 5× 1997 ) since lower-
frequency components generally carry more informa-
tion related to room volume. Additionally, the first-order 
derivatives of the phase coefficients along the frequency 
axis are calculated (i.e., 5× 1997 ). This feature configura-
tion aligns with the “ +phase” model described in [21], 
which has been proven to outperform methods based 
solely on amplitude spectrogram features.

By combining spectral features, phase features, and 
first-order derivatives of phase coefficients, a two-
dimensional feature block is obtained. The dimension 
of the feature block is 30× 1997 , where 30 represents 
the feature dimension (F), and 1997 represents the time 
dimension (T).

4  Model architecture
In this section, different architectures for audio data pro-
cessing models are described for blind room parameter 
estimation tasks. These models include a CNN-based 
model, a CRNN-based model, and proposed attention-
based systems.

Firstly, the CNN-based model utilizes multiple convolu-
tion and pooling layers to capture features of the audio data 
through convolution operations, followed by reducing the 
parameter count using pooling operations. Secondly, the 
CRNN-based model combines CNN and LSTM networks, 
designed to handle time series data better, capturing both 
time and frequency features of the audio data. Finally, the 
proposed model employs a completely different approach, 
relying solely on attention mechanisms without using 
convolution. This model has a unique structure, breaking 

inputs into patches, processing data through embed-
ding layers and positional encoding layers, and ultimately 
extracting features and producing results using Transform-
ers. Additionally, the study also employs transfer learning 
by utilizing pretrained image models to process audio data, 
improving performance and efficiency.

4.1  Convolutional neural network
In this section, a model based on a CNN following the 
“+phase” model in [21] is introduced, for processing two-
dimensional feature blocks extracted from audio data. 
The model comprises six convolutional layers with corre-
sponding average pooling layers, and each convolutional 
layer is followed by a rectified linear unit (ReLU) acti-
vation function. To prevent overfitting, dropout layers, 
which discard 50% of the connections, are introduced 
within the network structure. Taking the estimation of 
room volume parameters as an example, the final out-
put layer is a fully connected layer, mapping the output 
dimension to downstream tasks. In particular, the struc-
ture of its last layer is dynamically adjusted according to 
the requirements of the blind room parameter estimation 
task to meet the performance needs of different tasks. Its 
system architecture is illustrated in Fig. 4.

4.2  Convolutioanl recurrent neural network
CRNN is designed to capture both temporal and fre-
quency features in audio data while also having a memory 
to handle time series data. CRNN efficiently extracts fea-
tures from data and models sequences, better accommo-
dating variable-length inputs, making it highly suitable 
for practical blind room parameter estimation problems.

A CRNN-based model is introduced in this section as 
it combines the parameteric efficiency of CNNs with the 
capability of sequential modeling from gated RNNs. The 
system architecture of CRNN is illustrated in Fig. 5.

Overall, the model consists of six convolutional layers 
with ReLU activation, followed by an LSTM layer, a max-
pooling layer, a dropout layer, and a time-distributed fully 
connected layer.

Convolutional blocks gradually reduce the size and 
dimensions of the feature maps, allowing more sequences 

Fig. 4 The system architecture of the CNN-based model
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to enter the network. Simultaneously, the max-pooling 
layer is applied to extract useful features from the raw 
audio data.

The LSTM layer, which serves as a key component of 
the CRNN, is used for processing time series data, cap-
turing the temporal relationships and sequence informa-
tion in the input data. The hidden layer size of the LSTM 
is set to 64 and can be adjusted based on the size of the 
input fed into the LSTM. Prior to the dense layer, a max-
pooling layer is employed to reduce the parameter count, 
with a pooling size set to 2, similar to [40].

Subsequently, the model includes a dropout layer with 
rate of 0.5 before the dense layer. The data is then flat-
tened and passed to the fully connected layer, whose out-
put size can be adjusted as needed. Considering that the 
estimated room parameters are positive values, an addi-
tional ReLU activation function is added to the final out-
put layer.

Finally, the model outputs the estimated room parame-
ters from the last time step. In this example, blind indoor 
volume estimation is used as the task, which is a regres-
sion task with an output size of 1. The structure can be 
adapted to specific application scenarios and datasets.

