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Abstract 

This paper addresses the challenge of online blind speaker separation in a multi-microphone setting. The linearly 
constrained minimum variance (LCMV) beamformer is selected as the backbone of the separation algorithm due 
to its distortionless response and capacity to create a null towards interfering sources. A specific instance of the LCMV 
beamformer that considers acoustic propagation is implemented. In this variant, the relative transfer functions (RTFs) 
associated with each speaker of interest are utilized as the steering vectors of the beamformer. A control mechanism 
is devised to ensure robust estimation of the beamformer’s building blocks, comprising speaker activity detectors 
and direction of arrival (DOA) estimation branches. This control mechanism is implemented as a multi-task deep 
neural network (DNN). The primary task classifies each time frame based on speaker activity: no active speaker, single 
active speaker, or multiple active speakers. The secondary task is DOA estimation. It is implemented as a classification 
task, executed only for frames classified as single-speaker frames by the primary branch. The direction of the active 
speaker is classified into one of the multiple ranges of angles. These frames are also leveraged to estimate the RTFs 
using subspace estimation methods. A library of RTFs associated with these DOA ranges is then constructed, facilitat-
ing rapid acquisition of new speakers and efficient tracking of existing speakers.  The proposed scheme is evaluated 
in both simulated and real-life recordings, encompassing static and dynamic scenarios. The benefits of the multi-task 
approach are showcased, and significant improvements are evident, even when the control mechanism is trained 
with simulated data and tested with real-life data. A comparison between the proposed scheme and the independ-
ent low-rank matrix analysis (ILRMA) algorithm reveals significant improvements in static scenarios. Furthermore, 
the tracking capabilities of the proposed scheme are highlighted in dynamic scenarios.

Keywords LCMV beamforming, Relative transfer function estimation, DOA estimation, Speech activity detection, 
Multi-task deep learning

1 Introduction
In the last two decades, the use of microphone arrays 
for speech enhancement has surged in popularity. This 
trend is driven by the potential performance advantages 
offered by spatial processing. Speech signals frequently 
face degradation due to ambient noise, reverberation, 

and overlapping speakers. Consequently, the significant 
challenge in speech enhancement is to separate the target 
speaker from a mixture of speakers, effectively suppress-
ing ambient noise. A comprehensive survey of state-of-
the-art multichannel audio separation methods can be 
found in [1–3].

Many speaker separation and noise reduction methods 
are based on conventional beamformers, such as mini-
mum variance distortionless response (MVDR)-beam-
former (BF)  [4–7] and the LCMV-BF  [8, 9]. The use of 
the RTF as steering vector for MVDR beamforming was 
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introduced in [7] and later extended to LCMV beam-
forming in the multi-speaker case [10]. The latter work 
was extended in [11] to simultaneously extract all speak-
ers of interest in the scene. The ability of RTF-based 
LCMV-BF to extract a set of desired speakers is theoreti-
cally analyzed in [12].

The MVDR-BF and the LCMV-BF require the noise 
spatial correlation matrix that can be estimated using 
speech absent frames and the RTFs of all speakers of 
interest. RTF estimation has been an active research field 
in recent decades. A plethora of estimation methods can 
be found in the literature, most of them employing least-
squares or subspace methods  [7, 10, 11, 13–16]. In our 
work, we employed a method based on the generalized 
eigenvalue decomposition (GEVD) of the spatial correla-
tion matrix of the received microphone signals and the 
noise spatial correlation matrix [10, 15].

To accurately estimate the RTFs, prior knowledge of 
the activity patterns is usually required. Moreover, each 
of the estimated RTFs should also be consistently associ-
ated with the active speakers in the scene.

In  [10, 11], the RTFs were estimated in time intervals 
for which only a single speaker is active while assum-
ing that the activity patterns of the sources are available. 
Such an assumption cannot be met in realistic scenar-
ios. Therefore, estimating speakers’ activity patterns has 
emerged as an active research topic in recent years.

