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Abstract 

A new method for estimating the first and second derivatives of discrete audio signals intended to achieve higher 
computational precision in analyzing the performance and characteristics of digital audio systems is presented. 
The method could find numerous applications in modeling nonlinear audio circuit systems, e.g., for audio synthesis 
and creating audio effects, music recognition and classification, time-frequency analysis based on nonstationary 
audio signal decomposition, audio steganalysis and digital audio authentication or audio feature extraction meth-
ods. The proposed algorithm employs the ordinary 7 point-stencil central-difference formulas with improvements 
that minimize the round-off and truncation errors. This is achieved by treating the step size of numerical differentia-
tion as a regularization parameter, which acts as a decision threshold in all calculations. This approach requires shifting 
discrete audio data by fractions of the initial sample rate, which was obtained by fractional delay FIR filters designed 
with modified 11-term cosine-sum windows for interpolation and shifting of audio signals. The maximum relative 
error in estimating first and second derivatives of discrete audio signals are respectively in order of 10−13 and 10−10 
over the entire audio band, which is close to double-precision floating-point accuracy for the first and better than sin-
gle-precision floating-point accuracy for the second derivative estimation. Numerical testing showed that this perfor-
mance of the proposed method is not influenced by the type of signal being differentiated (either stationary or non-
stationary), and provides better results than other known differentiation methods, in the audio band up to 21 kHz.
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1  Introduction
The infinitesimal differential calculus with h → 0 can be 
obtained only mathematically, for continuous-time and 
analytically obtainable derivatives. In the case of data 
measured by digital equipment, infinitesimal differential 
calculus is no longer valid because of the intrinsic dis-
cretization of the data being processed, i.e., sampling the 
data in time and quantizing its amplitude values. Discrete 
audio signals are sampled at equal-spaced time inter-
vals, which usually span from Ts =

1
8000 to Ts =

1
384000 

seconds with fixed-point precision varying from 8 to 24 
bits or generated with 32- or 64-bit floating-point preci-
sion. Thus, the derivative obtained for a discrete signal is 
only an estimation of its true value at some point in time. 
In this paper, a numerical differentiation method is pro-
posed to estimate the first and second derivatives of dis-
crete audio data with no assumptions about the data to 
be analyzed. The method is intended to minimize numer-
ical errors down to the truncation and round-off errors. 
Details of the method are presented in Sect.  2, and the 
method is evaluated and tested in Sect. 3.

1.1 � Numerical differentiation of experimental data
Numerical methods for estimating first and second 
derivatives of discrete data can be classified into two 
main groups. The first group aims to develop formulas 
for estimating derivatives numerically without knowl-
edge about the function which generates data points. It 
includes finite-difference calculation usually obtained by 
polynomial interpolation, such as quadrature, Lagrange, 
Legendre, Newton, Chebyshev, Gauss, Hermite, Sterling 
polynomials [1–11], Taylor series expansion, or method 
of undetermined coefficients [12–23]. All these methods 
provide the same form of finite-difference coefficients, 
but their computational time, complexity, and memory 
storage requirements differ. Moreover, they are very 
prone to errors due to the noisy, non-exact, and experi-
mental nature of the analyzed signals. Therefore, sev-
eral methods that use a regularization parameter to be 
optimized have been proposed. They form the second 
group of methods and do not offer any explicit differen-
tial formula that could be used to calculate the deriva-
tive but aim to evaluate data using a function fitted to 
the data points. Regularization methods provide stable 
approximation of derivatives [1, 24–29], and include 
Richardson’s extrapolation [1, 3, 9, 30–33], automatic 
differentiation [34–38], optimization approach (such as 
Tikhonov, variational, mollification, and heuristic regu-
larization) [24, 26, 27, 32, 39–52], or smoothing approx-
imations [42, 51, 53–57]. Regularization methods are 
especially useful in estimating trends in the data but 
require additional effort to choose regularization or fit-
ting parameters, such as L-curve, GCV, or by heuristic 

methods [43, 52, 58–61]. Therefore, regularization 
methods require some assumptions about the analyzed 
signal. The volume of work focused on numerical dif-
ferentiation, in general, is quite considerable and grow-
ing each year [62, 63]. Numerical differentiation is an 
elementary and essential tool in applied sciences used 
for numerical analysis and in system modeling [2, 3, 30, 
64–69]. Regardless of the increasing number of publica-
tions, there is no generally accepted method for carry-
ing out numerical differentiation for all kinds of data. A 
major reason for this is that numerical differentiation is 
an ill-posed problem, i.e., small perturbations in the sig-
nal may lead to large errors in the computed derivative 
[42, 68, 70, 71]. It is a problem known for years [24, 72], 
especially when dealing with experimental data typically 
corrupted with some kind of noise due to measurement, 
rounding, truncation, or other processing errors. Until 
now, no systematic strategy for the selection of the opti-
mum differentiation method for a given practical prob-
lem has been proposed [73, 74].