4.3  In‑depth: convolution‑free audio spectrogram 
transformer

4.3.1  Audio spectrogram transformer
In this section, we introduce a model based purely on 
attention mechanisms without convolution for blind 
room parameter estimation. The design of this model 
is inspired by the workings of the Audio Spectrogram 
Transformer described in [28], which has shown remark-
able performance in end-to-end audio classification 
tasks. However, it is noted that this purely attention-
based approach has not been extensively explored in 
other domains, especially in the realm of blind room 
parameter estimation.

The primary goal of this section is to apply the pro-
posed model that is purely attention-based to the blind 
room parameter estimation problem and compare its 
performance with traditional CNN and CRNN models.

In this work, two-dimensional feature block with 
dimensions of 30× 1997 as input for the proposed model 
is used. To better capture local information in the audio, 
the two-dimensional feature block is divided into P 
patches, each sized 16× 16 . The goal of patch split is to 
ensure a better capture of local features within the audio 
signal. Additionally, to maintain consistency in both fea-
ture and time dimensions, each patch has a 6-feature 
dimension and 6-time dimension overlap with its sur-
rounding blocks. As a result, the number of patches P is 
determined to be 398, shown as:

where F represents the feature dimension, and T repre-
sents the time dimension.

To further process these patches, we introduced a lin-
ear projection layer. This layer’s role is to flatten each 
16× 16 patch into a one-dimensional patch embed-
ding with a dimension of 768, referred to as the patch 
embedding layer. This embedding process helps reduce 
the data’s dimensionality, making it more suitable for 
subsequent processing in the model.

Since these patches are not arranged in chronological 
order, and traditional Transformer architectures do not 
directly handle input sequences, we introduced train-
able positional embeddings of dimension 768 in each 
patch. By introducing these trainable positional embed-
dings, the model is better able to understand the spatial 
structure of the audio spectrogram and grasp the posi-
tional information between patches.

Furthermore, the feature sequence is fed into the 
Transformer. Similar to [28], each feature sequence 
begins with a [CLS] token. In this model, the encod-
ing and feature extraction of the input sequence only 
utilizes the encoder part of the original Transformer 
architecture [41]. The advantage of using the original 
Transformer structure is that it is a standard archi-
tecture already available in PyTorch and TensorFlow, 
making it easy to reproduce. Secondly, we plan to 
apply transfer learning to this task, and the standard 

(3)P =
F − 16

10

T − 16

10
,

Fig. 5 The system architecture of the CRNN-based model
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architecture facilitates transfer learning. Specifically, 
the embedding size of the Transformer encoder we use 
is 768, with 12 layers and 12 heads, which are the same 
as those in [42, 43].

We adjusted the output of the encoder based on the 
type of room parameters being estimated. Taking room 
volume estimation as an example, the input consists of a 
sequence formed by a feature block with the dimensions 
of 30× 1997 , and the output is a single label used for vol-
ume prediction. The entire output of the Transformer 
serves as the feature representation for the two-dimen-
sional audio feature block, which is subsequently mapped 
to labels for volume estimation using a linear layer with a 
Sigmoid activation function. The system architecture of 
the proposed model is depicted in Fig. 6.

In summary, traditional convolutional neural networks 
typically have multiple layers, small kernels, and stride 
sizes, in contrast to the proposed model, which includes 
patch embeddings (viewed as a single convolutional 
layer with large kernels and strides) and projection layers 
within Transformer blocks (viewed as 1× 1 convolution). 
The proposed model used in this study can be referred to 
as a convolution-free model, distinguishing it from CNN 
and CRNN [42, 43].

4.3.2  ImageNet pretraining
Many researchers have noted that Transformers lack 
some of the inductive biases inherent to CNNs, such as 
translation equivariance and locality [44]. Consequently, 

they exhibit poorer generalization capabilities under 
conditions of limited training data, compared to simpler 
models like CNNs and CRNNs [42].

To achieve accurate blind room parameter estimation, 
a substantial amount of publicly available data with cor-
rectly labeled room parameters is required to train the 
network. Therefore, two approaches are adopted: 

1) As introduced in Sect. 2.2, the use of an image-source 
model to synthesize RIR datasets.