We first review beamformer implementations employ-
ing time frequency (TF) masks in the single-speaker 
case, i.e., in noise reduction applications. Early works 
employing speech presence probabilty (SPP) as a TF 
mask for estimating RTFs were introduced for control-
ling an MVDR beamformer, implemented in a general-
ized sidelobe canceller (GSC) structure [17, 18]. In [19], 
a complex Gaussian mixture model is employed to esti-
mate the TF mask and the steering vector of an MVDR 
beamformer. In [20, 21] a DNN is employed to estimate 
the TF mask. The above model-based and data-driven 
mask estimation approaches are combined in [22]. In 
[23], a multi-tap MVDR (a.k.a. convolutive transfer func-
tion (CTF)-MVDR beamformer  [24]) is implemented 
using a TF mask estimated from both the audio and vis-
ual modalities. In [25], a dynamic scenario is addressed 
by applying attention-based online estimation of the 
spatial correlation matrix of the received microphone 
signals.

The multi-speaker case is now reviewed. In [26], 
clustering of a series of steered response power (SRP) 
readings is used for identifying time frames predomi-
nantly occupied by single speakers. In [27], the activity 
of the speakers was estimated by introducing a latent 
variable with N + 1 possible discrete states for a mix-
ture of N speech signals plus additive noise. The activity 

is estimated using spatial cues from the observed sig-
nals modeled with a Gaussian-mixture-like model. 
In [28], further improved in [29], it is assumed that the 
sources do not become simultaneously a ctive. Using 
this assumption, the RTF of a new speech source is esti-
mated using the estimated RTFs of the already active 
sources in the environment. The challenge of inferring 
the activity of the speakers remains open.

In  [30, 31], single-speaker dominant frames were 
identified by utilizing convex geometry tools on the 
recovered simplex of the speakers’ probabilities or the 
correlation function between frames [32].

In recent years, the capabilities of DNNs have been 
leveraged for identifying speakers’ activities. Both 
single-microphone  [33] and multi-microphone  [34] 
estimators were proposed. These methods classify the 
activity of each frame into three classes: (1) speech is 
absent, (2) a single speaker is active, or (3) multiple 
speakers are concurrently active. To ensure the con-
sistency of the LCMV outputs, it is crucial that each 
estimated RTF is consistently associated with the 
same speaker across time frames. In [34], a proposal 
was made to calculate the cosine distance between the 
currently estimated RTF and a library of previously 
acquired RTFs. However, this procedure may face chal-
lenges associated with unreliable associations.

Recently, several deep models have been proposed 
for the task of actual beamforming, going beyond the 
role of merely controlling conventional beamform-
ers. In [35, 36], beamforming is implemented through 
a DNN model that provides relevant components. In 
[35], a DNN-based MVDR beamforming framework is 
introduced, where the analytical derivation of the steer-
ing vector and the inversion of the noise covariance 
matrix are replaced by two gated recurrent unit (GRU)-
Nets. In [36], a novel causal U-net-based multiple-input 
multiple-output structure is introduced for real-time 
multichannel speech enhancement. This method main-
tains the traditional beamforming operation by directly 
calculating the beamformer weights instead of directly 
estimating the speakers.

Spectral and spatial features were combined in a deep 
clustering framework and exploited to improve speech 
separation in [37]. Inter-microphone phase patterns are 
provided to the network as additional input features. 
These additional inputs significantly improve separation 
performance over the single-microphone case, even with 
a random microphone-array constellation. While deep 
spatial processing carries great promise in pushing for-
ward the performance boundaries of conventional beam-
formers, it still suffers from robustness to mismatches 
between train and test conditions and from the lack of 
explainability.
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Our work belongs to the class of DNN-controlled 
conventional beamformers. We focus on the design of 
DNN-based classifier for estimating both the speak-
ers’ activity patterns and the DOAs of the active speak-
ers. The task of DOA estimation using DNN models 
was widely addressed in the literature  [38–44]. In [43], 
the speech sparsity in the short-time Fourier transform 
(STFT) domain was utilized to track the DOAs of multi-
ple speakers, using a DNN applied to the instantaneous 
RTF estimates. In our work, a similar DOA estimation 
procedure is applied in conjunction with the concurrent 
speaker detector (CSD) estimation procedure in a deep 
multi-task architecture. We stress that in our work, the 
DOA estimates are only utilized for associating the esti-
mated RTFs to speakers. The actual separation is carried 
out by the RTF-based LCMV-BF [10], which is known to 
be a low-distortion processor, especially in reverberant 
environments in which DOA-based steering vectors fail 
short of providing low-distortion of the desired speaker 
and strong attenuation of the interfering sources.