1.2 � Numerical differentiation of discrete audio data
Numerical differentiation of discrete audio data finds 
numerous applications in solving ordinary and partial 
differential equations (ODEs and PDEs) as a numerical 
framework for modeling nonlinear audio circuit systems. It 
is used, for example, in audio synthesis and creating audio 
effects [75–79] and music recognition and classification 
[34, 80–82]. It is specifically used for time-frequency anal-
ysis based on nonstationary audio signal decomposition 
(methods derived from empirical mode decomposition 
[83–87]), enhancement of spectral precision in Fourier-
based methods [85, 88–91], audio steganalysis [92], digi-
tal audio authentication [93–95], acoustic event detection 
[96–99], feature extraction based on Mel-frequency cep-
stral coefficients (MFCC) [100–108], speaker and speech 
identification and recognition, and sound source track-
ing [107, 109–120]. Audio data, such as music or speech, 
which are nonstationary over time, cannot be described by 
a mathematical expression. This is particularly a problem 
with the use of numerical differentiation which employs 
approximation to the analyzed data. Approximation may 
be treated as a smoothing operation or searching for a 
trend line in the data. Selecting a trend line is achieved 
by specifying a regularization parameter. The selection 
of algorithms and methods for finding the regularization 
parameter depends on the given requirements, but finally 
every regularization procedure compromises between 
“smoothness” and “roughness” of data estimate [27, 42, 
43, 45, 52, 59, 73, 121–125]. Averaging approximation of 
audio signal in the time domain translates directly into 
the frequency domain in the form of the attenuation of 
higher frequencies in the signal. Averaging corresponds 
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to changes in the shape, cutoff frequency, and cutoff slope 
of the low-pass filter resulting from the chosen regulari-
zation method and selected parameter. A similar process 
of removing high-frequency content in the signal occurs 
in the group of numerical differentiation methods based 
on finite-difference calculation, which can be regarded as 
a special case of FIR filters known as differentiators. All 
these approximation methods try to find the best com-
promise between cut-off frequency, frequency transition 
region, and stop-band attenuation with an equivalent fil-
ter approach. Although averaging is appropriate in appli-
cations in which high-frequency content is regarded as 
noise, it is not acceptable for many kinds of digital audio 
signals which hold essential information in rapid changes 
in the amplitude over time. Consequently, there have been 
some attempts to make a regularization parameter variable 
based on the actual form of the signal [124, 126]. Never-
theless, no method can successfully separate audio signal 
from noise without distorting the signal. The numerical 
differentiation method proposed in this paper estimates 
the first and second derivatives of discrete audio data using 
central-difference formulas for calculations and makes no 
assumptions about the data being analyzed. The method 
does not incorporate smoothing of input data and employs 
additional procedures to minimize numerical errors. The 
main contribution of the proposed method, presented in 
detail in Sect. 2, can be summarized as follows:

•	 Instead of smoothing or filtering the high-fre-
quency content of the input signal, the step size 
h (see Sect.  2 and 3) is used as the regularization 
parameter to be optimized.

•	 Additional procedures to minimize numerical errors 
employ fractional delay FIR filters designed with 
modified cosine-sum windows [127] for shifting and 
interpolation of audio signals and enhance numerical 
accuracy in estimation of the derivative.

•	 As it will be shown, the maximum relative errors in 
the estimation of the first and second derivatives are 
small for discrete audio signals, respectively, of order 
10−13 and 10−10 in the entire audio band, which is 
close either to double-precision or single-precision 
floating-point accuracy of calculations.

Section  3 shows the experiments designed to verify 
the performance of the proposed method and gives a 
comparison to other known methods of numerical dif-
ferentiation, both by analysis of random input sam-
ples and through the differences in resulting transfer 
function.