2) Transfer learning.

Transfer learning has been widely explored in previous 
research, particularly in transferring from visual tasks to 
audio tasks. This transfer often focuses on using CNN-
based models [25, 45–47], where ImageNet-pretrained 
CNN weights are used as initial weights for audio classi-
fication tasks. However, the computational cost of train-
ing state-of-the-art visual models could be relatively high. 
Fortunately, some common architectures like ResNet [47] 
and EfficientNet [48] offer readily available ImageNet-
pretrained models for TensorFlow and PyTorch, making 
transfer learning more convenient.

For image classification tasks, research indicates that 
Transformer models start to outperform traditional 
models in performance when the dataset size exceeds 
14 million [42]. However, audio datasets for blind room 
parameter estimation tasks typically cannot provide such 
massive amounts of data, posing a challenge. Therefore, 

Fig. 6 The system architecture of the proposed model
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we have decided to explore cross-modality transfer learn-
ing for the task of audio spectrogram processing, leverag-
ing the similar format between image and audio data.

In this study, we use a pretrained off-the-shelf vision 
transformer (ViT) model from ImageNet [43] to simplify 
the transfer learning process. Afterward, we make appro-
priate adjustments to adapt it to the blind room parame-
ter estimation task. Although both ViT and the proposed 
model employ the standard Transformer with the same 
patch and embedding sizes, their architectural similari-
ties require adjustments to the structure before migration 
to ensure compatibility with the blind room parameter 
estimation task. Three adjustments are implemented: 

1) One challenge is that the proposed model’s input is 
a single-channel feature block, whereas ViT’s input 
is a three-channel image. To overcome this issue, we 
adopted an approach to calculate the average weights 
corresponding to each of the three input chan-
nels of the ViT patch embedding layer. This averag-
ing method helps integrate the information from 
the three channels into a single channel. We then 
used these averaged weights for the patch embed-
ding layer. This essentially extends the single-channel 
spectrogram to a three-channel image with the same 
content but higher computational efficiency. This 
approach helps us better adapt to the differences in 
model input, thus improving the efficiency and per-
formance of the research.

2) Another issue encountered in this study is that the 
input dimensions of ViT are fixed, whereas in prac-
tical tasks, the model needs to adapt to variable-
length audio inputs. As the audio length changes, the 
dimensions of the feature block also change. While 
the Transformer naturally supports variable input 
lengths and can be directly transferred from ViT to 
the proposed model, special handling of positional 
encodings was required. This is because the ViT 
model learns to encode spatial information during 
ImageNet training. Therefore, we used the “Cut and 
bi-linear interpolate” method [25] to adjust the input 
size and manage positional encodings. This way, even 
with different input shapes, we can pass on the two-
dimensional spatial knowledge obtained from the 
pretrained ViT to the proposed method, allowing the 
model to adapt to audio inputs of varying lengths. 
This method helps us better handle data under differ-
ent input conditions.

3) To adapt to different sub-tasks in blind room param-
eter estimation, we take the example of blind room 
volume estimation. We reinitialize the final classifi-
cation layer of ViT to output corresponding volume 
labels in the proposed model.

These adjustments are crucial to ensuring that the pre-
trained ViT model can be effectively used for the specific 
task of blind room parameter estimation and achieve 
improved efficiency and performance.

5  Experiment
In this section, an in-depth exploration of blind room 
parameter estimation tasks is conducted, utilizing two 
different datasets (Dataset I and Dataset II) to assess the 
performance of various models. We employed log-scaled 
and normalized data to better handle the magnitude dif-
ferences between room parameters and utilized multiple 
evaluation metrics to comprehensively assess the accu-
racy and robustness of the models.

We employed various model architectures (CNN-based 
model, CRNN-based model, and the purely attention-
based method in Sect.  4.3) and conducted a detailed 
comparison of their performance on different tasks and 
datasets.

Overall, through these experiments, we examined the 
performance of different models in various blind room 
parameter estimation tasks and assessed their adaptabil-
ity in handling variable-length audio inputs.

