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Abstract 

This work introduces a large dataset comprising impulse responses of spatially distributed sources within a plane 
parallel to a planar microphone array. The dataset, named MIRACLE, encompasses 856,128 single-channel impulse 
responses and includes four different measurement scenarios. Three measurement scenarios were conducted 
under anechoic conditions. The fourth scenario includes an additional specular reflection from a reflective panel. 
The source positions were obtained by uniformly discretizing a rectangular source plane parallel to the microphone 
for each scenario. The dataset contains three scenarios with a spatial resolution of 23mm at two different source-
plane-to-array distances, as well as a scenario with a resolution of 5mm for the shorter distance. In contrast to exist-
ing room impulse response datasets, the accuracy of the provided source location labels is assessed and additional 
metadata, such as the directivity of the loudspeaker used for excitation, is provided. The MIRACLE dataset can be used 
as a benchmark for data-driven modelling and interpolation methods as well as for various acoustic machine learning 
tasks, such as source separation, localization, and characterization. Two timely applications of the dataset are pre-
sented in this work: the generation of microphone array data for data-driven source localization and characterization 
tasks and data-driven model order reduction.
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1 Introduction
A room impulse response (RIR) characterizes the linear 
time-invariant acoustic propagation between a source 
and a receiver within a specific acoustic environment. 
RIRs are crucial for sound field auralization  [1] as well 
as in the realm of room acoustics, where they are used 
for estimating acoustic properties of a room such as the 
reverberation time [2].

The emergence of data-driven methods in acoustics [3], 
particularly deep learning methods, has sparked increas-
ing interest in the availability of rich, high-quality RIR 
datasets. These datasets play a pivotal role in the training 
of data-driven (interpolatory) sound field reconstruction 
methods  [4–7], deep generative models  [8, 9], and aug-
mentation methods [10]. In addition, RIR datasets can be 
flexibly employed in order to synthesize acoustic train-
ing data for source localization and characterization [11], 
sound event detection, and speech separation tasks by 
convolving arbitrary source signals with RIRs  [12–14]. 
The same synthesis procedure can be employed for 
data-driven acoustic parameter estimation problems, 
such as blind reverberation time estimation [15, 16] and 
others [17].

While data-driven methods often exhibit superior per-
formance compared to conventional model-based meth-
ods, they require large amounts of realistic training data 
and are sensitive to variations of underlying probability 
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distributions describing the data, also known as dataset 
shift  [18]. Experimental data is oftentimes not available 
or too time-consuming to acquire. Many data-driven 
methods across various application areas, such as speech 
enhancement and recognition  [19, 20], localization  [11, 
21], sound field reconstruction  [22], room acoustic 
parameter estimation  [23, 24], and acoustical engineer-
ing  [25–27], are therefore trained with simulated data, 
whereby enhanced realism helps to improve generaliza-
tion performance  [28, 29]. However, without adaptation 
to or training with realistic data, the performance of 
data-driven methods can be significantly impaired  [25, 
30], which indicates the need for experimentally meas-
ured RIR datasets.

1.1  State of the art
In contrast to the diverse analytical and data-driven 
frameworks for the simulation of RIRs proposed in 
the past  [8, 31–34], the availability of openly available 
experimental RIR datasets is limited. Moreover, the land-
scape of RIR datasets is rather heterogeneous because 
the experimental data is usually acquired with a certain 
application in mind. This manifests in application-spe-
cific environments, customized source-receiver arrange-
ments, and non-standardized dataset annotations.

In some datasets, the focus lies on environmental vari-
ability through different room geometries and reverbera-
tion times  [35–40]. The SoundCam dataset  [35] poses 
an extreme example in which the environmental char-
acteristics of four rooms are manipulated by placing 
humans at hundreds of locations in the rooms, leading 
to an enormous amount of environmental representa-
tions. These datasets are of particular interest in speech 
recognition, teleconferencing, and sound event detection 
applications. While in some of these datasets, the sen-
sors are distributed over the room  [35, 36], others rely 
on compact microphone arrangements with only a few 
channels and aperture sizes that are small compared to 
the source distance  [39–41]. The latter is often the case 
in speech and sound event localization applications. Only 
very few datasets provide additional annotations of the 
environmental characteristics, such as echo annotations, 
which enable their use for acoustic parameter estimation 
problems [40].

Conversely, there are application fields where spatial 
diversity and accurate positional annotations are simi-
larly or even more important than environmental varia-
bility. In acoustical engineering applications, microphone 
array measurements for determining source locations 
and individually induced sound pressure at a specific 
receiver position are widely used to implement noise 
reduction measures  [42]. To accurately estimate these 
source characteristics, free-field conditions or laboratory 

environments with a short reverberation time are pre-
ferred. Usually, the utilized microphone arrangements 
are planar and contain many channels spread over a large 
area to ensure accurate spatial filtering capabilities over 
a wide frequency range. Typical examples include the 
measurement of machinery noise and wind turbines. 
Oftentimes, multiple closely neighbouring sound sources 
can be expected. There exist datasets that employed 
mechatronic positioning devices, which offer a higher 
positional accuracy over manual positioning, to achieve 
a dense sampling of the acoustic space under reverber-
ant  [43–45] or anechoic conditions  [46]. For example, 
the Pyramic dataset  [46] was acquired by rotating a tet-
rahedral microphone array with a turntable device using 
fixed loudspeaker positions. However, the accuracy of the 
acquired positional information is rarely assessed in the 
literature [46]. A limitation of these datasets is that either 
the number of sources or receivers can be considered as 
small  [39, 43, 44, 46], which prohibits their use in engi-
neering acoustic applications where a dense spatial sam-
pling of the source and receiver space is required.

Another discipline with similar data require-
ments is the spatial interpolation of room impulse 
responses [5–7, 47]. Due to the large spatial variability 
of RIRs [47], dense sampling grids have to be employed 
in order to adequately capture the entire range of 
dynamics, especially at high frequencies. The absence 
of large and spatially dense RIR datasets entails that 
thorough assessment of interpolation methods has 
only been performed with synthetic data so far [5, 7].

