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Abstract 

Selective attention is a crucial ability of the auditory system. Computationally, following an auditory object can be 
illustrated as tracking its acoustic properties, e.g., pitch, timbre, or location in space. The difficulty is related to the fact 
that in a complex auditory scene, the information about the tracked object is not available in a clean form. The more 
cluttered the sound mixture, the more time and frequency regions where the object of interest is masked by other 
sound sources. How does the auditory system recognize and follow acoustic objects based on this fragmentary infor-
mation? Numerous studies highlight the crucial role of top-down processing in this task. Having in mind both audi-
tory modeling and signal processing applications, we investigated how computational methods with and without 
top-down processing deal with increasing sparsity of the auditory features in the task of estimating instantaneous 
voice states, defined as a combination of three parameters: fundamental frequency F0 and formant frequencies F1 
and F2. We found that the benefit from top-down processing grows with increasing sparseness of the auditory data.
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1  Introduction
Selective auditory attention is essential in most real-life 
acoustic environments. Human listeners without hear-
ing impairment tune out the irrelevant acoustic clutter 
and attentively follow sound objects with ease, but from 
the machine listening perspective, selective attention is 
a challenging task. For example, despite many techno-
logical advances, hearing aids still tend to amplify the 
background sounds together with the signal of interest. 
Other than filtering the sound based on specific proper-
ties like the spectral range, direction of arrival, or degree 
of interaural correlation, hearing devices have no ability 

to follow a specific sound object. The goal of this study 
is to contribute to understanding what computational 
strategies of human audition are still missing in the audio 
algorithms.

Computationally, following an auditory object can be 
illustrated as tracking its acoustic properties, e.g., pitch, 
timbre, or location in space. Results of previous studies 
indicate that to track voices in a crowded acoustic space, 
a fusion of several dimensions representing different 
acoustic properties is required. These properties can be 
estimated based on the auditory features extracted from 
the acoustic signal. The difficulty is related to the fact 
that in a complex auditory scene, the information about 
the tracked object is not available in a clean form. The 
more cluttered the sound mixture, the more time and 
frequency regions where the object of interest is masked 
by other sound sources [1, 2]. Previous studies suggest 
that the remaining sparse time-frequency regions where 
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the voice of interest dominates over other sound objects 
(auditory glimpses) are essential in decoding auditory 
scenes. Glimpses provide robust information about the 
voice of interest and, hence, can be used as reliable cues 
for tracking.

However, the incomplete glimpsed information taken 
out of the context may be ambiguous at times: sparse 
glimpses alone may not provide enough evidence to be 
linked with a unique possible underlying cause. Many 
scholars believe that solving this ill-posed problem is 
possible due to the top-down processing involved in per-
ception [3]. In contrast to the feed-forward processing 
system in which the information travels straight from 
input to output in a direct way, the perception is fre-
quently described as a top-down processing architecture, 
where the input features are confronted with the expec-
tations formed at the higher level of abstraction. In a 
top-down system, the output depends both on the input 
and on some prior beliefs, which are a set of constraints 
restricting the possible outcomes of the task. By allocat-
ing the neural resources to the regions of expected high 
importance, the brain simplifies the task of making sense 
of fragmentary information available in a complex audi-
tory scene.

In our previous work [4], we proposed a computational 
model of attentive tracking of competing voices [5], 
which combined the top-down and bottom-up process-
ing. The model was used to track F0 of two simultane-
ous voices based on sparse periodicity-based auditory 
features (sPAF) [6–8] extracted from the mixture of 
voices. It was realized with sequential Monte Carlo sam-
pling (particle filters) [9], coupled with simple analytically 
designed probabilistic F0-models (described in detail in 
[4]). This process simulated attentive tracking in humans. 
We found that although the information carried by sPAF 
extracted from the mixture of two voices is sufficient to 
simultaneously track both F0s, the knowledge of F0 alone 
is not sufficient to correctly segregate the features. Our 
results confirmed that more voice properties need to be 
estimated to solve the attentive tracking task.

In this study, we extend the previously used system as 
follows: (1) instead of tracking only F0, we track voice 
states consisting of three parameters (fundamental fre-
quency F0 and formant frequencies F1 and F2); (2) in 
the feature extraction, we include energy-based features 
instead of using solely periodicity-based features; (3) 
instead of a likelihood model of F0 for the periodicity-
based features, we propose a joint F0, F1, F2-likelihood 
model for combined periodicity- and energy-based fea-
tures. F0, F1, and F2 are related to speech production 
and perception and provide critical cues for the identi-
fication of speech sounds. F0 corresponds to the rate of 

vibration of the vocal cords, which determines the per-
ceived pitch of the sound. F1 and F2—the first and the 
second lowest resonant frequency in the vocal tract—
are influenced primarily by the position of the tongue 
during speech production. They are both found to be 
critical for distinguishing between different vowels.

We investigate the potential of a new approach 
including all three parameters. Firstly, we test how 
much the performance is affected by the increasing 
sparsity of the auditory features. We bypass the segre-
gation problem and let the model estimate the 3 dimen-
sional state based on already segregated target-related 
sPAF. We generate continuously voiced signals with 
defined state trajectories, extract sPAF features, and 
simulate a varying degree of difficulty in the sPAF fea-
tures. Secondly, to investigate the benefit of top-down 
processing, we compare the proposed model with two 
classes of methods without top-down processing: non-
sequential Monte Carlo sampling and regression neu-
ral networks. In the first class, a straightforward Monte 
Carlo simulation is used [10]: competing hypotheses 
are distributed across the possible range of parameter 
values and evaluated with the same likelihood model 
as used in the particle. This can be understood as a 
particle filter without a continuity model. In the sec-
ond class, the regression neural network [11] learns 
the mapping between the sPAF and the voice state and 
applies it to predict the most likely instantaneous voice 
states. We know from [12] that this approach is suc-
cessful for estimating state of a single voice. However, it 
was not clear whether this purely bottom-up approach 
would be able to deal with sPAF extracted from a more 
difficult auditory scenes, where there are less target-
related glimpses.