5.1  Datasets
In the task of blind room parameter estimation, Dataset 
I and Dataset II mentioned in Sect. 3.1 and 3.2 were uti-
lized. In the preprocessing phase, room volume labels (in 
m 3 units, in logarithmic scale) were exclusively read, and 
four models, CNN-based model, CRNN-based model, 
the proposed method, and the “proposed method w/ pre-
train” model, were individually evaluated for their perfor-
mance on Dataset I and Dataset II. For the blind room 
parameter estimation with variable-length audio input, 
Dataset II was employed. Similarly, in the preprocess-
ing phase, only room volume labels (in m 3 units, in log-
scaled) were considered. However, a modification was 
made to the test set of Dataset II. Specifically, samples 
were extracted from 1 to 4 s with a step size of 0.5 s, and 
zero padding was applied to different lengths of audio 
samples to match the original length. This was done to 
assess the performance of different models in handling 
blind room parameter estimation under audio inputs 
with different length.

Finally, in the task of joint estimation of room parame-
ters, Dataset II was used. In the preprocessing phase, the 
model simultaneously reads room RT60 (in seconds) labels 
and room volume labels (in m 3 units). In order to overcome 
the significant scale differences between these two parame-
ters, we adopted an approach where we mapped the values 
of RT60 to volume values and applied a logarithmic scaling 
to them. It is worth emphasizing that this data processing 
method is reversible, allowing us to revert all parameters to 
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standard units at any time. The advantage of mapping the 
parameter relationship rather than standard normaliza-
tion is that it eliminates the need for frequent adjustment 
of hyperparameters when dealing with different blind room 
parameter estimation tasks, as it effectively addresses the 
differences in units and magnitudes among the parameters. 
This is done to evaluate the performance of different mod-
els in joint room parameters estimation.

5.2  Evaluation metrics and loss function
As shown in Fig. 2, due to large span of room volume and 
RT60 ranges, the estimation error could be related to its 
order of magnitude. Therefore, a log-10 estimation is more 
suitable than a linear estimation. This way, larger acoustic 
spaces in training are not disproportionately affected due to 
the relatively high contribution of error estimation. Using a 
logarithmic estimation better handles estimation errors of 
different orders of magnitude.

Four evaluation metrics using a base-10 logarithm are 
considered. They are as follows: (1) mean squared error 
(MSE): MSE is the average of the squared differences 
between estimated room parameters and ground truth 
room parameters. It is used to measure the degree of dis-
persion between estimated values and ground truth val-
ues. The smaller the average of squared differences, the 
closer the estimated values are to the ground truth values. 
(2) Mean absolute error (MAE): MAE represents the aver-
age of the absolute differences between estimated values 
and ground truth values. It provides the average deviation 
between estimated values and ground truth values and is 
commonly used to measure the accuracy of estimated val-
ues. (3) Pearson correlation coefficient ( ρ ): the Pearson 
correlation coefficient is used to measure the strength and 
direction of the linear relationship between two variables. 
It is used to describe the relationship between estimated 
room parameters and ground truth room parameters, 
with values ranging from − 1 to 1. Negative values indicate 
a negative correlation, positive values indicate a positive 
correlation, and 0 indicates no correlation. (4) MeanMult 
MM: MM is the mean absolute logarithm of the ratio 
between the estimated room volume and the ground truth 
room volume. This metric provides an overview of the 
mean error in the ratio between estimated room param-
eters and ground truth room parameters. Taking the loga-
rithm of the ratio helps reduce the impact of data points 
with significant differences. For example, for the estimated 
volume parameter, given the estimated volume V̂n and the 
ground truth volume Vn:

where “n” represents the sample index, and “N” repre-
sents the total number of samples.

(4)MM = e
1
N

∑N
n=1

∣

∣

∣
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Vn

)∣

∣

∣
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During model training stages, MSE was used as the loss 
function to minimize the error between estimated room 
parameters and ground truth room parameters. In the 
“Estimation of room parameter” and “Room parameter 
estimation under variable-length audio input” tasks, the 
loss function L1 formula was as follows:

where “n” represents the sample index, and “B” repre-
sents the batch size during training.