Regardless of the application, only a few large-scale 
datasets encompassing several thousand RIRs, the largest 
of which is presented in this work. These datasets are out-
lined in Table 1. In addition to these larger datasets, there 
are several popular datasets with a smaller number of 
RIRs, for example [38–40, 48–55]. Large and realistic RIR 
datasets are of great interest to many scientific communi-
ties, especially those concerned with the development of 
novel data-driven modelling algorithms. The mathemati-
cal field of model order reduction (MOR) [56], for exam-
ple, is rapidly developing data-driven methods  [57–59]. 
However, in the majority of cases, new methods are vali-
dated only with synthetic data of common benchmark 
problems  [60–62] and the validation of these methods 
in realistic scenarios with high-dimensional data is still 
pending. Providing well-documented high-dimensional 
measurement data is an essential element that can enable 
these communities to increase the applicability of their 
methods to real problems.

In this work, we introduce a large measured room 
impulse response (RIR) dataset, which we call “Micro-
phone Array Impulse Response Dataset for Acousti-
cal Learning” (MIRACLE). The dataset is tailored to the 
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application field of sound source localization and charac-
terization in acoustical engineering applications, and spa-
tial interpolation of RIRs. The focus of the dataset lies on 
spatial rather than on environmental variability and accu-
rate positional annotations.

Its key highlights are: 

1. MIRACLE is the first RIR dataset with a dense sam-
pling of the environment in both source and receiver 
space.

2. Particularly accurate spatial sampling is achieved by 
using a mechatronic positioning device to control the 
loudspeaker position. In contrast to most of the pre-
viously published datasets, the accuracy of the source 
positions (positional labels) is statistically validated. 
The assessment reveals outstandingly accurate and 
precise source locations with positional uncertainties 
in the order of a few millimetres.

3. With a total of 856,128 captured room impulse 
responses and dense spatial sampling of the observa-
tion area, the dataset can be well suited for machine 
learning and deep learning.

4. This paper presents two important applications of 
the dataset. As will be shown in Section 4.1, the data-
set is well suited to construct acoustic source cases 
with possibly closely neighbouring sources by super-
imposing signals that have been convolved with the 
provided RIRs. In Section  4.2, reduced order state-
space models are constructed from the MIRACLE 
dataset, demonstrating that it can serve as an excel-

lent real-world benchmark problem for data-driven 
reduced order modelling methods.

2  Materials and methods
2.1  Experimental setup
The experimental setup is illustrated in Fig. 1. Details on 
the utilized hardware are given in Table 2.

2.1.1  Microphone array
The phased microphone setup features a planar micro-
phone array comprising no = 64 channels mounted in a 
1.5m× 1.5m aluminium plate. The microphone arrange-
ment follows Vogel’s spiral  [63]. The maximum pairwise 
distance between the array microphones is referred to 
as the aperture size da = 1.47m . The microphone array 
data was acquired with a multichannel acquisition system 
(sampling rate = 51.2 kHz).

2.1.2  Sound source and excitation signal
A dynamic 2” cone loudspeaker in a cylindrical 
3D-printed enclosure was employed as the sound source. 
An exponential sine sweep was used as the excitation 
signal because of its favourable properties with regard to 
crest factor and rejection of non-linearities  [64]. It was 
designed according to [65–67] in the frequency range of 
the loudspeaker, namely from 100Hz to 16 kHz . Because 
the anechoic chamber is nearly free of reflections and has 
very low noise levels, it was possible to choose a relatively 
short sweep time of 3 s for the measurement. In order to 
ensure that the entire system response after excitation 

Table 1 Existing large-scale RIR datasets consisting of more than 2000 RIRs (A, anechoic; R, reflective; M, mechatronic positioning)

Sensors Sources Environment

Dataset No. RIRs Geometry No. Area No. Type No. M

MIRACLE 262,144 Vogel’s Spiral 64 2D grid 4096 A 1 ✓
69,696 1089 A

262,144 4096 A

262,144 4096 R

SoundCam [35] 18,000 Room enclosing 10 n/a 1 R 1800 ✗
10,000 1000

11,000 1100

11,000 1100

ARNI [36] 132,037 n/a 5 n/a 1 R 5342 ✗
MeshRIR [43] 3969 3D grid 3969 n/a 1 R 1 ✓

14,112 2D grid 441 2D grid 32

Motus [37] 106,240 Eigenmike 32 n/a 4 R 830 ✗
MIRaGe [44] 371,610 1D grid 6×5 3D grid 4104+25 R 3 ✓
Pyramic [46] 25,920 Tetrahedron 48 Circular grid 3×180 A 1 ✓
TUT Tietotalo Ambi-
sonic IR [41]

10,368 Eigenmike 32 3D Grid 324 R 1 ✗
5760 180
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is captured, a safety window of 250ms was added to the 
recording duration, resulting in ns = 166,400 samples per 
measurement. The loudspeaker excitation signal was also 
fed back directly to the AD-converter and was synchro-
nously recorded with the microphone signals as a refer-
ence signal for post-processing. It is referred to as the 
loopback excitation signal in the following.

2.1.3  Positioning
A high-precision motor-driven 2D positioning system 
was employed for loudspeaker positioning. The posi-
tioning system and the microphone array were manually 
aligned by using a laser distance meter and a cross-line 
laser, achieving only minor alignment errors of a few 
millimetres at worst. The loudspeaker dust cap at the 
membrane centre was used as reference in the manual 
alignment. During data post-processing, a spatial offset 

Fig. 1 Experimental setup for the main experiment (R2) with reflective ground plate

Table 2 Utilized hardware devices

a Calibration was performed after the measurement campaign using a reference sensor with a temperature accuracy of ±0.1
◦
C

Device Manufacturer Type Usage

Microphones GRAS 40PL-1 Short CCP Sound pressure acquisition

Temperature  Sensora OMNI SENSORS OT60-B ( ±0.8
◦
C) Temperature acquisition

Acquisition System SINUS Typhoon Data acquisition

Stepper Motor Stepperonline NEMA23 Axes positioning

Motor Control Unit OpenBuilds Blackbox X32 Control loudspeaker position

Amplifier Klein & Hummel Monoblock MB 80 Loudspeaker amplification

Turntable Outline ET2 Directivity measurement

Laser distance meter PeakTech 2800A Positional alignment

Cross line laser Bosch PCL20 Positional alignment
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correction was applied based on a statistical evaluation 
given in Section 3.3. The corrected positions apply to the 
acoustical centre of the loudspeaker rather than the cen-
tre of the membrane.