The main contributions of this study are: 

1.	 Extension of the previously published voice state like-
lihood model (from F0 estimation to F0-F1-F2 esti-
mation)

2.	 Comparison of the sampling-based voice tracking 
approach with a regression neural network

3.	 Introduction of a novel, perceptually motivated F0 
tracking error measure

This paper is organized as follows: In Section  2, we 
introduce implementation details of the auditory fea-
ture extraction, four state estimation methods, and 
F0,  F1,  F2-data likelihood models. Section  3 reviews 
conditions in which the methods were evaluated and 
describes the performance measures. Section  4 guides 
the reader through the results, and Section 5 discusses 
the results in a broader context.
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2 � Methods
2.1 � Sparse periodicity‑based feature extraction
Feature extraction in this study is motivated by human 
auditory processing. We used the approach developed 
in [6–8] called sparse periodicity-based auditory fea-
ture (sPAF) extraction. We adopted this approach in [4] 
to track F0 of two competing voices. The method was 
designed to blindly extract auditory glimpses from the 
sound mixture. In particular, the auditory glimpses are 
here defined as salient tonal components across fre-
quency. The sPAF extraction consists of three main 
stages: 

1.	 Auditory pre-processing: This pre-processing stage 
simulates the sound processing in the peripheral 
auditory system, including: 

(a)	 Acoustic modification due to the middle ear 
implemented as a band-pass filter (0.5–2 kHz)

(b)	 Spectral analysis in the cochlea implemented as 
filterbank of 23 gammatone band-pass filters

(c)	 Dynamic range compression in the cochlea 
implemented as a power-low with an exponent 
of 0.4

(d)	 Neural transduction from the vibrations of the 
basilar membrane in the cochlea to electrical 
stimulation of the auditory nerve implemented 
as a half-wave rectification, followed by the 
5th-order lowpass-filter at 770  Hz, and 40  Hz 
high-pass filter.

	  The auditory pre-processing stage yields 23 
time-domain signals, which are forwarded to 
the periodicity analysis stage.

2.	 Periodicity analysis: In each frequency channel c, the 
periodicity analysis [13] is performed every 20  ms 
to reveal the dominant periods in the analyzed 
time instance of a signal. Around each considered 
time step n, eight signal segments of duration P′ are 
formed, as depicted in Fig.  1A.2. P′ is varied from 
0.0014 s (1/700 Hz) to 0.0125 s (1/80 Hz). The eight 
signal segments are averaged, yielding a base function 
vcn(P

′) . The energy of the signal that spans all eight 
signal segments is termed total energy Etot,cn(P′) . It 
is calculated as the mean square amplitude of that 
signal. The energy of the base function is termed 
periodic energy EP,cn(P′) and it is computed as the 
mean square amplitude of the base function. Lastly, 
for each point in time n, channel c and each tested 
period P′ , the normalized periodic energy synchcn(P′) 
defined as the ratio of the periodic energy and the 
total energy is computed: 

  Values of synchcn(P′) close to one indicate a high 
degree of tonality in a time-frequency bin cn and are 
treated as a footprint of speech in the sound mixture.

3.	 Glimpsing Values exceeding a certain threshold 
(e.g., > 0.9 ) indicate an auditory glimpse. Features 
tied to this dominant period characterize the glimpse. 
In [7, 8], a glimpse was defined by four quantities: 
period Pcnm , total energy Ecnm , interaural time differ-
ence Tcnm , and interaural level difference Lcnm , where 
the indices c, n,  and m denote the frequency channel, 
time instance, and glimpse index within a channel, 
respectively. In our recent work, we used the period 
Pcnm to track voice fundamental frequency. The 
period is a sufficient feature for F0 estimation, but 
to estimate a 3-dimensional voice state consisting of 
F0, F1, and F2, it is necessary to examine the energy 
as a function of frequency. Hence here, we use both 
period and total energy.

In summary, in every time instance n at the output of 
the glimpsed feature extraction stage, we obtain an 
observation O(n):

which consists of 23 glimpse sets Gcn for each channel c. 
Gcn can consist of a single value, multiple values, or no 
value at all. The salient glimpses within the set Gcn are 
denoted as �gcnm:

where Mcn is the number of elements in the set (number 
of glimpses in channel c at time n). Each element �gcnm 
consist of two values: glimpse period Pcnm and glimpse 
energy Ecnm:

The number of salient glimpses in a set depends on the 
content of the analyzed signal. Glimpses obtained with 
this method in one instance of time can be visualized as 
glimpse patterns, shown in Fig. 1 (B). They represent all 
the salient periods found across 23 frequency channels 
and their corresponding total energy values. For more 
implementation details about the sPAF extraction, the 
reader is referred to [4, 6–8, 14].

2.1.1 � Observation vector for the neural network
The number of glimpses varies depending on the con-
tent of the acoustic signal: in general the more complex 
the auditory scene, the less salient glimpses available. 

(1)synchcn(P
′) =

EP,cn(P
′)

Etot,cn(P′)
.

(2)O(n) = {Gcn|c = 1, ..., 23},

(3)Gcn = {�gcnm|m = 1, ...,Mcn},

(4)�gcnm = [Pcnm,Ecnm].
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Above, the sPAF were defined as a set O(n) with a varying 
number of salient components. While such representa-
tion can be used as an input to an analytically designed 
model from Section  2.3, it is not suitable for training a 
neural network that requires a fixed dimensionality of 
the input features. To present the features to the neu-
ral network, sPAF can be treated as a 2-dimensional 
matrix of size 112 ×  23, representing 112 tested period 
values in 23 frequency channels. Such a matrix can be 
reshaped into an observation vector with a dimensional-
ity D = 112× 23 = 2576 . Entries of the matrix for which 
a glimpse was found are set to the glimpse energy value 
Ecnm . All remaining entries are set to 0.

2.2 � State estimation methods
Within a time frame of 20-ms duration, speech is usually 
considered to be stationary. For every frame number n, a 

continuously voiced signal can be characterized by a state 
vector containing the values of the instantaneous funda-
mental frequency F0 and first two formant frequencies 
F1 and F2:

In this study, we considered voiced signals, for which 
continuous three-dimensional state trajectories can be 
defined (see Fig. 6).