In contrast, for the task of “Joint estimation of room 
parameters,” which involves the simultaneous estimation 
of RT60 and volume parameters. To avoid differences in 
units and orders of magnitude between different param-
eters, as well as the impact of parameter scaling meth-
ods, the normalized MSE was used instead of the MSE in 
Eq. 5. The loss function L2 was formulated as follows:

where Ûn and Un represent the estimated and the ground 
truth RT60 , respectively. �1 and �2 are weights used to 
control the balance between the RT60 and volume nor-
malized MSE loss functions. These weights are employed 
to adjust the relative importance of these two functions 
during model training. Based on empirical evidences and 
experimental results, �1 is set to 1, and �2 is set to 2. This 
weight configuration can be adjusted according to the 
specific task and model performance to better meet the 
training requirements.

5.3  Experiment configurations
Different MSE loss functions were chosen based on 
the task’s requirements. Each model utilized the Adam 
optimizer from PyTorch. During the training process, 
L2 regularization was applied to prevent overfitting. 
Simultaneously, an adaptive learning rate strategy was 
employed to ensure the convergence of the model. If the 
model’s validation set did not improve for ten consecu-
tive epochs, an early stopping criterion was triggered, 
leading to the cessation of the training process to pre-
vent further overfitting. Furthermore, to select the opti-
mal-performing model, we monitored the MSE values 
on the validation set during grid search and optimized 
hyperparameters, including initial learning rate as well as 
batch size. The hyperparameter configuration that dem-
onstrated the best performance was chosen as the final 
model parameters.

For the “Estimation of room parameter” task, to facili-
tate comparative testing, we switched between Dataset 

(5)L1 =
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I and Dataset II as well as determined whether to use a 
pretrained model from ImageNet. To ensure consistency 
in model configurations, hyperparameters were kept con-
stant. CNN-based and CRNN-based models were trained 
for 1000 epochs with an initial learning rate of 5e−4, a 
batch size of 128.

The proposed attention-based method and the “pro-
posed method w/ pretrain” model were trained for 150 
epochs with an initial learning rate of 5e−6, a batch size 
of 16. For the “Joint estimation of room parameters” task, 
CNN-based and CRNN-based models were trained for 
2000 epochs with an initial learning rate of 2e−4, a batch 
size of 128. The proposed method and the “proposed 
method w/ pretrain” model were trained for 300 epochs 
with an initial learning rate of 2e−6, a batch size of 16.

To ensure fairness, all models were trained on devices 
equipped with an Intel Core i9 processor and an NVIDIA 
GeForce 4090 GPU.

6  Results and discussion
6.1  Estimation of room volume parameter
To investigate whether comparable performance simi-
lar to that of CNN and CRNN can be achieved by using 
a pure attention mechanism, we extracted audio data 
from Dataset I for the purpose of estimating room vol-
ume parameter. We transformed audio data into a fea-
ture block, as described in Sect.  3.3. Subsequently, we 
separately input these feature blocks into the CNN-based 
model, CRNN-based model, and the proposed method 
(the base version without ImageNet pretraining) for train-
ing. We then compared the predicted volume labels to 
the ground truth values. The results of these three mod-
els are presented in Table 2, with the evaluation metric of 
our proposed method (the base version without ImageNet 
pretraining) being highlighted in bold. Note that in this 
section we mainly focus on estimation of room volumes 
as this task has been shown to be more challenging than 
RT60 estimation in the literature [15, 16, 21].

In addition, the table includes information on the model’s 
memory consumption and computational complexity, such 
as the number of parameters ( #Param) and multiply-accu-
mulate operations (MACs). To ensure fairness, we conduct 
tests using the PyTorch profiler [49] in the same GPU envi-
ronment. A comprehensive comparison of the data in the 

table reveals that CNN models have fewer parameters and 
relatively low memory consumption but perform worse in 
various evaluation metrics. While the CRNN model shows 
an increase in parameter count compared to CNN and some 
improvement in evaluation metrics, it still falls short of our 
proposed method. In contrast, although our method has 
relatively higher parameter count and memory consump-
tion, it demonstrates significant advantages in all evalua-
tion metrics. Specifically, our method outperforms in terms 
of MSE, MAE, ρ , MM, and MACs. Despite the relatively 
higher memory consumption, considering the performance 
improvement, this increase can be deemed acceptable.