2 � Proposed method
The derivative of a discrete signal is only an estimation 
of its true value at some point in time because all cal-
culations are performed with non-exact finite-precision 
arithmetic. Possible errors may result from simplified 
assumptions in the mathematical model, discretization 
error, convergence error, and round-off error (due to the 
finite-precision of numerical calculations).

The first-order derivative of a general signal f being a 
function of a variable x calculated at x0 point can be 
expressed as the discrete finite central-difference formula 
[128]:

where the step size h should be kept sufficiently small for 
the accurate approximation (i.e., preserve a small trunca-
tion error). However, a decrease in the step size h leads to 
subtractive cancelation which increases round-off errors. 
The challenge is to identify the optimal step size h0 to 
avoid conditions in which the decreasing truncation error 
is dominated by the round-off error (Fig. 1). The optimal 
h0 can be found by estimating the round-off and trunca-
tion errors associated with (1). According to [9] and trun-
cating all terms of Taylor series expansion greater than 3, 
these errors can be estimated as:

where true values of f (x0 ± h) from (1) are represented 
as a sum of approximations ˆf (x0 ± h) and round-off 
errors defined as errx0±h.

An absolute value of the upper bound of total error can 
be represented as:

Assuming that the eps (precision value of floating-
point numbers) in (3) is set as the upper bound of 

(1)ˆf (1)(x0) ≈
f (x0 + h)− f (x0 − h)

2h
,

(2)
ˆf (1)(x0) =

f (x0 + h)− f (x0 − h)

2h

finite central-difference approx.

+

errx0+h − errx0−h

2h

round-off error

−

f (3)(x0)

6
h2

truncation error

,

(3)

∣
∣
∣
∣
ˆf (1)(x0)−

f (x0 + h)− f (x0 − h)

2h

∣
∣
∣
∣
≤

2 · eps

2h
−

Ph2

6
,
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round-off error, and maximum value of f (3)(ξ) in 
(2) is set to P. Then, the optimal step size h0 can be 
determined by differentiating (3) with respect to h and 
imposing the resulting derivative equal to zero, and 
then solving for h:

Figure 1 shows that, for the step size h < h0 , the rela-
tive error of finite central-difference approximation is 
determined by round-off errors. Otherwise, for h > h0 , 
the truncation error dominates.

2.1 � Derivation and analysis of proposed method
For estimation of the first and second derivatives, the 
7-point stencil central-differences approximation follow-
ing [5] was used. The approximation of the first derivative 
is given by the formula:

for N = 7 and coefficients ck = [45,−9, 1] . The approxi-
mation of the second derivative is given by:

(4)h0 ≤
3

√

3 · eps

P
.

(5)ˆf (1)(x) =
1

60h

N−1
2∑

k=1

ck [f (x + kh)− f (x − kh)]

(6)ˆf (2)(x) =
c0f (x)

180h2
+

1

180h2

N−1
2∑

k=1

ck [f (x + kh)− f (x − kh)]

for N = 7 , ck = [270,−27, 2] , c0 = −490 , where h is the 
step size, N is the order, and ck for (k = 0, ..., (N − 1)/2) 
are the coefficients of central-difference approxima-
tion ( c0 occurs only in the case of the second-order 
derivative).

As depicted in Fig.  1, the choice of the step size h is 
critical for the accuracy of the derivative estimation. For 
this reason, the derivative estimation defined as ˆF  was 
computed for several h values as:

for m = [2, 1, 0,−1,−2,−3] , where ˆf (1,2)(x) was cal-
culated for h decreased from 100 · Ts to 0.001 · Ts (m 
decreased from 2 to − 3).

Since discrete audio data are sampled at equal-
spaced intervals h = Ts = 1/fs , the value of h is fixed 
over time. Calculations performed for h = 0.1 · Ts , 
h = 0.01 · Ts , and h = 0.001 · Ts require components in 
(5) and (6) to be shifted by corresponding fractions of 
the initial sample rate. The required shifting operation 
was performed by fractional delay FIR filters designed 
with the modified 11-term cosine-sum window as pro-
posed in [127] as in (8) below:

(7)ˆF (1,2)(x) = ˆf (1,2)(x)
∣
∣
∣
h=10m·Ts

(8)wj =

K−1∑

k=0

Ak · cos

[
πk · (2j − N + 1− 2 · δ)