2.1.4  Environment
All measurements were performed in the anechoic cham-
ber of TU Berlin (room volume V = 830m3 , lower cut-off 
frequency fc = 63Hz ). Neither heating nor air condi-
tioning was active, and the temperature was monitored at 
the microphone array centre throughout the experiment. 
A ground plate was placed between the loudspeaker and 
the microphone array in one of the experimental sce-
narios to enable a reflective environment. The supporting 
grid platform and the positioning system were clad with 
absorptive foam to minimize reflections.

2.2  Experimental procedure
A customized and fully automated data acquisition pro-
cedure was implemented. Before each experiment, the 
loudspeaker was repeatedly excited with the excitation 
signal for a duration of 20 min (the duration was deter-
mined in a dedicated experiment). This warm-up phase 
accounts for the weakly non-stationary dynamics of the 
loudspeaker’s transfer function, e.g., changes of the prop-
erties of the loudspeaker magnet related to internal tem-
perature fluctuations; see  [68]. Subsequently, the actual 
measurement routine was started by positioning the 
loudspeaker at the desired source location and measur-
ing the room temperature simultaneously. After position-
ing, two repetitions of background noise measurement 

( 1 s each) and loudspeaker excitation measurements 
( 3 s each) were performed using all no microphones at 
once. Subsequently, the cross-correlation between all ni 
recorded channels was evaluated according to the rule of 
two [69]. Based on the measured sweep signals and the 
noise signal, the rule of two defines a cross-correlation 
threshold at which a pair of measured sweeps can be 
regarded free of corruption. In case of any violations, the 
measurement was repeated automatically.

Following the main measurement campaign, an addi-
tional measurement was conducted in the anechoic 
chamber to obtain the angle-dependent frequency 
response of the loudspeaker at discrete azimuth angles at 
a resolution of �θ = 2.5◦ . A microphone was placed at a 
distance of 0.5m from the loudspeaker centre. The latter 
was mounted on a motor-driven dispersion measurement 
turntable. A photograph of the measurement setup can 
be found in Fig.  2. The same excitation signal and pro-
cessing parameters as in the previous measurement cam-
paign were used to determine the loudspeaker impulse 
response. Due to the cylindrical enclosure enclosing the 
loudspeaker, rotational symmetry around the z-axis can 
be assumed.

2.3  Post‑processing
Several post-processing steps were performed to obtain 
a good estimate of the system impulse response from 
the measurements. Firstly, the loopback excitation and 
microphone signals were averaged across the two meas-
urement repetitions to obtain a single averaged excita-
tion signal ũi,j ∈ R

ns and averaged microphone signal 

Fig. 2 Experimental setup for the directivity measurement
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ỹi,j ∈ R
ns at the i-th source to the j-th receiver location, 

respectively. According to that, all signals were resam-
pled to a sampling rate of fd = 32 kHz since the loud-
speaker transmission capability and excitation sweep 
have an upper frequency limit of 16 kHz . We applied the 
polyphase method for resampling (see [70] for details).

2.3.1  Deconvolution
In the following, let nd = 104,000 denote the number of 
samples after resampling. An estimate of the frequency 
response was obtained by dividing the Discrete Fourier 
Transform (DFT) of the averaged and downsampled meas-
urement signals Yi,j = DFT(ỹi,j) ∈ C

nd by the correspond-
ing DFT of the averaged and resampled loopback excitation 
signals Ui,j = DFT(ũi,j) ∈ C

nd , i.e.

for the angular frequency ωk = 2πk/nd with 
k ∈ [−nd/2, nd/2] ⊂ Z . The inverse spectra U−1

i,j ∈ C
nd 

were obtained by regularized inversion [67, 71–75]

where M = maxk∈{1, ..., nd}{|Ui,j(e
ıωk )|2} = 1 . Regulariza-

tion is necessary to avoid instabilities in the deconvolved 
frequency response that arise from persistently exciting 
only over a limited frequency range. Practical consid-
erations for choosing the regularization term in acous-
tic applications can be found in  [67]. The regularization 
term � ∈ R

nd was chosen as

such that the regularization term �(eıωk ) is equal to 0 
above the cutoff frequency

which is chosen according to the lower limit of the loud-
speaker’s frequency range of 100Hz and equal to 1 below 

(1)Hi,j

(
eıωk

)
= Yi,j

(
eıωk

)
U−1
i,j

(
eıωk

)
∈ C,

(2)U−1
i,j

(
eıωk

)
=

U∗
i,j(e

ıωk )

U∗
i,j(e

ıωk )Ui,j(eıωk )+M�(eıωk )
,

(3)

�
�
eıωk

�
=







1 for |ωk| ∈ [ 0, ωfade]
1+cos

�
ωfade−|ωk |
ωfade−ωcut

�

2 for |ωk| ∈ [ωfade, ωcut]
0 for |ωk| ∈ [ωcut, π ]

(4)ωcut = 2π
100Hz

fd

ωfade = ωcut√
2

 . A cross-fade based on a Hann window 
(raised-cosine) is used to smoothly transition in between. 
The estimate of the frequency response Hi,j was then 
transformed back to the time domain to finally obtain the 
impulse response

2.3.2  Truncation
The calculated impulse responses were subsequently 
truncated in order to contain the size of the final dataset. 
For user convenience, the impulse responses of all meas-
urement scenarios were truncated identically. For this, 
the minimum cumulative energy e ∈ R

nd given by

was calculated for each scenario. The truncation index nt 
was chosen to be the smallest power of two that is larger 
than the time index for which 0.1% of the energy is trun-
cated at worst, namely