The objective of the models presented in this study is to 
infer voice state parameters �s(n) based on the observation 
O(n) containing sparse periodicity-based auditory fea-
tures (sPAF). Note that while the state is defined as a vec-
tor with a fixed dimensionality, the observation is a set 

(5)�s(n) =
F0(n)
F1(n)
F2(n)

.

Fig. 1  Extraction of sparse periodicity-based auditory features (sPAF). A Three main processing stages. B Glimpsed observation in one time 
instance. C Two ways of representing sPAF for different state estimation methods. Image based on [4]
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in which the number of elements depends on the acous-
tic signal (for more details, see Section 2.1). The sections 
below outline the state estimation methods compared 
in this study. For a theoretical introduction to state-
space methods and Monte Carlo sampling, the reader is 
referred to [9, 10, 15].

2.2.1 � Non‑sequential Monte Carlo sampling
In a Bayesian framework, the state estimation can be for-
mulated as finding the posterior probability of a current 
state given the current observation. According to Bayes’ 
rule, this probability can be computed as:

where the likelihood p(O(n)|�s(n)) describes variation in 
the data for a fixed state and the prior p(�s(n)) describes 
prior beliefs about the possible state. Even if the like-
lihood and prior can be evaluated to give an unnor-
malized posterior, the integral in the denominator of 
the equation above is usually intractable. An analytic 
closed-form expression is, therefore, not available. How-
ever, it is possible to approximate posteriors or expecta-
tion values w.r.t. posteriors. We here use a Monte Carlo 
approach based on samples with normalized impor-
tance weights (e.g., [10]) in order to represent the pos-
terior, and in order to compute corresponding expected 
values. Concretely, in each time step, we draw 2000 
three-dimensional samples (hypothetical states) from a 
uniform prior distribution in 3 dimensions ( U(100, 400) 
for F0, U(300, 800) for F1, and U(800, 2500) for F2). Next, 
the weight for each of the three-dimensional hypotheti-
cal states is computed by evaluating the p(O(n)|�s(n)) , 
which is designed to capture the relationship between the 
voice parameters F0, F1, and F2 and the observed sPAF 
(see Section  2.3.2). p(O(n)|�s(n)) is a probabilistic func-
tion that takes sPAF data and hypothetical voice param-
eters as input arguments and outputs a likelihood weight 
value. Weights for 2000 state samples are normalized so 
that they sum to 1. The final estimate �̂s(n) is the three-
dimensional state which maximizes the posterior.

2.2.2 � Sequential Monte Carlo sampling
The state estimation method introduced in this section 
was previously used in [4, 14] to simulate the process of 
attentive voice tracking. The sequential Bayesian state 
estimation is formulated as finding the posterior prob-
ability of a current state given the sequence of previous 
observations:

(6)p(�s(n)|O(n)) =
p(O(n)|�s(n))p(�s(n))∫

p(O(n)|�s(n))p(�s(n))d�s(n)
,

where

Similarly to the non-sequential case, analytical 
evaluation is usually not possible, and an approxima-
tion is needed. Sequential Monte Carlo sampling, also 
called particle filtering, is a broadly used sampling 
method, which is used for sequentially estimating the 
posterior density [9]. The key idea is to represent the 
required posterior density function by a set of ran-
dom samples with associated weights and to compute 
estimates based on these samples and weights. The 
main difference is that the new samples depend on 
the previous samples and that the weight propagates 
across time steps. The relationship between two subse-
quent states is described by the state transition model 
p(�s(n)|�s(n− 1)).

Specifically, the particle filter iteratively executes the 
following steps: 

1.	 Initialization: At the system onset, 2000 hypotheti-
cal state samples are drawn from a prior distribution, 
which is a normal distribution centered around the 
true state value.

2.	 Prediction: Particle filter iteration begins with pre-
dicting new state samples given the previous state 
samples via the state transition model.

3.	 Update: Hypothetical states are evaluated using 
incoming observation. For each sample, the weight is 
computed by multiplying the likelihood p(O(n)|�s(n)) 
with the old weight.

4.	 Estimation: The final estimate �̂s(n) is computed as 
expected value from the approximated posterior, 
i.e., discrete distribution of state samples with corre-
sponding weights.

5.	 Resampling: To direct the hypotheses set into the 
region of high importance, the samples with small 
weights are eliminated, and the samples with large 
weights are duplicated. After this step, the new itera-
tion begins.

Likelihood models used in the above procedure are 
detailed in Section 2.3.

(7)p(�s(n)|O(0 : n)) =
p(O(n)|�s(n))p(�s(n)|O(0 : n− 1))

p(O(n)|O(0 : n− 1))
,

(8)

p(�s(n)|O(0 : n− 1)) =
∫

p(�s(n)|�s(n− 1))p(�s(n− 1)|O(0 : n− 1))d�s(n− 1),

(9)
p(O(n)|O(0 : n− 1)) =
∫

p(O(n)|�s(n))p(�s(n)|O(0 : n− 1))d�s(n).
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2.2.3 � Regression neural network
If we assume the states �s(n) given an observation �o(n) to 
be well approximated by a deterministic function f (·) , 
i.e.,

then the function f (·) can be approximated using data-
driven approaches (if sufficient data is available). Here we 
use a regression neural network to approximate the func-
tion f (·) . Given a finite number of input and output pairs 
(�o(n),�s(n)) for training, we take the output f (�o(n)) dur-
ing test-time to approximate the most likely combination 
of state parameters F0, F1, F2 for the observed sPAF.

Network and training  We used a regression neural net-
work to learn the relationship between sPAF patterns 
�o(n) and corresponding voice parameters �s(n) . We used 
a standard feed-forward regression neural network with 
an input layer of 2576 neurons, matched with the dimen-
sionality of an observation vector. The network has two 
fully connected hidden layers with 1000 and 100 neu-
rons respectively. The activations for all layers apart from 
the output are sigmoid functions. The output layer has a 
dimensionality matched with the state vector and a lin-
ear activation function. The network was trained using 
the Nadam optimizer [16] and log-cosh regression loss 
function, with 100 training epochs. The training data set 
consisted of pairs of data points (observation vectors �o ) 
and corresponding labels (state vectors �s ). Input feature 
vectors �o(n) were normalized to values between 0 and 1. 
Target parameters (F0, F1 and F2) were scaled using the 
global mean and standard deviation, so that each param-
eter can only take values between 0 ad 1. After training, 
the inferred parameter values were scaled back to origi-
nal value ranges.

