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Abstract 

End-to-end speech to text translation aims to directly translate speech from one language into text in another, posing 
a challenging cross-modal task particularly in scenarios of limited data. Multi-task learning serves as an effective strat-
egy for knowledge sharing between speech translation and machine translation, which allows models to leverage 
extensive machine translation data to learn the mapping between source and target languages, thereby improving 
the performance of speech translation. However, in multi-task learning, finding a set of weights that balances various 
tasks is challenging and computationally expensive. We proposed an adaptive multi-task learning method to dynami-
cally adjust multi-task weights based on the proportional losses incurred during training, enabling adaptive balance 
in multi-task learning for speech to text translation. Moreover, inherent representation disparities across different 
modalities impede speech translation models from harnessing textual data effectively. To bridge the gap across dif-
ferent modalities, we proposed to apply optimal transport in the input of end-to-end model to find the alignment 
between speech and text sequences and learn the shared representations between them. Experimental results show 
that our method effectively improved the performance on the Tibetan-Chinese, English-German, and English-French 
speech translation datasets.

Keywords Speech to text translation, Optimal transport, Multi-task learning, Cross attentive regularization

1 Introduction
A speech-to-text translation (ST) system is commonly a 
pipeline framework, which consists of two components, 
an automatic speech recognition (ASR) model and a 
machine translation (MT) model [1, 2]. The source lan-
guage speech is transcribed by the speech recognition 
model, and then the transcribed text is translated by the 
MT model into target language text. However, such cas-
caded models suffer from error propagation and high 
latency. Recent works proposed an end-to-end speech 
translation (E2E ST) model [3, 4], which provides an 
effective solution by jointly optimizing a single model for 

conversions from source language speech to target lan-
guage text. Although the E2E ST model has the advan-
tages above, its special nature as a cross-modal and 
cross-language task introduces a challenge–data scarcity. 
Therefore, present research usually leverages knowledge 
acquired from MT tasks to assist in the training of ST 
models.

For low-resource languages, multi-task learning frame-
works are commonly used to achieve knowledge sharing 
between tasks, thereby improving the performance of the 
model on the target task. The performance of a multi-task 
model on each task tends to improve as the correspond-
ing weight assigned to it increases. However, when the 
weights exceed a certain threshold, the model’s perfor-
mance gradually decreases [5]. Different combinations of 
weights lead to variations in model performance. There-
fore, it is an important concern how to allocate weights 
for each task in order to achieve optimal performance 
on the target task. There are two typical methods for 
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adjusting multi-task weights. One approach is to manu-
ally assign weights to each task and continuously experi-
ment with various weight combinations in search of the 
best combination. The other approach is to use dynamic 
adjustment techniques [6]. Compared to manual adjust-
ment of task weights, dynamically adjusting them during 
training allows for faster and more efficient identification 
of optimal weight combinations [7, 8]. In this paper, we 
use the adaptive cross-entropy loss function based on 
task loss proportion as our multi-task objective function. 
This method is not only feasible but also achieves better 
allocation for weights.

Additionally, due to the modality gap between speech 
and text, ST cannot learn MT knowledge well, resulting 
in ST performance often lagging behind MT tasks. Pre-
vious studies have proved that when the input speech 
representation is similar to its corresponding text rep-
resentation, information is better transferred from MT 
task to ST task, leading to improved ST performance 
[9]. Therefore, we proposed obtaining representations 
of speech and text that are close to each other in Was-
serstein [10] space by optimal transport (OT) methods 
to reduce the gap between the speech representation and 
the corresponding transcription. By the cross-language 
conversion ability learned in MT tasks to ST tasks, the 
ST model can learn the better correspondence between 
source language speech and target language text with a 
small amount of parallel corpus data.

Our contributions are as follows: (1) a weight-updating 
scheme based on loss proportion is adopted to dynami-
cally adjust the weights of each task during model train-
ing. Thus, the adaptive ability of the multi-task ST model 
is improved. (2) Based on the multi-task training frame-
work, we introduce the cross-modal optimal transport 
method for ST, which reduces the gap between speech 
representation and corresponding transcription. (3) 
Experimental results on public speech translation data-
sets show that the proposed method can significantly 
improve the model performance.