3  Results and discussion
3.1  Impulse responses
A total of four different experimental scenarios were real-
ized, which are summarized in Table  3. The acquisition 
time for each of the large-scale scenarios A1, A2, and R2 
was about 20 h. The total number of single-channel impulse 
responses across all scenarios is 856,128. The scenarios dif-
fer regarding the environment as well as the spatial dimen-
sion ( dy = dx ), sampling resolution ( �dy = �dx ), and 
distance dz of the source plane. The two large anechoic sce-
narios A1 and A2 each include 4096 measured source posi-
tions on an equidistantly spaced 64 × 64 grid at different 
source-plane distances dz . In addition, a densely sampled 
scenario D1 was acquired on a smaller 33× 33 grid with 
a spacing of only 5mm . Scenario R2 is based on the same 
geometric setup as scenario A2, but an aluminium plate on 
the floor introduces a specular reflection.

(5)hi,j = DFT−1 (Hi,j).

(6)e(t) = min
i∈ni ,j∈no

t

τ=1

|hi,j(τ )|2, t ∈ {1, . . . , nd},

(7)nt = 1,024 ≥ t̃ = arg max
t∈{1, ..., nd}

{e(t) ≤ 0.999�e�∞}.

Table 3 MIRACLE experimental scenarios

Scenario Anechoic ni no dx = dy �dx = �dy dz

A1 ✓ 64
2 = 4096 64 146.7 cm 23.3mm 73.4 cm

D1 ✓ 33
2 = 1089 64 16.0 cm 5.0mm 73.4 cm

A2 ✓ 64
2 = 4096 64 146.7 cm 23.3mm 146.7 cm

R2 ✗ 64
2 = 4096 64 146.7 cm 23.3mm 146.7 cm
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Figures 3 and 4 exemplarily show the measured impulse 
response and its magnitude spectrum for a single source-
receiver combination for scenarios A1, A2, and R2, respec-
tively. It can be readily verified that the doubling of the 
distance to the source is also reflected in a doubling of the 
delay shift and an attenuation of the magnitude spectrum 
by approximately −6dB . Furthermore, the specular reflec-
tion for scenario R2 manifests in a prominent second peak 
in the impulse response and comb filtering in its magnitude 
spectrum. Additional reflections manifesting as spurious 
peaks in the impulse response are due to the structure of 
the positioning system and the supporting grid platform.

The mean and standard deviation of temperature and 
the speed of sound for each of the scenarios are given 
in Table  4. The speed of sound has been calculated 

according to  [76, 77]1. It reveals that the temperature 
and the speed of sound are almost identical across all 
scenarios with an absolute difference of �µ < 1 ◦C and 
�µ ≤ 0.6 m

s  , respectively, which is expected due to the  
fairly constant environmental conditions inside the 
anechoic chamber.

3.2  Loudspeaker directivity
Figure 5 shows the directivity D and the directivity index 
DI of the loudspeaker measured with a dispersion meas-
urement turntable in the azimuthal plane. In this work, 
the directivity is defined as the ratio between the meas-
ured squared sound pressure pRMS(θ , f ) at an angle θ and 
the maximum among all angles, i.e.

The directivity index under the assumption of rota-
tional symmetry is expressed as

where p2RMS(0, f ) represents the squared sound pressure 
in front of the speaker.

(8)D(θ , f) = 10 log10

(
pRMS(θ , f)

maxφ∈[0,2π ] pRMS(φ, f)

)

,

(9)DI(f) = 10 log10

(

4πp2RMS(0, f)

2π
∫ π

0 p2RMS(φ, f) sin(φ)dφ

)

,

Fig. 3 Measured impulse responses for the scenarios A1, A2, and R2 
and the centremost locations in the source and receiver plane. The 
dash-dotted vertical lines indicate the scenarios’ index t̃

Fig. 4 Magnitude of the frequency response of the measured 
transfer functions for the scenarios A1, A2, and R2 at the centremost 
locations in the source and receiver plane

Table 4 Mean µ and standard deviation σ of the temperature 
and speed of sound for each experiment

Scenario Temperature [ ◦C] Speed of sound  [ms−1]

A1 µ = 21.6 σ = 0.12 µ = 344.8 σ = 0.07

D1 µ = 21.8 σ = 0.01 µ = 345.0 σ = 0.01

A2 µ = 22.3 σ = 0.05 µ = 345.3 σ = 0.03

R2 µ = 22.5 σ = 0.02 µ = 345.4 σ = 0.01

Fig. 5 Directivity D and directivity index DI of the loudspeaker. The 
maximum opening angle across all experiments is denoted by θmax

1 An atmospheric pressure of 101.325 kPa and a carbon dioxide mole frac-
tion of 0.0004 was used. A generic value of 38% was used for the relative 
humidity approximating the humidity conditions throughout the experi-
ments
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It is seen that the loudspeaker exhibits a radiation pattern 
similar to a monopole until an upper frequency of 2 kHz . 
Above this frequency, the directivity index increases. 
Still, the directivity observed by the microphone array 
is close to a monopole at relevant radiation angles, i.e. 
θ ≤ θmax = 67.3◦ , as indicated by the dashed line in Fig. 5.

3.3  Positional validation
Several uncertainty factors affected the spatial alignment 
precision regarding the microphone array centre and the 
centre of the observation area. These factors include meas-
urement uncertainties with regard to the utilized cross-line 
laser and distance meter as well as mechanical backlash, 
which occurred primarily with horizontal changes of direc-
tion. Therefore, a systematic spatial offset within the range 
of a few millimetres can be assumed.

Due to the anechoic environment and the use of a large-
scale microphone array enabling an excellent spatial resolu-
tion, Conventional Frequency Domain Beamforming  [42] 
serves as an appropriate method to obtain an estimate of 
the actual source location. The large number of acoustic 
cases also permits a statistical approach to determine the 
spatial offset for a measurement scenario and to quantify 
the uncertainty regarding the source position information.