To generate the training pairs, we created random 
3-dimensional state trajectories with a sampling rate of 
50 Hz. They were used as an input to the Klatt formant 
synthesizer [17], yielding synthetic voice signals. The 
instantaneous sPAF were extracted from the acoustic sig-
nal with the same sampling rate as the trajectory.

Two different training data sets were used in the study: 

1.	 Clean sPAF: data set generated based on sPAF 
extracted from 1000 voice signals of 10  s each, in 
total 501,000 state-observation pairs.

2.	 Clean and fragmentary sPAF: data set generated 
based on clean voice sPAF, artificially removed sPAF, 
and segregated sPAF (for details, see Section  3). In 
each category, 1000 trajectories of 2  s each, in total 
404,000 state-observation pairs.

(10)�s(n) = f (�o(n)),

2.3 � F0, F1, F2‑models
This section reviews probabilistic models required for 
the Bayesian Monte Carlo state estimation methods 
(Sections  2.2.2 and 2.2.1), specifically for estimating 
instantaneous voice parameters (F0,  F1, and F2) based 
on sPAF.

2.3.1 � F0, F1, F2‑transition model p(�s(n)|�s(n− 1))

The state transition model describes the temporal evo-
lution of parameters F0, F1, and F2, which are naturally 
limited due to physical constraints of speech production. 
For simplicity, we assume independence of the individual 
dimensions; therefore, subsequent values in each dimen-
sion are predicted individually.

To predict the next value for the i-th state dimension 
si(n) , the trend �ŝi(n) = ŝi(n− 2)− ŝi(n− 1) between 
two previous estimates is calculated, the next value 
according to that trend si(n)+�ŝi(n) is predicted, and 
finally, gaussian noise is added to the predicted value 
si(n)+�ŝi(n)+ ǫi , where ǫi = N (µ = si(n), σ = σi) , 
and σi is 0.5 Hz for F0, 1 Hz for F1, and 5 Hz for F2. In 
addition, we make sure that the difference between two 
previous estimates �ŝi(n) does not exceed the largest 
allowed step (10 Hz for F0, 50 Hz for F1, and 100 Hz for 
F2) and that the extrapolated value si(n)+�ŝi(n) does 
not exceed a possible value range ([100,  400] for F0, 
[300, 800] for F1, and [800, 2500] for F2). Figure 2 depicts 
the procedure, repeated for every state sample.

2.3.2 � F0, F1, F2‑observation model p(O(n)|�s(n))
The F0, F1, F2−observation model is a probabilistic func-
tion that relates the observed sPAF and the underlying 
voice parameters. It quantifies the likelihood that the sPAF 
O(n) extracted in a given time frame come from a hypothet-
ical three-dimensional voice state �s(n) . There are two major 
assumptions, which influence the design of this function. 
First, we assume that the glimpses in one channel Gcn origi-
nate from a single voice, even if the acoustic signal contains 
a mixture of voices. This saliency assumption is based on 
the fact that we use the glimpsing thresholds, which ensure 
that the glimpses are extracted only if one voice dominates 
in the signal. This is demonstrated in Fig. 3.

Secondly, we assume that the state dimensions are 
independent and that period Pcnm is solely the evidence 
of F0 and energy Ecnm is solely the evidence of F1 and F2.

Hence, the likelihood of a single glimpse p
(
�gcnm|�s(n)

)
 

can be approximated as follows:

where the approximation is motivated by the above 
stated assumption.

(11)
p
(
�gcnm|�s(n)

)
≈ p(Pcnm|F0(n)) · p(Ecnm|F1(n), F2(n)),



Page 7 of 18Luberadzka et al. EURASIP Journal on Audio, Speech, and Music Processing         (2024) 2024:27 	

Fig. 2  State transition probability model predicting the next state value. si(n) : hypothetical value of the state dimension i, ŝi(n− 1) : estimate 
in the last time step, ŝi(n− 2) : estimate in the second-to-last time step, �ŝi(n) : difference between the last two estimates. Allowed step size 
was 10 Hz for F0, 50 Hz for F1, and 100 Hz for F2. Possible value range was [100, 400] for F0, [300, 800] for F1, and [800, 2500] for F2. Image based 
on [4]

Fig. 3  Example of sPAF in one time frame, which meet the saliency assumption. The top panel shows sPAF extracted from a mixture of two voices, 
the middle panels show the same sPAF segregated into two voices (each channel was assigned to either of the voices). The lower panels show sPAF 
extracted from individual voices before mixing. Each non-empty channel of the top panel represents either of the two voices
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See Fig. 4 for a scheme demonstrating the procedure to 
evaluate this function. We call p(Pcnm|F0(n)) the period 
likelihood and p(Ecnm|F1(n), F2(n)) the energy likelihood.

Energy likelihood p(Ecnm|F1(n), F2(n))  For the energy 
likelihood, we used a codebook approach to evaluate this 
function. The codebook entries were computed from 
the simulated data: First, a list of F1 values logarithmi-
cally spaced between 350 and 700  Hz, and a list of F2 
values logarithmically spaced between 800 and 2500 Hz 
was created. Next, for each F1 value, a 10-s signal with 
fixed F1 and varying F0 and F2 was generated. Likewise, 
for each F2 value, 10-s signal with fixed F2 and varying 
F0 and F1. sPAF were extracted from the signal and for 
every F1 a mean glimpse energy µE(F1, c) and a stand-
ard deviation σE(F1, c) was computed and stored. Simi-
larly for every F2 a mean energy µE(F2, c) and a standard 
deviation σE(F2, c) was computed and stored.