(N − 1)

]

Fig. 1  Relative error of first derivative approximation of function f (x) = sin(π t) at point x0 = π
3

 on the machine with 52 bits of mantissa 
as a function of step size h for a different order of approximation. Vertical dashed line represents optimal step size h0 = 5.964 · 10

−6 calculated 
with (4)
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for j = 0, ...,N − 1 , where N is filter’s order (number of 
coefficients), K = 11 is number of cosine-sum terms 
from [127], and δ is the fractional shift of the filter. Fil-
ter coefficients are calculated by multiplying this window 
function with the sinc function given in (9) below:

Figure 2 shows frequency and phase response for one 
of the designed filters. It shifts input signal by δ = 0.06 
fraction of Ts , has a number of 8001 coefficients, and 
works with fs = 44100 · 64Hz and cutoff frequency 
fc = 22050 Hz . Phase-delay plot on the left panel shows 
the shift of 0.06 fraction of sampling time and passband 
ripples of the 10−14 order on the right panel.

To increase the accuracy in derivative estimation, input 
data were 64 times oversampled. Maximum relative 
errors in the estimation of the first and second deriva-
tives by ˆF (1)(x) and ˆF (2)(x) in (7) with different step sizes 
( h = 10m · Ts ∀ m = [2, 1, 0,−1,−2,−3] ) and 300 sinu-
soidal input signals of frequencies randomly varying from 
1 to 21000 Hz (sampling rate fs = 44100 Hz) are shown 
in Figs. 3 and 4. Maximum relative errors were calculated 
as max

∣
∣
∣

(

ˆF (1,2)(x)− f (1,2)(x)
)

/max
∣
∣f (1,2)(x)

∣
∣

∣
∣
∣ , where 

f (1,2)(x) were exact derivatives computed analytically.
The results shown in Figs. 3 and 4 reveal that there 

is no optimal step size h for estimating the deriva-
tives over the whole audio frequency band. The step 
size h should be increased at lower frequencies and 
decreased at higher frequencies to achieve the low-
est relative error of calculations. There are, however, 

(9)

sincj =







2 ·
fc
fs

if
2j−N+1

2 − δ = 0

sin
�

π ·
fc
fs
[(2j−N+1)−2·δ]

�

π

�
2j−N+1

2 −δ

� otherwise

characteristic points where the maximum relative 
errors for different step sizes intersect with each other. 
Knowing the data-dependent optimum points (marked 
as circles in Figs. 3 and 4), it is possible to derive for-
mulas for estimating the derivatives with the highest 
possible accuracy (minimum error).

Considering the step size h as a regularization param-
eter, the optimum step sizes h07 and h08 (where 07 and 
08 indicate the order of central-difference approxima-
tion for step sizes from 102 · Ts to Ts needed to get the 
optimum step size) calculated for 9th order derivative 
approximation were obtained and used as the threshold 
values to select ranges in derivative estimations by (7) 
which provide the lowest maximum relative error. For 
the first derivative estimation, threshold values using the 
9-point stencil central-differences approximation were 
obtained as:

for m = [0, 1, 2] , where

for m = [0, 1, 2] , N = 9 , ck = [−14, 14,−6, 1] and for the 
second derivative estimation as:

(10)h10
m

07 (x) = 7

√
√
√
√

385 · eps

9 · ˆf (7)(x)
∣
∣
∣
h=10m·Ts

(11)

ˆf (7)(x)
∣
∣
∣
h=10m·Ts

=

1

2h7

N−1
2∑

k=1

ck · [f (x + kh)− f (x − kh)]

(12)h10
m

08 (x) = 10

√
√
√
√

77112 · eps

99 · ˆf (8)(x)
∣
∣
∣
h=10m·Ts

Fig. 2  Example filter design with modified 11-term cosine-sum window [127] for Fs = 64 · 44100 Hz, N = 8001 taps, fc = 22050 Hz, and delay 
of 0.06 · Ts . Frequency response and phase delay are shown on the left and filter’s passband ripples are shown on the right panel
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for m = [0, 1, 2] , where

for m = [0, 1, 2] , N = 9 , ck = [−56, 28,−8, 1] , c0 = 70.
Finally, the first and second derivative estimations 

ˆF (1)(x) and ˆF (2)(x) given in (7) were modified and 
derived as vectors which are comprised of derivatives 