3.3.1  Beamforming
Let ωk = 2πk/nd with k ∈ [−nd/2, nd/2] ⊂ Z and let

denote the transfer function measurements from the i-
th source at location xs for i ∈ {1, . . . , ni} to each of the 
no microphones. The cross-spectral matrix induced by a 
sound source with unit strength is then given by

The beamforming result for an assumed source location 
xs ∈ R

3 is then given by the square of the C-weighted norm 
of the steering vector a(xs,ωk) ∈ C

no , i.e.

Many formulations of the steering vector can be found 
in the literature. The formulations I and IV in [78] result in 
a coincidence of the beamformer’s steered response power 
maximum and the actual source location for a single mono-
pole source radiating under free-field conditions. In this work, 
formulation IV was used, which defines the entries of a via

(10)
H(eıωk ) =

[
Hi,1(e

ıωk ) . . . Hi,no(e
ıωk )

]
∈ C

no

(11)C(ωk) = H(eıωk )H(eıωk )∗ ∈ C
no×no .

(12)b(xs,ωk ) = �a(xs,ωk )�2C(ωk )
= a(xs,ωk )

∗C(ωk )a(xs,ωk ).

(13){a(xs,ω)}j =
eıω(rj−r0)/c

rj

√

no
∑no

k=1 r
−2
k

,

where rj =
∥
∥xs − xj

∥
∥
2
 is the distance between the 

assumed source location xs and the j-th microphone 
location xj , and r0 = �xs − x0�2 is the distance between 
xs and the reference position, in this case the origin of the 
coordinate system.

Validation of each measured source position commenced 
with the spatial discretization of a neighbourhood around 
the assumed source position. A 201× 201 equidistantly 
spaced focus-grid with a resolution of �x = 0.5mm was 
employed. The beamforming map was computed on the 
discretized region for every frequency in the range

which was chosen such that the lower frequency limit 
fl = 2 kHz enabled a sufficiently large spatial resolution 
in the resulting beamforming map, and the upper fre-
quency limit fu = 4 kHz ensures that the wavelength is 
larger than the loudspeaker diameter. The latter is impor-
tant to ensure that the loudspeaker has a radiation pat-
tern close to a monopole at relevant radiation angles in 
order to meet the monopole assumption needed for the 
steering vector formulation. As indicated by the dashed 
line in Fig. 5, the radiation angle from the loudspeaker to 
any microphone in the array is bounded by θmax = 67.3◦ . 
The global spatial maximum is then determined by

where b̂(xs,ω) denotes the amplitude normalized beam-
forming result

with b(x̂s,ω) being the beamformer’s maximum output 
among all source locations xs at a given frequency ω . The 
evaluation was conducted for different distances within a 
range of up to ±12mm around the assumed source dis-
tance with a sampling interval of �z = 1mm to account 
for a potential mismatch of the source plane distance. 
Finally, the positional offset between the beamformer’s 
prediction and the assumed source position is deter-
mined by �xi = x̂i − xi.

3.3.2  Statistical evaluation
The systematic positional offset between the centre of the 
observation area and the microphone array in the hori-
zontal and vertical direction can be statistically deter-
mined by using the estimates �xi ∈ R

2 for each individual 
measured source position. Thereby, each estimated posi-
tional deviation �xi can be seen as a realization of the 

(14)� =
[

2π
fl

fd
, 2π

fu

fd

]

(15)x̂i = arg max
xs

∑

ω∈�
b̂(xs,ω),

(16)b̂(xs,ω) =
b(xs,ω)

b(x̂s,ω)
,
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jointly distributed random variables Rx,Ry with the 
joint Probability Density Function (PDF) fRx ,Ry(�xi) . It 
is assumed that the individual positional offset estima-
tions �xi are symmetrically distributed around the true 
positional offset due to the approximate symmetry of the 
microphone array and observation plane around the ori-
gin. Then, the true positional offset corresponds to the 
deviation associated with the greatest probability. A sim-
ple method to determine the joint PDF of jointly distrib-
uted random variables based on a finite set of samples is 
the kernel density estimation [79], denoted by

where N refers to the sample size and Kh is the so-called 
kernel. A bivariate Gaussian kernel with bandwidth h was 
used, where h was chosen according to the Silverman’s 
rule of thumb [80].

3.3.3  Offset correction
The correction procedure’s first step was determining 
the distance �z between the loudspeaker and the micro-
phone array plane for the experiments {A1,D1} and {A2} . 
The joint PDF was estimated individually for each evalu-
ated distance �z . Note that source cases from experi-
ment R2 were excluded from the statistical evaluation 
since the ground plate reflections would introduce an 
additional disruptive factor in the positional estimation. 
It is assumed that the true distance minimizes the vari-
ance among any direction associated with f̂Rx ,Ry(�xi) , i.e. 
the spectral norm of the covariance matrix ��xi(�z) is 
minimized, such that

Figure  6 shows the joint PDF with the smallest spec-
tral norm for the experiments {A1,D1} and {A2} . Based 
on the joint PDF corresponding to the optimal distance 

(17)f̂Rx ,Ry(�xi) =
1

N

N∑

n=1

Kh(�xi −�x
(n)
i ),

(18)arg min
�z

‖��xi(�z)‖2.

correction �z , the true positional offset in vertical and 
horizontal direction is determined from the maximum 
of the corresponding marginal distributions depicted in 
Fig. 7. Table 5 shows the positional offset correction val-
ues for each of the experiments.

With the correction offset applied, one can conclude 
that the positional uncertainties regarding the true 
source positions are in the order of a few millimetres. 
Given the 2.5 and 97.5 percentiles of the marginal dis-
tributions, the positional uncertainty is in the range of 
[−3.6mm, 3.4mm] in x-direction and [−2.1mm, 3.5mm] 
in y-direction for the experiments {A1,D1} . Regard-
ing the experiments {A2,R2} , the positional uncertainty 
is in the range of [−4.9mm, 1.4mm] in x-direction and 
[−2.6mm, 3.7mm] in y-direction.