The likelihood that an observed glimpse energy Ecnm 
originates from a hypothetical F1 and F2 is modeled using 
two normal distributions with mean and standard devia-
tion defined by the two codebooks for F1 and F2 as follows:

We also experimented with other models for the 
energy likelihood including non-factorizing likelihoods 
or differently parameterized codebooks. The above 
modeling was finally chosen based on its relative per-
formance, stability, and efficiency benefits. It should be 
noted that the codebook summarizes energy distribu-
tion for only one input signal level. In order to account 
for voice signal level fluctuations, the procedure would 
need to be repeated for multiple input levels.

Period likelihood p(Pcnm|F0(n))  The likelihood that 
an observed glimpse period value Pcnm originates from 
a given F0 is modeled using a mixture of circular von-
Mises distributions [see 4]. Every value Pcnm is generated 

(12)
p(Ecnm|F1(n), F2(n)) =

N

(
Ecnm;µE(F1, c), σ

2
E (F1, c)

)
·N

(
Ecnm;µE(F2, c), σ

2
E (F2, c)

)
.

Fig. 4  Evaluating glimpse likelihood. (1) Procedure for evaluating period likelihood given F0. Based on a single observed period value (1.a), 
11 relative period values Rcnm(jF0) are computed, where j is the harmonic number (1.b). Next, they are multiplied by 2π to obtain a circular 
variable (1.c). The resulting 11 values are evaluated with the circular von-Mises distribution centered at 0 (1.d). Each likelihood is multiplied 
with a normalizing constant, which depends on the harmonic number (1.e). The values are added (1.f ) and the final result is the likelihood 
of a period value given hypothetical F0 (1.g). (2). Procedure for evaluating energy likelihood given F1, F2. To obtain energy likelihood given F1, 
the observed energy value (2.a) is evaluated with a normal distribution (2.b) whose parameters are taken from a codebook storing mean 
and standard deviation for different F1 values. The same is repeated for F2 to obtain the energy likelihood given F2. The energy likelihoods for F1 
and F2 (2.c) are multiplied (2.d) to obtain joint likelihood (2.e). The final glimpse likelihood given a hypothetical state (F0, F1, F2) is the product 
of period and energy likelihoods
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by a mixture of 11 circular von-Mises distributions. The 
number 11 comes from the highest reported number of 
resolved harmonics [18]. Each element of the sum repre-
sents a different harmonic j of F0:

where F0 is the hypothetical fundamental frequency, M 
denotes von-Mises distribution with the mean µ = 0 and 
concentration parameter κ = 5 . Cj =

j−1

∑11
j′ j′−1

 is the nor-

malizing constant for the j-th harmonic. It is reciprocal 
to harmonic number: the higher the harmonic number, 
the lower the probability of the period glimpse originat-
ing from that harmonic. Rcnm(j · F0) is the relative period 
value with respect to the j-th harmonic of the hypotheti-
cal F0 and is computed as:

where P0 = F0−1 is the period of F0 and rem(·) is the 
remainder from the division.

For a detailed explanation of the period likelihood 
function, the reader is referred to our recent study [4].

Likelihood integration  In each non-empty channel set 
Gcn , the likelihood is integrated by computing a mean 
across the likelihoods of the elements of the channel set:

Finally, the likelihood is integrated as a product 
across frequency channels:

3 � Evaluation
Four different state estimation methods were compared: 

1.	 Non-sequential Monte Carlo sampling, denoted non-
seqMC

2.	 Sequential Monte Carlo sampling denoted seqMC
3.	 Regression neural network trained with clean voice 

sPAF (Section 2.2.3), denoted regNN

(13)

p(Pcnm|F0) =

11∑

j

CjM
(
Rcnm(j · F0) · 2π;µ, κ

)
,

(14)Rcnm(F0) = rem(
Pcnm

P0
) = rem(Pcnm · F0),

(15)p(Gcn|�s(n)) =
1

Mcn

∑

m

p
(
�gcnm|�s(n)

)
.

(16)p(O(n)|�s(n)) =
∏

c

p
(
�Gcn|�s(n)

)
.

4.	 Regression neural network trained with fragmentary 
sPAF (Section 2.2.3), denoted regNN+

Figure 5 illustrates the above listed methods. The per-
formance of each method was evaluated under the fol-
lowing conditions: 

a)	 Clean voice sPAF: features were extracted from the 
acoustic signal containing one voice.

b)	40% Artificially removed sPAF: 40% of glimpses were 
artificially removed from the clean voice sPAF, with 
uniform removal probability for all channels and time 
steps.

c)	 80% Artificially removed sPAF: 80% of glimpses were 
artificially removed from the clean voice sPAF, with 
uniform removal probability for all channels and time 
steps.

d)	Optimally segregated: Features were extracted 
from the acoustic signal containing two voices and 
segregated using an F0-based feature segregation 
method (see the Appendix “Optimal feature segre-
gation method” section for details). sPAF assigned 
to the considered voice were used in the state esti-
mation.

Figure  6 depicts the above listed test conditions. Test 
data were obtained using the same procedure as in [4, 5]: 
First, 100 random 3-dimensional state trajectories each 
of length L = 100 were created. The trajectory of each 
parameter (F0,  F1,  F2) was generated independently, by 
picking a random excerpt of Gaussian noise (500 Hz sam-
pling rate), filtering it between 0.05 and 0.6 Hz and adjust-
ing the value range to 100− 400 Hz for F0, 300− 800 Hz 
for F1, and 700− 2200 Hz for F2. The trajectories with a 
sampling rate of 50 Hz were used as an input to the Klatt 
formant synthesizer [17], yielding 2 s-long synthetic voice 
signals, from which the sPAF were extracted with the 
same sampling rate. Conditions with artificially removed 
glimpses approximate adding noise to the signal before 
extracting sPAF. For example, 40% and 80% of glimpse 
loss corresponds to adding white noise to a voiced sig-
nal at 15− 20  dB SNR, and 0− 5  dB SNR, respectively. 
In the condition using a mixture of 2 voices (optimally 
segregated), a second set of 100 acoustic signals was syn-
thesized and mixed with the single voice signals before 
feature extraction. In the case of state estimation with a 
regression neural network, the sPAF features were addi-
tionally transformed to a suitable format with a fixed 
dimensionality (for details, see Section 2.1). For test con-
ditions with fragmentary data (b–d), this resulted in more 
zero-entries in the observation vector.
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The following performance measures were used to 
compare the state estimation with different methods: 

1	 Root mean square error (RMSE): 
√

1

N

∑N
n=1

(
�si(n)− �̂si(n)

)2 , 

where N is the cumulative length of all trajectories.
2	 Gross error: percentage of time steps for which the 

estimate lies outside the allowed interval (5 Hz for 
F0, 25 Hz for F1, and 100 Hz for F2).