2  Related work
2.1  End‑to‑end ST
To overcome error propagation and reduce latency of 
cascade ST systems, Bérard et  al. [3] proposed to use 
an end-to-end architecture to directly translate speech 
into text in another language without intermediate tran-
scription, which has become the dominant paradigm in 
recent years. However, the development of ST has been 
hampered by the scarcity of ST data and the cross-modal 
and cross-language characteristics. To address this prob-
lem, researchers usually use pre-training [11–13], multi-
task learning [14–16], and knowledge distillation [17, 18] 

to introduce additional data and other tasks to improve 
performance.

2.2  Multi‑task learning
Multi-task learning aims to enhance the target task by 
using related auxiliary tasks. Although multi-task learn-
ing is effective, manually adjusting the weights of each 
task is indeed a tedious task. Therefore, dynamic adjust-
ment of weights is usually used, which can be broadly 
categorized into two types: gradient-based methods and 
loss-based methods. Among the gradient-based meth-
ods, Chen et al. [7] studied the gradients from different 
tasks and conduct task dependent gradient normaliza-
tion to encourage different tasks to learn at similar speed. 
For loss-based methods, Kendall et al. [5] weighed multi-
ple loss functions by taking into account the mean square 
error uncertainty of each task. Liu et  al. [8] proposed 
the dynamic weighted average (DWA) method, which 
uses the average of task losses over time to measure task 
losses. However, these methods usually add extra com-
plexity to the training phase. In this paper, we employ a 
weight updating scheme based on loss proportions for 
automatically adjusting multi-task weights.

2.3  Optimal transport
OT is a classical mathematical problem. It is commonly 
used to describe the transfer cost between two distribu-
tions. Villani et  al. [19] provided a systematic and com-
prehensive exposition of the OT theory. In recent years, 
this theory has been widely used in research to find con-
sistency between languages or modalities. Chen et  al. 
[20] used OT in image-text pre-training to achieve fine-
grained alignment between words and image regions. Gu 
et  al. [21] used OT to bridge the gap between semanti-
cally equivalent representations of different languages in 
the field of MT, and Zhou et al. [22] used OT to integrate 
two modal representations that are mixed to overcome 
the modality gap between speech and text to improve 
the performance of ST. Compared to this approach, in 
this paper, we obtain representations of speech and text 
close to each other in the Wasserstein space through OT 
to reduce the gap between the speech representation and 
the corresponding transcription.

2.4  Bridging the modality gap
It is still difficult to fully use MT data using the above 
techniques due to the modal differences between speech 
and text. Several works have attempted to bridge this 
gap. Liu et  al. [23] reduced the length of speech repre-
sentations to match text representations and narrowed 
the representation gap by minimizing their L2 distance; 
Xu et  al. [13] mapped speech representations to text 
representations by connecting temporal classification 
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and mapping layers; Fang et  al. [24] blended sequences 
of speech and text representations in order to bridge 
the modality gap; Han et  al. [25] projected speech and 
text features into a shared semantic space; Zhou et  al. 
[22] mixed speech and text sequences across modali-
ties through optimal transport; and Ye et al. [9] brought 
sentence-level representations closer together through 
contrast learning. Different from previous studies, in this 
paper, we reduce the modality gap from the embedding 
representation between speech and text, design effective 
methods to learn similar representations of speech and 
text, and establish connections between different per-
ceptual modalities, so that the ST model can better use 
information from different modalities, and ultimately 
improve the performance.

3  Methods
In this section, we will first describe the method of 
reducing the modality gap between speech and text 
through optimal transport (OTST). And then adaptive 
multi-task learning for OTST is introduced in detail. 
Based on E2E Transformer, we leverage the Wasser-
stein distance between the speech feature sequence and 
the text feature sequence using the optimal transport 
before the Transformer encoder and add the OT loss to 
the model training loss to make the encoded speech and 
its corresponding text close to each other in the Wasser-
stein space. In model training, three weights assigned to 
ST, MT, and ASR loss are automatically tuned according 
the proportion. Figure 1 provides a schematic depiction 
delineating the conceptual framework of our proposed 
methodology.