(13)

ˆf (8)(x)
∣
∣
∣
h=10m ·Ts

=

c0f (x)

2h8
+

1

2h8

N−1
2∑

k=1

ck · [f (x + kh)− f (x − kh)]

ˆf (1)(x) and ˆf (2)(x) using (5) and (6) at specific sam-
ple indexes [ x1, ..., x6 ] to provide the lowest maxi-
mum relative error. These vectors correspond to the 
derivatives estimated for step sizes of h = 10m · Ts ∀ 
m = [2, 1, 0,−1,−2,−3] and occur in the ranges speci-
fied by the thresholds calculated through (10) and (12). 
Estimations of the first and the second derivatives are 
respectively formulated by (14) and (15) and described 
with an Algorithm 1.

Fig. 3  Maximum relative errors (dot marks) of first derivative estimation using (7) obtained for 300 sinusoidal input signals of frequencies varying 
randomly from 1 to 21000 Hz for different step sizes h = 10

m
· Ts ∀ m = [2, 1, 0,−1,−2,−3] . Input signals were sampled at 44100 Hz and 64 

times oversampled

Fig. 4  Maximum relative errors (dot marks) of second derivative estimation using (7). Other details as in Fig. 3
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Algorithm 1 The proposed method for the first and second derivatives estimation

Threshold values of the h07 , h08 and the div parameter 
used in (14) and (15) (empirically determined constant 
dependent on sampling frequency) allow for switching 
between derivatives calculated with different step sizes 
h which results in 10−13 and 10−10 accuracy (maximum 

relative errors) of the approximation in the whole audio 
band. The maximum relative error of estimating the 
first and second derivatives using the proposed method 
through (14) and (15) is shown by ‘x’ markers in Figs. 5 and 
6 (which at higher frequencies form a thick bottom line).