4  Applications
Experimental measurement of acoustical systems is 
rarely an end in itself. Usually, one utilizes the measure-
ments to infer system properties or data-driven models 
of the system at hand. Given its substantial size and pre-
cision, the MIRACLE dataset can be applied to a variety 
of research applications. In the following, two timely 
and crucial acoustic research areas are addressed: firstly, 
source localization and characterization, and secondly, 
data-driven reduced order modelling.

Fig. 6 Estimated joint PDF of the positional deviations 
between the beamforming results and the assumed source positions. 
The inner black circle corresponds to the outer rim of the loudspeaker 
and the outer black circle indicates the outer rim of the enclosure box 
(left: Experiments {A1, D1}, right: Experiment A2)

Fig. 7 Marginal distribution functions characterizing the positional 
offset between the microphone array and the observation plane 
(left: Experiments {A1, D1}, right: Experiment A2). The dashed line 
indicates the positional offset corresponding to the maximum 
of the corresponding PDF. The dotted lines indicate the 2.5% 
and 97.5% percentiles

Table 5 Positional correction values for each experiment

Scenarios �x[mm] �y[mm] �z[mm]

A1, D1 −4.6mm 1.4mm 4.0mm

A2, R2 −5.2mm −0.4mm 6.0mm
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4.1  Acoustic source localization and characterization
In recent years, there has been extensive investigation 
into data-driven methods, particularly deep learning 
models, to solve source localization and characteriza-
tion problems [11]. Localization focuses on determining 
the positions of one or multiple sound sources, whereas 
source characterization entails quantifying additional 
characteristics, such as their individual strength at a 
specific spatial reference position. Due to the scarcity 
of suitable experimental data, it is common to lever-
age synthetically generated microphone array data, with 
only few studies considering real-world data already dur-
ing training  [25]. It remains an open research question 
how strongly the performance of data-driven methods is 
affected by this oversimplification and how this perfor-
mance degradation could be mitigated.

4.1.1  Microphone array data generation
One way to overcome the lack of experimental data is 
to generate microphone array data via a convolution 
of experimental RIRs with arbitrary source signals in 
a Monte Carlo simulation. In order to facilitate repro-
ducibility in machine learning, the training data has to 
be published alongside the source code. Providing the 
immutable raw microphone array data of the Monte 
Carlo simulation would lead to infeasibly large storage 
requirements. As a lightweight alternative, a code envi-
ronment of the data simulation process can be published. 
This enables the generation of microphone array data on 
demand, which not only alleviates the problem of storage 
but can also greatly accelerate the training process. This 
approach is taken by the AcouPipe framework [81], a pre-
vious work of the authors.

AcouPipe is an open-source project written in Python 
programming language that incorporates a default data-
set generation method that constructs source cases with 
an arbitrary number of sound sources. As of AcouPipe 
v24.04  [82], the AcouPipe framework includes an addi-
tional experimental dataset generation method that 
utilizes the MIRACLE dataset per default. Both the syn-
thetic and the experimental data generation method rely 
on similar measurement setups. A Monte Carlo simula-
tion is used to randomly generate multi-source scenarios 
by superposition. By default, the number of sources and 
their respective positions are drawn from a Poisson distri-
bution I ∼ P(� = 3) and a bivariate normal distribution 
(xi, yi) ∼ N (µ = 0, σ = 0.1688 da) for each individual 
source case. Artificial white noise is used as the source 
signal with a signal length of five s. The signal amplitudes 
are chosen according to the desired squared RMS sound 
pressure at the reference position. The latter is drawn from 
a Rayleigh distribution, such that p2RMS,i ∼ R(σR = 5) . 
Finally, the sound pressure signals at the microphones are 

obtained by superposition and convolution of the respec-
tive RIRs with the source signals

Uncorrelated white noise nj(t) is added to each micro-
phone channel. A more detailed description of the underly-
ing dataset generation procedure can be found in [81].

Listing 1 Python source code snippet demonstrating 
multi-source scenario generation based on  the  MIRA-
CLE datasetTo demonstrate the ease of use, Listing  1 
exhibits a Python source code example that generates 
multi-source scenarios based on the MIRACLE dataset. 
Here, a Dataset instance is constructed, utilizing the 
RIRs from scenario A1 for the generation of 1000 vali-
dation samples. With AcouPipe, it is not only possible 
to obtain the raw time data but also to extract several 
features. The features include a source mapping of the 
sources and their locations. By default, conventional 
beamforming is used to calculate the source mapping. 
Figure  8 shows the beamforming map related to the 
seventh sample of the validation dataset.

Theoretically, very large numbers of experimental scenar-
ios can be created by superimposing the individual meas-
urements of the MIRACLE dataset. For example, when 
considering unordered sampling without replacement

more than eight million different source cases can be 
constructed when considering scenario A1 and two 
sources. The number of possible combinations increases 
significantly when sources of different strengths or even 
more than two sources are combined.

We believe that both the synthetic and the experimen-
tal data provide an excellent basis to address and answer 

(19)pj(t) =
I∑

i=1

hi,j(t) ∗ qi(t)+ nj(t).

(20)
(
ni
I

)

= ni!
I !(ni − I)! ,
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up-to-date research questions related to data-driven 
source localization and characterization tasks, such as: 
How strong are synthetically trained source characteriza-
tion models influenced by the domain shift when evaluated 
with data acquired in a real environment? Which domain 
generalization and adaptation methods are suitable to 
overcome the performance degradation due to the domain 
shift? How do existing source localization and characteri-
zation methods generalize to real-world scenarios?