3.1  Problem formulation
Speech translation aims to translate source language 
speech into target language text. The corpus of ST is 
usually composed of triplet data D = (s, x, y)  , where 
s = (s1, . . . , s|s|) represents the source language speech 
sequence, x = (x1, . . . , x|x|) is the transcript from the 
source language, and y = (y1, . . . , y|y|) is the correspond-
ing translation in the target language, |s| , |x| and |y| respec-
tively represent their lengths.

3.2  Model architecture
We use the same multi-task network model architecture 
as XSTNet [26], which combines multiple training tasks 
of ST, ASR and MT, aiming to achieve E2E ST. The model 
consists four modules: a speech encoder, a text embed-
ding layer, a Transformer [27] encoder, and a Trans-
former decoder. It supports audio and text inputs, and 
these two inputs share the Transformer module in the 
model.

Speech encoder extracts contextualized acoustic 
embeddings from the raw waveform. It consists of Wav-
2vec 2.0 [28] and subsampler. The input is raw waveform 
signal sampled at 16 kHz. Wav2vec 2.0 first extracts a 
speech representation from the original waveform sig-
nal, but the output sequence of Wav2vec 2.0 is usually 
much longer than the corresponding text sequence. To 
further match the length of the audio representation and 
text sequence, we further add 2 convolutional layers with 
stride of 2 after Wav2vec 2.0 to reduce the time dimen-
sion of the speech representation by a factor of 4.

Text embedding is set in parallel with the speech 
encoder to capture semantic information in the text and 
map the text token into embeddings. We calculate the 
Wasserstein distance from the parallel speech and text 
sequences obtained from the speech encoder and text 
embedding layer through optimal transport.

Moreover, both the speech encoder and the text 
embedding layer are connected to the Transformer 
encoder. The encoder receives the output of the speech 
encoder or text embedding layer and further learns 
semantic information, which is then processed by the 
Transformer decoder to obtain the final output of the 
model.

We first undertake pre-training of the model using 
external MT data and then optimize the entire model by 
minimizing cross entropy loss.

Fig. 1 The model structure of adaptive OTST
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Given the model can support speech and text inputs, 
we introduce auxiliary MT and ASR tasks during the 
training process to obtain multi-task cross-entropy loss 
Lmulti−ce . Finally, we formulate the training objective as 
L = Lmulti−ce + �Lot , whereLot represents the Wasser-
stein distance between speech and text sequences, and � 
denotes the weight parameter governing Lot.

3.3  Cross‑modal optimal transport
Optimal transport (OT) is a classical mathematical prob-
lem that provides powerful tools for comparing different 
probability distributions [29]. It is usually the solution 
to the problem of minimizing the cost of transferring 
one distribution to another, so that the distance between 
two discrete probability distributions is minimized after 
transmission. If we regard speech and text sequences as 
two independent distributions, OT can be used to meas-
ure the distance between them.

3.3.1  Optimal transport
For two discrete probability distributions α and β,

where, α is represented by the mass a1, · · · , ai , · · · , an ∈ [0,∞) 
at position u1, · · · ,ui, · · · ,un ∈ R

d , δui is the value of 
the Dirac delta function at position ui , β is represented 
by the mass b1, · · · , bj , · · · , bm ∈ [0,∞) at position 
v1, · · · , vj , · · · , vm ∈ R

d , δvi is the value of the Dirac delta 
function at position vi.

Given the transportation cost function c(Ui,Vj) , let 
Zij ≥ 0 represent the mass transferred from Ui to Vj , 
then the total transportation cost can be expressed as 
∑n

i=1

∑m
j=1 ZijC

(

Ui,Vj

)

 . Let Z∗ be the transportation 
plan with the lowest transportation cost, which is calcu-
lated as follows:

where Z and C denote the n×m matrices whose ele-
ments are Zij and Cij = c

(

ui, vj
)

.