3	 Harmonic error:  model-based similarity measure 
between tracks of fundamental frequency (for details, 
see the Appendix “Harmonic error” section).

4 � Results
This section presents the results for four state estimation 
methods in five conditions with different types of input 
features.

Figure 7 shows examples of ground truth F0, F1, and F2 
trajectories together with the estimated trajectories for 
all methods and conditions.

The results are analyzed and discussed for each feature 
dimension. Figure 8 shows performance measures com-
puted for the first dimension of the state space: F0.

Non-seqMC method results in the highest F0 RMSE 
of all methods, and in all conditions. The values are simi-
lar across different feature conditions and reach 92.8 Hz, 
which exceeds the RMSE computed for the white noise 
with mean 250  Hz and standard deviation 50  Hz. This 
indicates a systematic error leading to very low perfor-
mance in terms of absolute estimation accuracy. Exam-
ples in Fig.  7  (1.a–1.d) demonstrate that, while the 
estimated values are indeed far off from the underlying 
values, the errors are not random and are caused by the 

Fig. 5  State estimation methods. 1 Non-sequential Monte Carlo simulation: 3 plots show state estimation procedure in each of the 3 dimensions: 
F0, F1, F2. Dots represent hypothetical states. Color intensity and the size represent the likelihood p(O(n)|�s(n)) computed for each state sample, 
given the input sPAF data O(n). The state is estimated independently in each time step. 2 Sequential Monte Carlo simulation: 3 plots show state 
estimation procedure in each of the 3 dimensions: F0, F1, F2. Dots represent hypothetical states (particles). Color intensity and the size represent 
the weight computed via likelihood p(O(n)|�s(n)) for each state sample, given the input sPAF data O(n). Continuity model p(�s(n)|�s(n− 1)) defines 
how the samples evolve between consecutive time steps. Due to resampling, particles are focused on the region of the highest importance. 
3 Regression neural network trained with the clean sPAF: trained network generates the most likely output state �s(n) , given the observation �o(n) . 
4 Regression neural network trained with the fragmentary sPAF ( 40% removed, 80% removed, and optimally segregated): trained network generates 
the most likely output state �s(n) , given the observation �o(n) . �o(n) is the transformed version of the O(n)
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F0 harmonic confusions typical for pitch tracking. This 
observation is confirmed by harmonic error, which is 
close to the seqMC and is lower than the harmonic error 
for regNN+. This suggests that the errors of the non-seq 
MC are mainly caused by harmonic confusion. Simi-
lar observation can be made for the seqMC method in 
the segregated sPAF condition—the increased RMSE is 
caused mostly due to harmonic confusions, which can be 
seen in the Example in Fig. 7 (2.d).

As seqMC can avoid harmonic confusion, it reaches 
the best performance of all methods, in most conditions 
(see examples in Fig. 7 (2.a and 2.d)). This confirms that 
limiting the possible outcomes by adding the expecta-
tion component in the state estimation is crucial for its 
performance. The only exception is the clean sPAF con-
dition, where the regDNN, trained with the clean data, 
achieves the lowest errors.

A much different relationship between the error val-
ues and feature types can be observed for the regDNN 
method. The lowest errors are observed for the clean 

sPAF, with RMSE of 6.6  Hz. Performance decreases to 
16.1 Hz after removing 40% of sPAF and to 37.6 Hz after 
removing 80% . The difficulty in the feature conditions has 
a significant effect on the regNN performance. Although 
for clean sPAF the model outperforms all other methods, 
the benefit from regNN decreases for all types of sPAF 
features, which were not included in the training. This 
shows that this model is not capable of generalizing well 
for fragmentary information.

The regDNN+ method achieves similar results across 
all feature conditions. Performance decreases slowly 
from 10.7 Hz in the clean sPAF condition to 39.9 Hz in 
the segregated condition. This shows that the network 
trained with various types of fragmentary information 
achieves on average good results for all feature types, at 
the cost of precise results in the clean sPAF.

Figure  9 shows performance measures computed for 
the second dimension of the state space: F1.

The best overall F1 estimation performance is achieved 
by the regNN+ method—a method that leads to only 

Fig. 6  Testing conditions. sPAF are depicted together with the hidden state trajectories. a sPAF extracted from a clean synthetic voiced signal. 
b 40% of non-empty glimpse channels removed from the sPAF extracted from a clean synthetic voiced signal. c 80% of non-empty glimpse 
channels removed from the sPAF extracted from a clean synthetic voiced signal. d 1 voice features segregated from the sPAF extracted 
from a mixture of two synthetic voiced signals
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average performance for the F0 estimation. RegNN+ 
obtains the RMSE of 37.8− 76.7  Hz and outperforms 
seqMC in most conditions. It can approximate the rela-
tionship between sPAF and F1 more precisely than the 
seqMC method. The energy likelihood model used in the 
Monte Carlo methods assumes that the glimpsed energy 
is only the evidence of F1 and F2 and that the period val-
ues are only the evidence of F0. This assumption might 
not be valid, especially in the low frequency channels, 
where most evidence for F1 can be found: on the one 
hand, the energy in those channels is influenced by F0, 

and on the other hand, the observed period harmonics 
depend on the spectral filtering dictated by the formants. 
This simplistic energy likelihood model is most likely 
valid only for the higher frequency channels that provide 
less evidence for F1. This can explain the poor F1 estima-
tion performance of the Monte Carlo methods. regNN+ 
trained with the fragmentary information is not bound 
by such assumptions and can capture a more complex 
relationship between the sPAF patterns and F1.