Based on experimental results above, we can see that 
the proposed method using the pure attention mechanism 
significantly outperforms both CNN and CRNN-based 
approaches, even with a lower-layer network configuration 
and relatively fewer training epochs. This suggests that 
the proposed method can accurately capture the acoustic 
characteristics in the audio data, thereby improving the 
accuracy and stability of room volume estimation.

Meanwhile, the four evaluation metrics show that the 
CRNN-based model performs better than the CNN-
based model. This can be attributed to the advantages of 
CRNN, which combines CNN with LSTM. CRNN can 
better handle the time series audio data while capturing 
local features, which is crucial for blind room parameter 
estimation tasks.

To further investigate the impact of ImageNet pretrain-
ing on the proposed method’s performance, the “proposed 
method w/ pretrain” model was trained on Dataset I. 
Simultaneously, to examine the effect of the SpecAugment 
data augmentation method on the performance of existing 
models, we retrained the existing four models on Data-
set II. The results of the above experiments are shown in 
Table 3, where the performance of the "proposed method 
w/ pretrain" model on Dataset II  is highlighted in bold

Based on the training results of different models on 
Dataset I, we can observe a significant improvement in 
the performance of the proposed method in the “Esti-
mation of room parameter” task with the use of the 
ImageNet pretraining method. Furthermore, when the 
four models were retrained on Dataset II, the applica-
tion of the SpecAugment method elevated the models’ 
performance to a new level. In particular, this method 

Table 2 The comparison between the CNN-based model [21], the CRNN-based model, and the base version of the proposed method

Method # Params (M) Evaluation metrics Memory 
consumption (GB))

MACs (G)

MSE MAE ρ MM

CNN [21] 0.013 0.3863 0.4837 0.6984 3.0532 1.81 0.237

CRNN 0.494 0.3572 0.4265 0.7262 2.6701 1.95 0.236

Proposed method 85.256 0.2650 0.3432 0.8077 2.2039 4.55 34.083
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demonstrates a significant improvement in the perfor-
mance of the “proposed method w/ pretrain” model. It 
confirms the effectiveness of SpecAugment in mitigating 
overfitting and enhancing model generalizability.

Meanwhile, in order to provide a more illustrative 
example, we rescaled the experimental results to a linear 
scale. In this experiment, the test set room volume ranges 
from 12 to 21,000  m3. We compared the performance 
of the best-performing models, namely the CNN-based 
model, CRNN-based model, and the “proposed method 
w/ pretrain” model. They were trained on Dataset II, and 
their model’s median as well as mean absolute error are 
shown in Table  4.  In particular, the median and mean 
absolute error of the "proposed method w/ pretrain" 
model are highlighted in bold in the table.

From the table, the “proposed method w/ pretrain” 
model exhibits the best performance in terms of both 
median and mean absolute error, having the lowest error 
values.

The Fig. 7 displays the confusion matrices for these 
three best-performing models in the “Estimation of 
room volume parameter” task, with the x-axis and 
y-axis representing the log-10 exponent of volume 
size. From the visualization, it is evident that the “pro-
posed method w/ pretrain” model exhibits excellent 
performance across the entire test range. Its distribu-
tion consistently closely surrounds the ground truth, 
clearly outperforming the CNN-based and CRNN-
based models.

Results in this section indicate that the proposed purely 
attention-based model is capable of capturing relevant 
features and representations in the context of room vol-
ume regression efficiency. More importantly, it demon-
strates remarkable generalization capabilities, effectively 
applying the patterns learned from the training data 
to real-world rooms, even for rooms the model has not 
encountered before, resulting in accurate volume esti-
mates. This outcome provides a strong theoretical foun-
dation for our approach and underscores its potential in 
more blind estimation practical problems, which will be 
addressed in the following section.