(1)LST = −
∑

n

log P(yn|sn)

(2)α =

n
∑

i=1

aiδui s.t.

n
∑

i=1

ai = 1

(3)β =

m
∑

j=1

bjδvj s.t.

m
∑

j=1

bj = 1

(4)min
Z

n
∑

i=1

m
∑

j=1

Zijc(ui, vj) = min
Z

< C ,Z > s.t. Z ≥ 0,

m
∑

j=1

Zij = ai,

n
∑

i=1

Zij = bj

3.3.2  Wasserstein distance
The Wasserstein distance between α  and β is defined as 
W (α,β) =< C ,Z∗ >  but evaluating it is expensive in 
practice. Usually, the upper-bound approximation func-
tion W�(α,β) for the Wasserstein distance is solved, 
defined as

where H(Z) = −
∑n

i=1

∑m
j=1 p(Zij) log(p(Zij)) is the 

entropy function, which is used as a regularization to 
improve the optimization result. � > 0 is a regularization 
weight. p(Zij) denotes the probability of passing Zij units 
of mass from position ui to position vj . W� is evaluated 
using the Sinkhorn algorithm [30].

3.3.3  Wasserstein distance between speech and text
For the two independent distributions of speech and text 
sequences, we can use OT to measure the distance between 
them. Set the speech sequence as Hs

=

(

h
s
1
, . . . , hs

i
, . . . , hsn

) and 
the text sequence as Hx =

(

hx1, . . . , h
x
j , . . . , h

x
m

)

 . Define 
two distributions α and β, whose mass is uniformly distrib-
uted at positions 

(

hs1, . . . , h
s
i , . . . , h

s
n

)

∈ R
d and 

(

hx1, . . . , h
x
j , . . . , h

x
m

)

∈ R
d , that is, the mass at all positions 

of distribution α is 1n , and the mass at all positions of distri-
bution β is 1m . Let the transportation cost of a unit mass 
from hsi to hxj  be C

(

hsi , h
x
j

)

= �hsi − hxj �p , with p ≥ 1 (typi-
cally p=2). Lot = W �(α,β)  can be seen as the difference 
between speech and text sequences, and we call this value 
the Wasserstein distance, which is added as a loss to the 
model training loss function.

3.4  Adaptive cross‑entropy loss
Multi-task cross-entropy loss 
Lmulti−ce = ω1LST + ω2LASR + ω3LMT , where LST , 
LASR , and LMT are cross-entropy losses on < s, y > , 
< s, x > , and < x, y > pairs. The weight ω1 , ω2 , and ω3 
correspond to the extent to which the model updates 
each task during the training process. The cross-entropy 
loss functions for ST task, ASR task, and MT task are as 
follows:

(5)W�(α,β) = min
Z

< C ,Z > −�H(Z)

(6)LST = −
∑

n

log P
(

yn|sn
)

(7)LASR = −
∑

n

log P(xn|sn)
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To allocate task weights more effectively and optimize 
the model’s performance on the target task, the weight ω 
at training step t is determined by the proportion of the 
corresponding loss value at training step t − 1 to the total 
loss value. We express the weight as:

Therefore, the model can dynamically adapt its learn-
ing strategy according to the learning level of each task, 
thereby find the optimal combination of task weight to 
balance multi-task learning. Finally, the weight update 
scheme based on the loss proportion is referenced into 
the multi-task cross-entropy loss function, and the loss 
for training steps t is obtained as:

4  Experiments
4.1  Datasets
4.1.1  ST datasets
We evaluate our methods presented in this paper on 
Tibetan-Chinese (Ti-Zh), English-German (En-De), and 
English-French (En-Fr) directions. The Ti-Zh dataset was 
constructed from the TIBMD@MUC [31] dataset. For 
the En-De and En-Fr directions, we used the MuST-C 
[32] dataset from TED Talks. The detailed statistics of the 
dataset are shown in Table 1.

4.1.2  External MT datasets
We also introduce external MT datasets to pre-train 
our translation model. For En-De and En-Fr directions, 
we randomly selected 2 million and 250,000 bilingual 

(8)LMT = −
∑

n

log P(yn|xn)

(9)

ω1(t) =
LST (t − 1)

LST (t − 1)+ LASR(t − 1)+ LMT (t − 1)

(10)

ω2(t) =
LASR(t − 1)

LST (t − 1)+ LASR(t − 1)+ LMT (t − 1)

(11)

ω3(t) =
LMT (t − 1)

LST (t − 1)+ LASR(t − 1)+ LMT (t − 1)

(12)
Lmulti−ce(t) = ω1(t)LST (t)+ ω2(t)LASR(t)+ ω3(t)LMT (t)

parallel sentences from the WMT [33] dataset, respec-
tively. For Ti-Zh directions, We collated 270,000 bilin-
gual parallel sentences based on the TIBMD@MUC 
dataset.