A similar problem with the energy likelihood model is 
manifested as a large error difference between the 80% 

Fig. 7  Example of a chosen excerpt of ground truth parameter trajectories (red) plotted together with the estimated parameter trajectories (black) 
for all methods and feature conditions
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removed sPAF and the segregated sPAF. In the first con-
dition, the glimpses are removed from clean sPAF with 
equal probability for all channels. In the second condi-
tion, glimpses are removed depending on the second 
voice in the mixture. If the segregation removes the only 
frequency channels that can be interpreted by the energy 
likelihood model, the model will fail to estimate F1.

For the clean sPAF, the best performance is again 
achieved by the regNN, which was trained for the clean 
data. Here again, the performance drops drastically after 
removing some information from the sPAF, indicating 
that the model is overfitted to the clean sPAF.

All methods besides regNN+ for some conditions 
exceed the RMSE level computed for the noise (normally 

Fig. 8  Performance measures for F0 estimation. y-axis: error measure, x-axis: different input features, solid lines: different state estimation methods, 
dashed line: error computed for the artificially generated white noise with mean 250 Hz, and standard deviation 50 Hz

Fig. 9  Performance measures for F1 estimation. y-axis: error measure, x-axis: different input features, solid lines: different state estimation methods, 
dashed line: error computed for the artificially generated white noise with mean 550 Hz, and standard deviation 83 Hz
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distributed with mean 550 Hz, and standard deviation 
83 Hz). Above this level, we can consider the method 
unable to estimate F1. The failure of the Monte Carlo 
methods is most likely caused by the over-simpli-
fied energy model, and the failure of the regDNN is 
caused by the inability to generalize for the unseen 
data.

Figure 10 shows performance measures computed for 
the third dimension of the state space: F2.

As in the previous two dimensions, regNN is overfit-
ted to the clean sPAF. It achieves the best results of all 
for clean sPAF (RMSE of 99.98 Hz), but the worst results 
of all in all other conditions. The best performance is 
achieved by the seqMC method; however, unlike in the 
F0 estimation, the errors increase with the difficulty in 
the feature condition. SeqMC is significantly better than 
the remaining methods (non-seqMC and regDNN+), 
which do not use expectation in the estimation process.

5 � Discussion
In this study, we compared the voice state estimation 
performance of two classes of state estimation methods: 
Bayesian sampling and deep learning. The first class uses 
analytically formulated probability models. They evalu-
ate the data likelihood for a finite hypotheses set, thus 
approximating state posterior distribution, based on 
which the most likely state can be estimated. The sec-
ond class approximates the mapping between the hidden 
state and the data in a supervised learning procedure. A 
trained model allows for predicting the most likely state 
for a given data vector. As presented in this work, both 

approaches can be used for voice parameter estimation. 
However, there are interesting differences in the perfor-
mance of these methods for different types of input sPAF.

To understand these differences, it is useful to quickly 
review the main objectives of the approaches. Probabil-
ity models used in Monte Carlo simulations are designed 
to describe specific properties of the sound. They provide 
a concise explanation of the relationship between the 
observed data and the hidden parameters. They are inter-
pretable but use assumptions that limit their complex-
ity. In contrast to that, the objective of deep learning is 
to precisely approximate this relationship. They provide 
limited interpretability but can model complex non-lin-
ear dependencies. This demonstrates the different nature 
of these approaches. The question we posed in this study 
is how these two (to a certain extend contradictory) pow-
ers can be used to interpret fragmentary data.

F0 estimation performance with Monte Carlo meth-
ods, which used period likelihood formulation from 
[4], is least influenced by the changes in sPAF, which 
proves that the observation model can generalize well 
across several conditions with fragmentary information. 
It suggests that the period likelihood model accurately 
describes the properties of a single voice, and it might be 
better suited to model human performance.

In contrast to F0 estimation, formant estimation 
does not benefit so much from the analytical modeling 
approach. Especially for F1, the simplistic model of the 
energy likelihood does not seem to sufficiently capture 
the relationship between the observed energy glimpses 
and the parameters. F1 and F2 estimation performance 

Fig. 10  Performance measures for F2 estimation. y-axis: error measure, x-axis: different input features, solid lines: different state estimation methods, 
dashed line: error computed for the artificially generated white noise with mean 1600 Hz, and standard deviation 300 Hz
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of Monte Carlo methods is sensitive to the feature types, 
meaning that the model is not capable of inferring the 
formants based on fragmentary information without los-
ing accuracy.

While Monte Carlo methods depend on the quality of 
the probabilistic model, the neural networks are highly 
dependent on the training data. As expected, the network 
trained using clean sPAF alone leads to a model overfit-
ted to this condition, i.e., the best results are observed in 
the clean condition but it is not able to generalize well to 
other conditions. The network trained using fragmen-
tary sPAF is much less sensitive to the changes in sPAF. 
It leads to only average performance in F0 and F2 dimen-
sions but is particularly beneficial for estimating F1: 
the network can learn dependencies between the state 
parameters, which are oversimplified in the probabilistic 
model used in MC methods.

The Sequential Monte Carlo method outperforms 
other methods in the ability to generalize across condi-
tions with fragmentary information. The reason why the 
method is observed particularly capable is that the range 
of possible state outcomes is limited by the finite num-
ber of hypotheses that are updated in every time step. 
This property in combination with a valid observation 
model is what makes the performance independent of the 
degree of sparseness in the data. From the perspective of 
computational auditory scene analysis, this result con-
firms that top-down processing is essential in complex 
auditory scenes. Because of sound superposition, only 
a limited amount of robust information about a specific 
sound object is available in such conditions. Inference 
based on this fragmentary information is ambiguous 
and some form of a top-down expectation is required to 
resolve this ambiguity. Our results show that the benefit 
from the top-down approach grows with the difficulty in 
the input features, which indicates that the top-down-
processing is increasingly important for incomplete input 
features. A similar conclusion was made by [19] in a 
machine learning study that investigated network archi-
tectures with attention mechanisms and showed that the 
more random modifications in the input data, the more 
the model relied on the top-level information.