We now summarize the main stages of our contri-
bution. A dual-task DNN-based model is presented. 
The activity of the speakers (speakers absence, single 
speaker, or multiple speakers) and the DOAs (only for 
single speaker frames) are simultaneously estimated. In 
our experimental study, we demonstrate that employ-
ing a multi-task model enhances the performance of 
each specific task. The network takes inputs in the form 
of the log-spectrum of the current frame and instanta-
neous RTF estimate. These inputs provide both spectral 
and spatial information, contributing to both the CSD 
and DOA classification tasks. As elaborated, a control 
mechanism governs the speaker separation process. 
When the CSD module identifies a single-speaker frame, 
an update is made to the RTF estimate and to the asso-
ciated estimated DOA. Consequently, a collection of 
RTFs is accumulated for each visited DOA, forming a 
library. This library enhances the robustness of RTF esti-
mation by incorporating an extended history of frames, 
thus increasing robustness to dynamic scenarios. During 
multi-speaker frames, these RTFs are utilized to separate 
the speaker by applying the LCMV beamformer.

The proposed DNN-based model was examined using 
simulated and actual microphone recordings with static 
and dynamic speakers. The experimental study is split 
into three parts: (1) CSD accuracy, (2) DOA estimation 
accuracy, and (3) speaker separation performance of the 
entire proposed system. Finally, our separation perfor-
mance in static scenarios is compared with the ILRMA 
algorithm [45, 46] and shows both objective and perpet-
ual improvements. The proposed method is further eval-
uated in dynamic scenarios, demonstrating its ability to 
adapt rapidly to the changing acoustic scene.

2  Problem formulation and main objectives
This work considers the case of concurrent static or 
dynamic speakers acquired by a microphone array  
in a reverberant and noisy environment. The signal 
captured by the m-th microphone is given in the STFT 
domain:

where n and k represent the frame and frequency 
indexes, respectively. ym(n, k) denotes the m-th micro-
phone signal, sj(n, k) represents the j-th speaker signal as 
received by the reference microphone, and gm,j(n, k) is its 
associated RTF relating microphone m to the reference 
microphone. The ambient noise is denoted by vm(n, k) . 
The variable J(n) denotes the number of active speak-
ers in frame n, which is unknown in advance. The signal 
model in (1) can be recast in a vector form,

where 

 For conciseness, the indices n and k will be omitted 
unless needed.

Define J the total number of speakers in the scene, 
namely the union of all sets of active speakers per frame. 
By definition, J ≥ J (n), ∀n . The primary goal of this work 
is to extract a noiseless and undistorted version of the 
individual speaker signals sj , j = 1, . . . , J  , as received by 
the reference microphone.

As elaborated in the introduction, the multi-speaker 
linearly constrained minimum variance beamformer 
(LCMV-BF)  [11] will serve as the backbone tool for 
speaker extraction in our work:

(1)ym(n, k) =

J (n)

j=1

gm,j(n, k)sj(n, k)+ vm(n, k),

(2)
y(n, k) =

J (n)
∑

j=1

gj(n, k)sj(n, k)+ v(n, k)

= G(n, k)s(n, k)+ v(n, k)

(3a)y(n, k) = [y1(n, k), . . . , yM(n, k)]⊤,

(3b)gj(n, k) =
[

g1,j(n, k), . . . , gM,j(n, k)
]⊤

,

(3c)G(n, k) =
[

g1(n, k), . . . , gJ (n)(n, k)
]

,

(3d)v(n, k) = [v1(n, k), . . . , vM(n, k)]⊤

(3e)s(n, k) =
[

s1(n, k), . . . , sJ (n)(n, k)
]⊤

.

(4)ŝ(n, k) = WH
LCMV(n, k)y(n, k)
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where

and the matrix �v denotes the noise spatial power 
spectral density (PSD) matrix. The above LCMV for-
mulation defines an M × J (n) , time-varying and fre-
quency-dependent, filtering matrix WLCMV(n, k) , such 
that each entry of the J (n)× 1 output vector ŝ(n, k) is 
dominated by one of the desired speakers. An accurate 
estimate of the noise PSD matrix and the RTFs will guar-
antee that the desired source component at each output 
is a distortionless replica of the source as received by the 
reference microphone with all other interfering sources 
entirely suppressed and the noise signal attenuated. Note 
that when J (n) = 1 , the LCMV-BF degenerates to the 
MVDR-BF.