4.2  Reduced order modelling
System measurements are usually performed with a cer-
tain goal in mind, e.g. inferring system properties from 
the data, such as the reverberation time. In many cases, 
one would like to obtain a model for the dynamical sys-
tem transmission, i.e. the mapping from an input signal 
to an output signal. A common and apparent approach 
to obtaining a model for the system dynamics from RIR 
measurements is to employ them as a convolution kernel 
h ∈ ℓ

no×ni
2  via the convolution sum

where u ∈ ℓ
ni
2  and y ∈ ℓ

no
2  are the input and output signal, 

respectively, and ℓ2 denotes the Hilbert space of square-
summable sequences. This approach was also pursued 
in the previous section. However, it can be unfavourable 
with regard to computational effort and storage require-
ments, especially for larger systems with many inputs 
and/or outputs, such as densely sampled RIRs, because 
the computational effort scales with the product of the 

(21)y(t) =
∑

k∈N
h(k − t)u(t),

number of inputs and outputs [83]. Furthermore, systems 
whose dynamics are governed by a low number of weakly 
damped modes, e.g. small room acoustics, possess long 
impulse responses but are otherwise described by a sim-
ple model. In a convolution-based approach, there are no 
effective means to eliminate redundancies in the data, 
making the dynamical transmission of aforementioned 
systems unnecessarily expensive to compute.

As argued in [83, 84], state-space models can be compu-
tationally advantageous, especially in real-time scenarios, 
and provide access to powerful system-theoretic MOR 
methods [56]. MOR is a very active research field that aims 
to find small models that approximate the dynamics of a 
large and potentially infeasible so-called full order model as 
closely as possible. Instead of firstly identifying a large full 
order model from data and then applying MOR methods, a 
reduced order model can also be inferred directly from the 
data. This is oftentimes referred to as data-driven model 
order reduction or reduced order modelling.

In the following, discrete-time state-space models are 
briefly introduced, and the applicability of the Eigensys-
tem Realization Algorithm  (ERA) [85–87] to the MIRA-
CLE dataset is demonstrated.

4.2.1  State‑space models
A discrete-time linear time-invariant dynamical sys-
tem with m ∈ N inputs, p ∈ N outputs can be described 
by the matrix quadruple (A,  B,  C,  D) with A ∈ R

n×n , 
B ∈ R

n×m , C ∈ R
p×m , and D ∈ R

p×m , where n ∈ N is the 
order of the system. Its dynamics are governed by the dis-
crete-time state equations

for input u ∈ ℓm2  , output y ∈ ℓ
p
2 , and state x ∈ ℓn2 . In our 

concrete case, u denotes the ni-dimensional input signal 
at the source locations, and y denotes the no-dimensional 
output signal at the array microphones. Being an LTI sys-
tem, the input-output behaviour of the state-space sys-
tem is fully described by the convolution sum (21), where 
the impulse response h ∈ ℓ

p×m
2  is given by h(t) = CAt−1B 

in discrete-time. This can be easily verified from (22) by 
applying an impulse input u(t) = δt0 with zero initial 
condition x(0) = 0 . A frequency domain description 
can be obtained by applying the z-transform to (22). The 
z-transform of output Y (z) ∈ C

p is given by a multiplica-
tion of the z-transform of the input U(z) ∈ C

m with the 
transfer function

(22)
x(t + 1) = Ax(t)+ Bu(t)

y(t) = Cx(t)+ Du(t),

(23)H(z) = C(zI − A)−1B ∈ C
p×m.

Fig. 8 Source mapping at f = 2.5 kHz for the seventh sample 
of the experimental validation dataset. Grey circles indicate 
the microphone position and black crosses indicate the source 
positions
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4.2.2  Eigensystem Realization Algorithm
The transfer function in  (23) is a matrix-valued rational 
function that can be approximated by a Padé approxima-
tion [88]. The moments of the transfer function for expan-
sion at infinity, i.e. hi = di

dzi
H(z)

∣
∣
z=∞ , are referred to as the 

Markov parameters of the system. Intriguingly, the impulse 
response is equivalent to the sequence of Markov parame-
ters in discrete time, i.e. h(t) = ht = CAt−1B . This connec-
tion is leveraged by ERA in the following way: Given a finite 
sequence h ∈ ℓ

p×m
2  of 2s − 1 , s ∈ N Markov parameters, a 

matching state-space model can be identified via the Han-
kel matrix of Markov parameters

For discrete-time systems, the Markov parameters can 
be conveniently obtained by measurements of the sys-
tem impulse response. The Hankel matrix can be fac-
tored into the observability and controllability matrix 
O ∈ R

ps×n and C ∈ R
n×ms:

From this factorization, a realization can be con-
structed via

where Of  and Ol denote the first and last p(s − 1) rows 
of the observability matrix O ∈ R

ps×n , respectively  [86, 
87]. Classically, the factorization is computed from a 
(truncated) singular value decomposition (SVD), i.e. for a 
truncation order r ≤ min{ms, ps}

where Ur ∈ R
ps×r comprises the first r left singular vec-

tors as columns, �r = diag(σ1, . . . , σr) the first r sin-
gular values with σ1 ≤ · · · ≤ σr and Vr ∈ R

ms×r the 
first r right singular vectors as columns. By choosing 
O = Ur�

1/2
r and C = �

1/2
r V T

r  , a reduced order reali-
zation (Ar ,Br ,Cr) can be constructed via (26). For a basic 
stability and error analysis, the reader is referred to the 
classical sources  [85–87]. A recent and thorough error 
analysis can be found in [89].

(24)

(25)
H =






C
...

CAs−1






� �� �

=:O

�

B · · · As−1B
�

� �� �

=:C

.

(26)A = O
†

f Ol , B = C

[

Im

0

]

, C = [Ip 0]O,

(27)H = [Ur ∗]
[
�r 0
0 ∗

][

VT
r
∗

]

,

Using above theory, ERA is applied to scenario D1 of 
the MIRACLE dataset with m = 1089 inputs, p = 64 
outputs. In order to improve the model quality, as 
argued in [83], the common dead time in the measure-
ments is removed conservatively by truncating the first 
68 samples. Additionally, to avoid unnecessary com-
putations, only the first 20ms of the impulse response 
are considered. Thus, after truncation, a total of 
2s − 2 = 572 samples are taken as input data for ERA. 
It is immediately obvious from  (24) that the resulting 
Hankel matrix of dimension 18,240× 310,365 can lead 
to computational problems with the outlined algo-
rithm. One would already need 45.3 GB to construct 
this matrix explicitly, and computing the SVD of such 
a large matrix is infeasible. There are several strate-
gies  [90–92] that can alleviate this computational bur-
den in classical ERA by exploiting low-rank structures 
in the data and/or the Hankel matrix. A randomized 
SVD algorithm [93] was employed here as an approxi-
mate orthogonal decomposition instead of (27) by sam-
pling the range of H with 5000 normally distributed 
random vectors and a single subspace iteration. For 
details of this randomized ERA variant, see [83, 92].