In [4], we argued that a particle filter with a resampling 
step, which allows for focusing the distribution of the 
top-down expectation on the regions of high importance, 
is a plausible model of attentive tracking of one of two 
competing voices. In this study, we took a closer look at 
the features of a single voice separated from a mixture. 
The results of both studies lead us to the conclusion that 
to effectively model selective attention in the auditory 
system, we need optimal feature segregation followed by 
a model which confronts the incomplete input features 
with the top-down expectation to infer the current state 

of the auditory object. Results presented here indicate 
that simple feed-forward networks are not well suited for 
this task in comparison to Monte Carlo (MC) methods 
coupled with analytical probability models.

Before favoring the MC approach, it should be high-
lighted that the simple non-recursive network architec-
ture, which we chose for our experiments, represents 
only a small fraction of the ways deep networks could be 
used in the context of attention modeling. On the one 
hand, our experiments do not show how deep learning 
could be harnessed to solve even smaller sub-tasks of 
the auditory scene. For example, a neural network could 
replace the likelihood models in the Monte Carlo frame-
work. One could imagine a model that predicts the like-
lihood of cooccurrence for the input pair of state and 
observation [20]. On the other hand, the current work 
did not consider substituting the whole Monte Carlo 
framework with more complex recurrent architectures 
allowing for modeling the sequential dependencies in the 
data [21] and top-down processing [19, 22–24].

Possible future research is likely to profit from com-
bining the positive aspects of deep networks and proba-
bilistic methods. Developments in this direction are the 
integration of deep networks and probabilistic models 
as, e.g., represented by variational autoencoders [25, 26]. 
Standard VAEs are, however, not modeling time depend-
ence which is, of course, crucial for data as considered 
in this study (as here evident, e.g., by the differences 
between sequential and non-sequential Monte Carlo). 
Recent developments have, therefore, extended VAE 
approaches by including, e.g., Gaussian processes as pri-
ors for VAEs [27–30]. The research direction is new, and 
applications to acoustic data including complex acous-
tic scenes still have to be investigated. But the positive 
aspects observed for deep neural networks and proba-
bilistic approaches as studied here could in principle be 
combined based on such novel developments.

For applications, any approach also has to consider effi-
ciency alongside other performance measures, however. 
Monte Carlo approaches such as particle filtering are 
known for their considerable computational costs related 
to testing a large number of hypotheses, and also VAE 
approach rely on sampling which becomes more chal-
lenging if complex priors such as Gaussian processes are 
used. An appropriate balance between performance and 
efficiency is, therefore, likely to determine which setup is 
finally the most appropriate for complex acoustic scenes.

Our work builds upon the previously developed audi-
tory model of attentive tracking. Some of the choices in 
the model’s components were driven by the intention to 
mimic the auditory system, without immediate consid-
eration for applied signal processing. Furthermore, in 
this study, we prioritized assessing the model’s behavior 
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within highly controlled scenarios over evaluating its 
performance in more realistic conditions. As a conse-
quence, from the results presented here, it is difficult to 
conclude how close the proposed model is to tracking 
voices in realistic scenes with more elements of natural 
speech, ambient noise or reverberation. Nevertheless, it 
is important to note that removing information from the 
input features can be just as challenging to the model as 
adding noise. While some audio processing systems have 
already been tested with the fragmentary speech infor-
mation in the past [1, 2, 6, 31], this is, to our knowledge, 
the first attempt to present such data in a recursive voice 
tracking paradigm.

In our study, we have shown that even relatively sim-
ple analytical likelihood models describing sound prop-
erties, when coupled with top-down expectation, can 
deal with fragmentary observation better than standard 
feed-forward neural network. In general, we believe this 
highlights the importance of incorporating top-down 
processing in models of selective listening.

Appendix
Harmonic error
Harmonic error is an auditory-inspired F0 estimation 
performance measure. The task of this measure is to eval-
uate the distance between two compared F0 trajectories 
in a perceptually relevant way.

Various studies demonstrate ambiguity of pitch percep-
tion [32–35]. Any tonal sounds other than a pure tone, 
especially complex tones lacking some harmonics, are 
more or less ambiguous in pitch. Computational models 
of pitch and F0 tracking algorithms also reflect this prop-
erty of sound and suffer from ambiguous F0 estimates 
[33, 36, 37]. Ambiguity does not mean randomness: the 
pitches evoked by a stimulus are in systematic relation-
ships to each other (they lie at the harmonics and their 
submultiples). Based on this, we can conclude that some 
of the F0 estimation errors are caused by the inherent 
nature of sound; hence, the performance measure should 
penalize those types of errors less than errors due to lack 
of precision in the algorithm.

The harmonic error computes the error between the 
ground truth F0GT and estimated F0EST using likelihood 
ratios computed with the F0 observation model from [4]. 
Specifically, the following procedure is used: 

1	 For both compared F0 generate a set Õ of 100 hypo-
thetical period glimpses by sampling from the 
mixture of circular von-Mises distributions (see 
Sec. 2.3.2): 

2	 Compute likelihoods: 

3	 Compute harmonic error as: 

It can be interpreted that the error computes the like-
lihood that the period values generated by the two F0 
values would lead to similar F0 estimation results. Eharm 
is computed for each point on the trajectory and aver-
aged to obtain cumulative measure. Figure  11 demon-
strates the output of the measure for several estimated 
trajectories. For more details about the period likeli-
hood function and motivation behind the circular von-
Mises distribution, the reader is referred to [4].

Optimal feature segregation method
If the acoustic signal contains a mixture of two voices, 
then the observation O(n) can be segregated into fore-
ground observation OF(n) and background observation 
OB(n) . Following the assumption that each channel set 
represents only one voice, each set Gcn is assigned to 
either the foreground or the background. We use the 
approach from [4] which proved to provide segrega-
tion sufficient to simultaneously track the fundamental 
frequency of 2 competing voices. The likelihood that 
sPAF belong to the foreground voice is compared with 
the likelihood that they belong to the background voice. 

F0GT → ÕGT =
[
P
(1)
GT ,P
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(100)
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F0EST → ÕEST =
[
P
(1)
EST ,P

(1)
EST , ...P

(100)
EST

]
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Specifically, the integrated (across elements in the set 
and frequency channels) period likelihood given the 
true F0 of the first voice was compared with the inte-
grated period likelihood given the true F0 of the second 
voice:
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