(14)ˆF (1)(x) =







ˆf (1)(x1)
�
�
�
h=Ts

= f (1)(x1)
�
�
h=100Ts

for x1 =

�

x ∈ N
+

: h100
07

(x) > 100h−10h
div

�

ˆf (1)(x2)
�
�
�
h=Ts

= f (1)(x2)
�
�
h=10Ts

for x2 =

�

x ∈ N
+

: h100
07

(x) ≤ 100h−10h
div

∧ h10
07
(x) > 10h−h

div

�

ˆf (1)(x3)
�
�
�
h=Ts

= f (1)(x3)
�
�
h=Ts

for x3 =

�

x ∈ N
+

: h10
07
(x) ≤ 10h−h

div
∧ h1

07
(x) > h−0.1h

div

�

ˆf (1)(x4)
�
�
�
h=Ts

= f (1)(x4)
�
�
h=0.1Ts

for x4 =

�

x ∈ N
+

: h1
07
(x) ≤ h−0.1h

div
∧ h0.1

07
(x) > 0.1h−0.01h

div

�

ˆf (1)(x5)
�
�
�
h=Ts

= f (1)(x5)
�
�
h=0.01Ts

for x5 =

�

x ∈ N
+

: h0.1
07

(x) ≤ 0.1h−0.01h
div

∧ h0.01
07

(x) > 0.01h−0.001h
div

�

ˆf (1)(x6)
�
�
�
h=Ts

= f (1)(x6)
�
�
h=0.001Ts

for x6 =

�

x ∈ N
+

: h0.01
07

(x) ≤ 0.01h−0.001h
div

�

(15)ˆF (2)(x) =







ˆf (2)(x1)
�
�
�
h=Ts

= f (2)(x1)
�
�
h=100Ts

for x1 =

�

x ∈ N
+

: h100
08

(x) > 100h−10h
div

�

ˆf (2)(x2)
�
�
�
h=Ts

= f (2)(x2)
�
�
h=10Ts

for x2 =

�

x ∈ N
+

: h100
08

(x) ≤ 100h−10h
div

∧ h10
08
(x) > 10h−h

div

�

ˆf (2)(x3)
�
�
�
h=Ts

= f (2)(x3)
�
�
h=Ts

for x3 =

�

x ∈ N
+

: h10
08
(x) ≤ 10h−h

div
∧ h1

08
(x) > h−0.1h

div

�

ˆf (2)(x4)
�
�
�
h=Ts

= f (2)(x4)
�
�
h=0.1Ts

for x4 =

�

x ∈ N
+

: h1
08
(x) ≤ h−0.1h

div
∧ h0.1

08
(x) > 0.1h−0.01h

div

�

ˆf (2)(x5)
�
�
�
h=Ts

= f (2)(x5)
�
�
h=0.01Ts

for x5 =

�

x ∈ N
+

: h0.1
08

(x) ≤ 0.1h−0.01h
div

∧ h0.01
08

(x) > 0.01h−0.001h
div

�

ˆf (2)(x6)
�
�
�
h=Ts

= f (2)(x6)
�
�
h=0.001Ts

for x6 =

�

x ∈ N
+

: h0.01
08

(x) ≤ 0.01h−0.001h
div

�
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3 � Comparison with other numerical differentiation 
methods

Since the exact derivatives of real-world audio signals 
cannot be calculated, experiments based on synthetic 
data were conducted. Two kinds of experiments with 
the use of, respectively, stationary and nonstationary 
signals, were performed. The testing was intended to 

compare the proposed method with other numerical 
differentiation methods.

3.1 � Experiments with stationary synthetic data
Stationary synthetic data have been generated as a sum 
of four harmonic signals with randomly selected fre-
quencies and arbitrarily chosen amplitudes as defined 
by the following formula:

(16)fn(x) = 0.5 · sin(ω1,nx)+ 0.15 · cos(ω2,nx)+ 0.2 · sin(ω3,nx)+ 0.15 · cos(ω4,nx)

Fig. 5  Maximum relative error of first derivative estimation obtained using proposed method (“x” marks). Input signals were sampled at 44100 Hz 
and 64 times oversampled. Grayed-out markers are the maximum relative errors as obtained in Fig. 3

Fig. 6  Maximum relative error of second derivative estimation obtained using proposed method (“x” marks). Input signals were sampled at 44100 
Hz and 64 times oversampled. Grayed-out markers are the maximum relative errors as obtained in Fig. 4
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for n = [1, ..., 300] , where ω1,n, ...,ω4,n are randomly 
selected frequencies respectively from the range [1–100], 
[101–3500], [3501–10000], and [10001–22050] Hz. 
The test data consisted of n = 300 sets of such gen-
erated synthetic data. To simulate actual signal con-
ditions more realistically, a noise was added to the 
harmonic signal (16). Two ( M = 1, 2 ) normally distrib-
uted noise �M realizations with a standard deviation of 
σM = [2.2204 · 10−16, 0.001] were used. The noise was 
added to the harmonic signal fn(x) as shows (17):

where M denotes actual noise used, and n represents the 
four-sine frequencies set. In all calculations, the sam-
pling frequency fs = 44100 Hz was used. The differ-
entiation methods were compared as the error ratio of 
SNR1,2,M,n/SNR0,M,n (where SNR is the signal-to-noise 
ratio) for n = 300 data sets and M = 1, 2 noise distribu-
tions where SNR1,2,M,n are signal-to-noise ratios of the 
estimated first and second derivatives, and SNR0,M,n is 
the signal-to-noise ratio of the input signal. The level of 
errors SNR0,M,n in the input data has been characterized 
by the M signal-to-noise ratios, defined as:

where L = 6000 is the length of the input data sequence, 
fn is the input harmonic data sequence, and ˆfM,n is the 
input harmonic data sequence with M = 1, 2 noise dis-
tributions. Signal-to-noise ratios SNR1,2,M,n of the esti-
mated first and second derivatives have been derived as 
follows:

where ˆF (1,2)
M,n  are estimates of the first and second deriva-

tives and f (1,2)M,n  are true derivatives calculated analytically.

3.2 � Experiments with nonstationary synthetic data
Nonstationary synthetic data were generated by adding the 
FM signal v(x) to the previously defined by (16) signal fn(x) 
in the following way:

for n = [1, ..., 300] in which

(17)ˆfM,n(x) = fn(x)+�M ,

(18)

SNR0,M,n = 10 · log






�L
l=1

�
fn(x + l)

�2

�L
l=1

�

ˆfM,n(x + l)− fn(x + l)
�2




,

(19)

SNR1,2,M,n = 10 · log






�L
l=1

�

f
(1,2)
M,n (x + l)

�2

�L
l=1

�

ˆF
(1,2)
M,n (x + l)− fn(x + l)

�2




,

(20)gn(x) = fn(x)+ vn(x)

(21)v(x) = sin(ωAx − ωBx · cos(x)))

where ωA and ωB were set so that v(x) changes its fre-
quency from 1 to 21000 Hz during one sinusoidal cycle 
in a data sequence of length L = 6000 . As in the previ-
ous experiment, the noise was added to input data in the 
same way as shown in (17). The differentiation methods 
were compared as the ratio of SNR1,2,M,n/SNR0,M,n for 
n = 300 input harmonic data with FM modulation sets 
and M = 1, 2 noise distributions.