Table 3 Performance comparison of different models with and without the application of SpecAugment

Method Dataset I Dataset II

MSE MAE ρ MM MSE MAE ρ MM

CNN [21] 0.3863 0.4837 0.6984 3.0532 0.3154 0.4136 0.7678 2.5921

CRNN 0.3572 0.4265 0.7262 2.6701 0.2818 0.3684 0.7898 2.3471

Proposed method 0.2650 0.3432 0.8077 2.2039 0.1981 0.2884 0.8580 1.9427

Proposed method w/ 
pretrain

0.2157 0.3111 0.8529 2.0470 0.1541 0.2423 0.8929 1.7470

Table 4 Comparison of median and mean absolute error for 
volume parameters among the best-performing models

Method Median ( m3) Mean absolute 
error (m3)  

CNN [21] 353 1919

CRNN 257 1644

Proposed method w/
pretrain

155 1219

Fig. 7 Confusion matrices for the best-performing models trained on Dataset II in the “Estimation of room volume parameter” task
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6.2  Room parameter estimation under variable‑length 
audio input

In this section, model performances under variable-
length audio inputs are evaluated for the “Room param-
eter estimation” task. The selected models were tested 
with different lengths of audio inputs, and their perfor-
mances were assessed using four objective evaluation 
metrics as shown in Fig.  8. It is evident from the figure 
that the accuracy of the models in predicting room vol-
ume parameter significantly depends on the length of the 
input audio. As the input audio length shortens, the esti-
mation performance of all models inevitably experiences 
degradation.

By observing the curves of MSE and MAE metrics in 
Fig. 8, it can be noted that the CRNN-based model, the 
proposed model, and the “proposed method w/ pretrain” 
model exhibit smaller decay slopes. This suggests that, 
compared to CNN-based models, they can better han-
dle time sequences of variable length. The smaller decay 
slopes of the evaluation metrics can be considered an 

indication that the models better maintain performance 
stability, even when the input length decreases, maintain-
ing relatively good performance.

Results in Fig.  8 also indicate that the “proposed 
method w/ pretrain” model performs the best at the same 
input length. For the shortest input sample, i.e., when the 
input length is 1 s, the MSE for the “proposed method w/ 
pretrain” model is 0.6458. In comparison, to achieve the 
same performance level, the CNN-based model, CRNN-
based model, and the proposed model would require 
input audio lengths of approximately 2.8 s, 2.0 s, and 1.2 
s, respectively. This advantage facilitates the proposed 
attention-based models to outperform both CNN and 
CRNN systems with significantly less temporal context, 
which can be a valuable merit when dealing with speech-
based blind estimation problems in practice.

6.3  Joint estimation of room parameters
This section aims to address the “Joint estimation of 
room parameters” task, which involves training a single 

Fig. 8 Performance comparison of different models under the “Room parameter estimation under variable-length audio input” task
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model to simultaneously estimate multiple room param-
eters. Specifically, due to the shared acoustic characteris-
tics of room volume and RT60 parameters, it is possible to 
estimate them concurrently by extracting reverberation-
related information. Considering difficulties in collect-
ing groundtruth of real data for other room parameters, 
such as total surface area and average surface absorption 
coefficient in real-world room datasets, this experiment 
focuses on the joint estimation of room volume and RT60.

In this task, we selected three models, namely the CNN-
based model, CRNN-based model, as well as the “proposed 
method w/ pretrain” model, and trained them on Data-
set II. Their network architectures were fundamentally 
similar to those used for the “Estimation of room volume 
parameter” task, with minor modifications. In the “Joint 
estimation of room parameters” task, the three models 
are required to output two parameters, i.e., room volume 
and RT60 , instead of a single parameter. Consequently, the 
final output layers of the models were modified to include 
two fully connected layers for estimating different room 
parameters. During the training process, hyperparameters 
were fine-tuned (as described in Sect.  5.3), and the loss 
function was adjusted (as shown in Eq. 6).

It is worth noting that, in order to mitigate issues 
related to different units and scales among parameters, as 
well as the impact of parameter scaling during normali-
zation, we chose to use only the ρ as the evaluation met-
ric. This helps ensure consistency among the estimated 
parameters. The corresponding results are presented in 
the Table 5. In which, the evaluation metric values of the 
"proposed method w/ pretrain" model are highlighted in 
bold.

From these results, it can be clearly seen that the “pro-
posed method w/ pretrain” model outperforms the other 
models, achieving the highest ρ for both room volume 

and RT60 , indicating its effectiveness in jointly estimating 
these room parameters.