It is important to emphasize that multiple-input-mul-
tiple-output reduced order models are identified for all 
input-output transmissions simultaneously. In order 
to facilitate a qualitative analysis of the model quality, 
Fig.  9 depicts the magnitude responses of the measure-
ment data alongside the identified reduced order models 
for the single-channel transmission from the centremost 
source to the centremost microphone. It can be seen that 
the accuracy increases with increasing model order and 
decreases with frequency. Furthermore, we have noticed 
that the single-channel approximation accuracy tends to 
deteriorate for source or receiver locations with greater 
distances to the source and receiver planes, respectively. 

Fig. 9 Frequency response of the measured and modelled transfer 
functions (solid lines) and the error εr (dash-dotted lines) of different 
model orders for scenario D1 at the centremost location in the source 
and receiver plane
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Therefore, an appropriate quantitative error criterion 
must encompass all transmission channels simultane-
ously. To this end, denote

and

as the RMS-averaged system and error impulse response, 
respectively, where h(t) ∈ ℓ

64×1,089
2  denotes the meas-

ured multichannel impulse response of the D1 scenario 
and Ar ,Br ,Cr are the reduced order system matrices 
obtained by ERA for model orders r = 1000, 2000, 3000 . 
The averaged responses are shown in Fig. 10 and it can 
be observed that the averaged error εr is still substantial 
around 3ms for r = 1000 , which is due to the aforemen-
tioned deterioration of approximation quality towards 
the edges of the source and receiver planes. For the 
higher orders r = 2000, 3000 , this deviation is much less 
pronounced.

The potential benefit for model compression and real-
time application is showcased in Table  6 in which the 
required memory and computational cost in Mega Float-
ing Point Operations (MFLOPs) is listed alongside the 
relative approximation error

In order to compare the cost of solving (22) with the 
state-space approach over the convolution sum in (21), 
the memory demand and computational cost of the Uni-
formly Partitioned Overlap-save (UPOLS) method [94] 
are also listed2. The UPOLS method and the variants 
described in [94] are well-established and solve (21) via 
spectral multiplication of overlapping blocks of signals. 
It can be seen that the reduced order models are more 
memory efficient than the UPOLS method by factors 
between 5− 30 . A computational speedup for real-time 
simulation over the UPOLS method by factors between 
roughly 1.3− 3.9 can be achieved for all models if the 
models are transformed into so-called modal or (quasi-)
diagonal form which can be achieved via an eigenvalue 
decomposition of Ar . Details on the transformation can 
be found in [83].

(28)

havg(t) =




1

nino

ni�

i=1

no�

j=1

|hi,j(t)|2




1/2

=
�
�h(t)

�
�
F√

nino

(29)εr(t) =
∥
∥h(t)− CrA

t−1
r Br

∥
∥
F√

nino
,

(30)ε̂r = 10 log10

(∑nd
t=1

∥
∥h(t)− CrA

t−1
r Br

∥
∥2

F
∑nd

t=1

∥
∥h(t)

∥
∥2

F

)

.
5  Conclusion
A publicly available large-scale RIR dataset of 856,128 sin-
gle-channel impulse responses has been presented, which 
is particularly suited for applications in the field of micro-
phone array signal processing and sound field reconstruc-
tion because of the dense spatial sampling of the receiver 
and source spaces. To the authors’ knowledge, the MIRA-
CLE dataset is the largest openly available RIR dataset yet.

The measured data have been shown to be spatially 
accurate and therefore provide an excellent basis for the 
development and statistical evaluation of data-driven 
modelling methods in acoustical engineering. The rele-
vance, versatility, and applicability of the MIRACLE data-
set have been demonstrated by means of two timely and 
diverging application examples.

In contrast to existing datasets, the MIRACLE dataset 
exhibits a notable limitation in environmental diversity, 
primarily constrained to free-field sound propagation 
scenarios with and without specular reflection. While the 
characteristics of the source and receiver predominantly 
shape the impulse response representation, enhanc-
ing environmental variability may be feasible through a 

Fig. 10 RMS-averaged impulse response of the data and error 
systems for different model orders

Table 6 Memory demand in MB, computational cost in MFLOPs, 
and approximation error ε̂r according to (30) for the UPOLS 
method with block-size B = 64 and P = 16 filter partitions and the 
reduced order models in different state-space representations. � : 
standard form, � : (quasi-) diagonal form

Model Memory Compr. ε̂r MFLOPs Speedup

UPOLS 285.47MB n/a n/a 8.95 n/a

SS-�-1000 17.22MB 16.57 −10.45dB 4.30 2.08

SS-�-1000 9.23MB 30.92 −10.45dB 2.31 3.87

SS-�-2000 50.45MB 5.66 −17.28dB 12.61 0.71

SS-�-2000 18.46MB 15.46 −17.28dB 4.62 1.94

SS-�-3000 99.67MB 2.86 −19.78dB 24.91 0.36

SS-�-3000 27.07MB 10.31 −19.78dB 6.93 1.29

2 For details with regard to the computational cost, we refer the reader to 
([94], Sec. 5.2.1) for the UPOLS method and [83] for the state-space models.



Page 14 of 16Kujawski et al. EURASIP Journal on Audio, Speech, and Music Processing         (2024) 2024:32 

semi-synthetic approach. This involves synthesizing cor-
responding RIRs and integrating them with the measured 
RIRs. To enrich the dataset, it is envisaged that the data-
set will be extended in the near future by similar meas-
urements of reverberant rooms. A persistent challenge 
lies in calibrating the source positions with comparable 
precision, mainly due to the diminished reliability of 
beamforming in reverberant environments. Address-
ing this challenge and broadening the dataset will be the 
focus of a forthcoming publication.
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