3.3 � Comparison material
The method proposed in this paper and described in 
Sect.  2 was compared with the following numerical 
differentiation methods:

•	 Algorithm for numerical differentiation of discrete 
functions with an arbitrary degree and order of accu-
racy with the use of the closed explicit formula pre-
sented by H. Z. Hassan et al. in [13]. The algorithm 
is based on the method of undetermined coefficients 
and the closed form of the Vandermonde inverse 
matrix (the method labeled later as “Hassan”). The 
“Hassan” numerical differentiation has been per-
formed with the order of 8.

•	 MaxPol package written in MATLAB (labeled later 
as “MaxPol”) which is a comprehensive tool for 
numerical differentiation. The MaxPol is based on 
the method of undetermined coefficients to render 
a variety of FIR kernels in a closed form that can be 
used to approximate the full-band or low-pass deriv-
atives of discrete single or multidimensional signals 
(images) [14, 15]. Numerical differentiation was per-
formed with a centralized FIR derivative kernel for 
the full-band operation.

•	 Ordinary 9-point stencil central-difference formulas 
(hereinafter referred to as “Central-Diff”).

3.4 � Results of experiments
The dependence of error ratio SNR1,2,M,n/SNR0,M,n for 
n = 300 stationary and nonstationary sets of experi-
mental data, and M = 1, 2 noise distributions, obtained 
for each of the compared methods are presented in 
Figs. 7, 8, 9 and 10. Figures 7 and 8 show the results for 
the stationary signals, for the first and second deriva-
tives, respectively. Correspondingly, Figs. 9 and 10 show 
the results for the nonstationary signals. The error ratio 
for the method proposed in this work is shown by the 
solid line. The “Hassan,” “MaxPol,” and “Central-Diff” 
methods used for the comparison are shown with the 
dash-dotted, dotted, and dashed lines, respectively. The 
sets of experimental data are shown along the abscissa 
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and represent the random selection of input data. The 
error ratio is shown on the linear scale on the ordinate. 
The noise level shown for each condition represents the 
noise added to the input data. The results presented in 
Figs.  7, 8, 9  and 10 reveal that the proposed method 
gives stable results which are not prone to changes in 
the input data sequence, both for stationary and nonsta-
tionary cases. Among other methods, only the “MaxPol” 
method performance is close to that of the proposed 
method in the estimation of the second derivative for 
the stationary data. In all other cases, the proposed 
method results are consistently better in performing the 
numerical differentiation of either stationary or non-
stationary data. The presented results also reveal some 
general characteristics of the compared methods in the 

estimation of the first and second derivatives in discrete 
audio signals:

•	 The “Central-Diff” difference formulas and the “Has-
san” method are more computationally efficient than 
“MaxPol” and the proposed method. Estimation of 
the first derivative for stationary data gives compara-
ble results for the “Central-Diff” formula and “Has-
san” method both for no noise and − 80 dB noise 
conditions (Fig. 7). For the estimation of the second 
derivative, the “Hassan” method provides slightly bet-
ter results than the ‘Central-Diff ’ formulas (Fig.  8). 
Similar differences in the performance of these two 
methods are apparent in the results for nonstationary 
data (Figs. 8 and 10).

Fig. 7  First derivative error ratio SNR1,M,n/SNR0,M,n for stationary synthetic data generated using (17). Method proposed in this work is shown 
by the solid line, methods used for the comparison are shown with the dash-dotted, dotted, and dashed lines, respectively. Left and right panels 
show calculations for added noise levels of − 313 dB ( M = 1 ) and − 80 dB ( M = 2 ), respectively

Fig. 8  Second derivative error ratio SNR2,M,n/SNR0,M,n for stationary synthetic data. Other details as in Fig. 7
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•	 Full-band FIR kernel performance in MaxPol pack-
age is very prone to random selection of samples 
(Figs.  7 and 8) thus to the frequency content of the 
input data. It was found that when the stationary 
input data contained frequencies above 15000 Hz 
(see (16)), the performance of the method drastically 
decreased. The experiments with nonstationary data 
revealed that the “MaxPol” method produces lower 
error ratios than the “Central-Diff” and “Hassan” 
methods. The performance of the “MaxPol” method 
is also lower as compared to the proposed method, 
which is especially evident for nonstationary signals 
(Figs. 9 and 10).