In this experiment, the test set room volume ranges 
from 12 to 21,000  m3,  while the RT range from 0.41 to 
19.68 s. We rescaled the experimental results to a linear 
scale. The median, as well as mean absolute error for the 
three models regarding volume and RT60 , is displayed in 
Table  6.  Among them, the performance metrics of the 
“proposed method w/ pretrain” model are highlighted in 
bold in the table.

Furthermore, we conducted a comparative study 
between the volume estimation in the joint model and 
the estimation of volume results for the “Estimation 
of room volume parameter” task by comparing results 
in Table  3 and Table  5, as well as Table  4 and Table  6. 
Despite the fact that the joint estimation models aim to 
simultaneously handle multiple parameters, it is clear 
that their volume estimation results, while experiencing 
some degree of attenuation, are overall very similar to the 
results obtained from estimating only a single parameter. 
This suggests that the performance of the joint model is 
in par with that of models designed for estimating a sin-
gle parameter.

Figure  9 shows confusion matrices for volume and 
RT60 parameter estimation in the “Joint estimation of 
room parameters” task, highlighting the best-performing 
models. The x-axis and y-axis represent the log-10 expo-
nent of room parameters (volume and RT60 ). From the 
visualization results, it can be observed that estimation 
performances of the CNN-based model, CRNN-based 
model, and the “proposed method w/ pretrain” model 
gradually improves, and their fitting capabilities increase 
progressively.

The comprehensive analysis of experimental results 
in this study demonstrates the effectiveness of the 

Table 5 Pearson correlation coefficients of best-performing models in “Joint estimation of room parameters” task

Method CNN [21] CRNN Proposed method w/ 
pretrain

vol RT60   vol RT60   vol RT60  

ρ 0.6187 0.9133 0.6584 0.9488 0.8287 0.9681

Table 6 Comparison of median and mean absolute error for volume as well as RT60 parameters among the best-performing models

Method Median Mean absolute error

vol ( m3) RT60 (seconds) vol ( m3) RT60 (seconds)

CNN [21] 728 0.64 2481 1.32

CRNN 329 0.39 2265 0.71

Proposed method w/ pretrain 294 0.31 2208 0.61
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joint estimation model for the blind room parameter 
estimation task. This method involves utilizing a single 
model to simultaneously estimate both room volume 
and RT60 parameters, providing a more holistic under-
standing of acoustic environmental characteristics. 
Particularly, the “proposed method w/ pretrain” model 
achieves the highest ρ for both room volume and RT60 
parameters. This highlights the model’s capability 
of capturing the intricate characteristics of acoustic 
environments through the joint estimation of room 
parameters.

7  Conclusion and future work
In this study, we aim to explore the feasibility of using 
attention-based models to address audio processing 
tasks, specifically including the “Estimation of room vol-
ume parameter,” “Room parameter estimation under var-
iable-length audio input,” and “Joint estimation of room 
parameters” tasks. We employ different training strate-
gies to evaluate performances of a CNN-based model, 
a CRNN-based model, the proposed attention-based 
model, and the “proposed method w/ pretrain” model.

Experimental results based on unseen real-world 
rooms and realistic noise scenario indicate that our pro-
posed method shows significant superiority in terms of 
accurately capturing the acoustic characteristics of audio 
data. This demonstrates that neural networks based on 
pure attention mechanisms can effectively handle regres-
sion problems related to audio and exhibit potential 
advantages in handling joint estimation tasks and varia-
ble-length inputs.

Future research directions will focus on optimiz-
ing and enhancing the performance of attention-based 
audio processing models in real-world applications. We 
plan to further improve the model structure, including 
considering more efficient variants, to better capture 
the complex features of audio data. Additionally, we 
will strive to collect more comprehensive and diverse 
room data to enhance the model’s generalization capa-
bilities. We also aim to update robust and state-of-the-
art RT60 estimators [50–52] to obtain more accurate 
ground truth. These efforts will contribute to advanc-
ing the application of attention-based audio processing 
models in real-world scenarios.

Fig. 9 Confusion matrices for the best-performing models trained on Dataset II in the “Joint estimation of room parameters” task
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