4.2  Experimental setups
4.2.1  Model configuration
Our implementation is based on the FAIRSEQ toolkit 
[34]. Following the standard practices in ST, we employ 
the Wav2vec 2.0 model with overlaid subsamplers as the 
speech encoder. The subsampler consists of two con-
volutional layers with a stride of 2, kernel size of 5, and 
an output channel size of 512, aimed at reducing the 
length of the speech sequence and alleviating the length 
discrepancy between speech and text embeddings. The 
dimensionality of the text embedding layer is set to 512. 
For the Transformer, we adopt a basic configuration, 
including 6 layers for both the encoder and decoder, 
each layer comprising 512 hidden units, 8 attention 
heads, and 2048 feed-forward network (FFN) hidden 
states.

4.2.2  Data preprocessing
For the speech input, we use the 16-bit 16 kHz mono-
channel raw audio. To ensure training efficiency, we filter 
out samples with frames greater than 480k or less than 
1k. As for the text input, we tokenize transcripts and 
translations using the SentencePiece [35] model. The 
vocabulary size of 10k is shared between source and tar-
get languages. For external MT datasets, parallel sentence 
pairs with length ratios exceeding 1.5 are filtered out.

4.2.3  Experimental details
During the training phase, we employ the Adam opti-
mizer [36] to update parameters, with an initial learning 
rate set to 2× 10−4 and warm-up steps to 15k, dropout 
of 0.1. In the inference phase, we use beam search with 
a beam size of 10. We evaluate the BLEU on the test set 
using sacreBLEU [37] as the evaluation metric for the 
translation task. All models are trained on Nvidia V100 
GPUs.

Table 1 Statistics of the dataset

Datasets Ti‑Zh En‑De En‑Fr

Hours Sents Hours Sents Hours Sents

train 64.04 27340 94 56000 52.68 30000

valid 1.92 1000 2 1423 2.55 1412

tst 1.86 1000 4 2641 4 2403
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5  Results
Table  2 shows the BLEU values of each model. Com-
pared to the base model, adaptive-OTST has an 
improvement of 1.16, 0.41, and 1.19 BLEU in the Ti-Zh, 
En-De, and En-Fr directions, respectively. We also 
compare our approach with other baseline models, 
including XSTNet [26] using progressive training pro-
cedure, ConST [9] using contrastive learning strategy, 
and STEMM [24] using mixed speech representation 
sequences and word embedding sequences. As most 
existing performance improvements rely on the uti-
lization of large-scale external MT data, for fair com-
parison, we study two settings: (1) without external 
MT data and (2) with external MT data. For settings 
without external MT data, our method improved 2.01 
BLEU on average in three directions compared to base 
model. For settings with external MT data adaptive-
OTST’s performance also surpasses that of other strong 
baselines.

To validate our method under extremely low-resource 
settings, we constructed 10 hours ST subsets using ran-
dom sampling from the TIBMD@MUC Tibetan-Chi-
nese dataset and the MuST-C dataset, respectively. In 
the extremely low-resource ST setting, we compared 
our method with other models, with results shown 
in Table  3. Adaptive-OTST consistently outperforms 
baseline methods in all three language directions.

6  Analysis
6.1  Ablation study
As a multi-task learning framework, the performance 
of our ST system is influenced by the training objec-
tives. Through ablation study, this paper evaluates the 
impact of multi-task learning modules and OT methods 
on model performance. Table  4 shows the performance 
of the model under different training objectives. The 
experimental results indicate that for the Ti-Zh trans-
lation direction, both the multi-task learning module 
and the OT method contribute to the improvement of 
model performance. Based on the results of Exp I, Exp 
II, and Exp IV, it can be concluded that using multi-task 
learning methods can bring an improvement in 2.37 
BLEU, removing adaptive cross-entropy loss in multi-
task dynamic weight adjustment methods results in a 
decrease in translation performance. The results of Exp 
I and Exp III indicate that the introduction of OT loss 
methods can achieve significant performance advantages 
in ST systems.

6.2  Comparison between OT and other losses
In this paper, we reduce the distance between speech and 
text representations by introducing the OT method. In 
order to prove the effectiveness of the OT method, we 
introduce cross-attentive regularization (CAR) [38] at the 
input layer of the Transformer encoder.