•	 The noise added to the input data improves to some 
extent the performance of numerical differentiation 
of all compared methods. The likely reason is that 
the random error introduced by the added noise to 
the input harmonic signal decorrelates consecutive 

samples. This in turn decreases the computational 
round-off error during the numerical differentiation 
process.

3.5 � Transfer functions
The advantage of the proposed method is seen in differ-
ences between transfer functions showing the impact of 
the frequency content of input signal on the performance 
of the numerical differentiation. Transfer functions for 
the proposed method and the three other methods were 
calculated as a relationship between Fourier transforms 
of the estimated derivatives and the input signals, for 300 
frequencies varying from 20 to 20000 Hz (the resolution 
was set to 8192 with 512-point Hann window). The left 
panels in Figs. 11 and 12 show the transfer functions of 
selected methods, respectively for the first and second 

Fig. 9  First derivative error ratio SNR1,M,n/SNR0,M,n for nonstationary synthetic data (18). Other details as in Fig. 7

Fig. 10  Second derivative error ratio of SNR2,M,n/SNR0,M,n for nonstationary synthetic data. Other details as in Fig. 7
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derivatives. The performance of the proposed method 
(shown with the thick solid line) is nearly identical with 
the ideal differentiator response over the whole audio 
frequency band for the first and second-order numerical 
differentiation, which is not the case for other methods. 
The right panels in Figs. 11 and 12 show the relative error 
between the transfer function of the ideal differentiator, 
proposed method, and “MaxPol” method (as the best 
out of the other methods). In nearly all cases the perfor-
mance of the proposed method is better than that of the 
“MaxPol” method. The only exception is the estimation 
of the second derivative with input signals below 15000 
Hz (Fig. 12, right panel) but as it is seen in Fig. 8 only for 
stationary input signals.

4 � Conclusions
The paper addresses the problem of estimating the first 
and second derivatives of discrete audio data. Numeri-
cal differentiation of discrete audio data has several 
applications. For example, it is particularly important in 
the development of numerical solvers for ordinary and 
partial differential equations PDEs and ODEs. These 
are fundamental in modeling audio circuit systems for 
digital audio effects and synthesizers.

The audio signal is always a complex combination 
of the components ranging four decades in frequency, 
from a few Hz to tens of thousands Hz, which are 
processed by both linear and nonlinear systems with 
parameters varying over time. Thus, it is not possible 

Fig. 11  Transfer functions of numerical differentiation methods for estimation of the first derivative in the audio band (left panel) and relative error 
for proposed method and the “MaxPol” method (right panel)

Fig. 12  Transfer functions of numerical differentiation methods for estimation of the second derivative in the audio band (left panel) and relative 
error for proposed method and the “MaxPol” method (right panel)
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to derive an analytical mathematical expression for 
music or speech signals to be applied in the evaluation 
of numerical methods used for differentiation.

Discrete audio data consist of a sequence of samples 
that occur at a specific fixed time order therefore every 
preprocessing operation (like smoothing or approxima-
tion) disrupts audio data in some way. For this reason, 
it is important that the proposed method for estimating 
the first and second derivatives makes no assumptions 
about the data being analyzed and does not incorporate 
smoothing or filtering while preprocessing. To achieve 
the best possible numerical accuracy in the whole audio 
band, the step size h should be treated as a regulariza-
tion parameter and is made variable based on the input 
signal frequency range. This was achieved with very 
precise fractional-delay FIR filters designed for interpo-
lation and shifting of the processed audio data.

The comparison with three existing numerical dif-
ferentiation methods showed that the performance of 
the proposed method is consistently better than of the 
other methods, especially in the case of nonstationary 
discrete audio data. Future research in employing the 
proposed method for time-domain analysis and mod-
eling of digital audio systems should consider further 
investigations on increasing the numerical accuracy in 
estimating the second-order derivative.
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