Due to the distinct input modalities of speech and text, 
their representations may have different lengths and can-
not be directly compared. Hence, we first reconstruct the 
speech feature sequence from the output of the speech 

Table 2 BLEU scores of different models

Models Ti‑Zh(w/o) Ti‑Zh(w/) En‑De(w/o) En‑De(w/) En‑Fr(w/o) En‑Fr(w/)

base 12.71 12.84 18.87 22.78 22.60 27.42

XSTNet 12.79 13.00 20.61 23.00 24.38 28.48

ConST 13.40 13.63 20.77 23.10 24.39 27.92

STEMM 13.36 13.61 20.82 23.13 24.36 27.89

OTST 13.47 13.90 20.88 23.09 25.19 28.59

adaptive-OTST 13.88 14.00 20.91 23.19 25.42 28.61

Table 3 Results of each model under extremely low-resource 
settings

Models BLEU

Ti‑Zh En‑De En‑Fr

base 5.59 6.29 12.47

XSTNet 5.11 6.51 14.40

ConST 5.68 6.52 15.66

OTST 5.98 6.65 15.98

adaptive-OTST 6.06 7.30 16.11

Table 4 Ablation study in Ti-Zh direction

Exp. Config. BLEU

I adaptive-OTST 14.00
II −LASR −LMT 11.63

III −Lot 13.30

IV − dynamic weight adjustment 13.90
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encoder and the text feature sequence from the out-
put of the text embedding layer. The two reconstructed 
sequences are calculated from the text output sequence 
via self-attention or the speech output sequence via cross 
attention over the text output sequence. Both recon-
structed sequences have the same length and the similar-
ity between the speech and text feature sequences can be 
measured by the L2 distance between these two recon-
structed sequences, where a smaller distance indicates 
higher similarity between speech and text.

Table  5 shows the BLEU scores of the models under 
different methods, with the OT loss resulting in a 0.88 
BLEU higher score than the CAR loss.

6.3  Positions of OT
In speech translation, speech features can be simply 
divided into acoustic features and semantic features. After 
the speech signal is processed by a speech encoder, the 
number of acoustic and semantic features in the low-level 
speech representation is roughly equivalent. However, in 
the high-level speech representation output by the Trans-
former encoder, semantic features usually dominate. The 
modal differences between these two layers of speech rep-
resentation and their corresponding text representation 
are apparent. However, there is currently no consensus 
on which layer’s modal difference reduction would yield a 
more significant impact on enhancing the performance of 
ST models. To this end, we introduced OT techniques in 
the input and output layers of the Transformer encoder to 
reduce modal differences. As shown in Table 6, introduc-
ing OT in the input layer of the Transformer encoder to 
reduce modal differences can result in better performance 
of the model compared to the output layer. We believe 
that there is more original alignment information in the 
lower layers of the model, which is more suitable for OT 
calculation.

6.4  Weight setting for OT loss
In this section, we discuss the impact of the OT loss 
weight � . We experimented with several � values ranging 

from 0.1 to 1.0. Figure 2 visually demonstrates the varia-
tion in model BLEU scores with different � values, with the 
highest BLEU achieved when � = 0.25. When the OT loss 
weight � is too small, its effectiveness in reducing modality 
gap is minimal, resulting in the model’s inability to effec-
tively leverage MT for improving ST performance. Con-
versely, when � is too large, the model excessively focuses 
on narrowing the modality gap between speech and text, 
leading to a decline in the performance of the primary task 
ST. Therefore, we opted for a moderate weight setting, 
selecting the hyperparameter � = 0.25 to achieve optimal 
model performance.

7  Conclusion
In this paper, we propose adaptive-OTST, which uses 
an adaptive cross-entropy loss function based on task 
loss proportion as the multi-task objective function to 
improve the adaptive ability of the multi-task ST model. 
In addition, it reduces the modality gap by bringing 
closer the distance between speech and text representa-
tions in the Wasserstein space, leading to better perfor-
mance. The experiment demonstrates the efficacy of our 
approach in low-resource ST. In the future, we hope to 
integrate the optimal transport with other methods to 
bridge the modality gap and further improve the perfor-
mance of ST.
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