The noise PSD matrix and the RTFs associated with 
the speakers are usually not known in advance, and their 
blind estimation is, therefore, the main goal of this work. 
The noise spatial PSD matrix can be estimated using 
speech-absent frames, while the RTFs can be estimated 
using single-speaker frames, namely frames in which 
only a single speaker is active.

The specific objectives of this work involve classify-
ing frames of received signals based on their activity and 
consistently associating single-speaker frames with each 
speaker in the scene. This process facilitates the con-
struction of the LCMV-BF  (5), subsequently extracting 
the individual speakers of interest.

3  Dual task CSD and DOA classifier
In this section, we present a dual-task DNN model that 
determines, per frame, the activity of the speakers and 
their corresponding DOA.

The concurrent speaker detector (CSD) branch clas-
sifies each frame to either (1) speech absence, (2) 
single-speaker activity, or (3) multi-speaker activity. 
Simultaneously, the model classifies each single-speaker 
frame to a DOA range chosen from a predefined set of 
possible DOAs. Hence, our dual-task classifier has two 
outputs, the CSD with three classes as explained above, 
and the DOA estimator with N classes corresponding to 
N DOA ranges.

Estimating the noise spatial PSD matrix necessitates 
speech-absent frames (Class #0). The RTF estimation 
requires single-speaker frames (Class #1). Subsequently, 
to preserve estimation consistency, each estimated RTF 
is associated with a specific DOA range, and its cor-
responding PSD matrix is archived in a library of PSD 
matrices per DOA to enhance the robustness of future 
estimates. In frames when two or more speakers are 

(5)WLCMV(n, k) = �−1
v G

(

GH�−1
v G

)−1

concurrently active (Class #2), no estimation procedure 
is applied, and the previous BF weights are frozen. The 
time-varying LCMV-BF is then implemented using the 
estimated noise PSD and the relevant RTFs.

3.1  Multi task classification
As elaborated above, the proposed DNN model has two 
simultaneous outputs for each frame n. The first is the 
CSD:

The second output is the DOA range estimate for sin-
gle-speaker frames, namely when CSD(n) = 1 . The DOA 
output is not considered in the other cases. Let θ be the 
angle of the source with respect to the microphone array. 
The permissible DOA values, θ ∈ [0◦, 180◦] , are split into 
N equal ranges. The DNN model classifies each single-
speaker frame to a range:

3.2  Input features
In this work, we use the frame-based log-spectrum of the 
reference microphone and the spatial cues (as defined 
later) as the input features. It was experimentally verified 
that adding spatial cues to the models’ input improves 
the CSD accuracy.

The log-spectrum values are normalized across the fre-
quency index, obtaining zero mean and unity variance,

where for each matrix X , Normalize(X) returns X with 
each column normalized to zero-mean and standard 
deviation equals 1.

In this work, we use an instantaneous estimate of the 
RTFs as the spatial cues, obtained by the GEVD-based 
method [15], as explained in the sequel.

Let z(n) be the whitened microphone signals, 
z(n) = �

−H/2
v y(n) , where �1/2

v  is the square root of the 
noise PSD matrix, namely �v = �

H/2
v �

1/2
v  , obtained 

using, e.g., Cholesky decomposition. The respective spa-
tial PSD matrix of the whitened microphones is estimated 
by averaging the context frames n−m1, . . . , n+m2:

(6)CSD(n) =







0 Noise only (J (n) = 0)
1 Single-speaker (J (n) = 1)
2 Multi-speaker (J (n) > 1)

.

(7)DOA(n) =



















0 θ ∈ [0 , 180◦

N )

1 θ ∈ [ 180
◦

N , 2 180◦

N )

...
...

N-1 θ ∈ [(N − 1) 180
◦

N , 180]

.

(8)a(n) = Normalize
(

[

log
∣

∣y1(n, 1)
∣

∣, . . . , log
∣

∣y1(n, K)
∣

∣

]⊤
)
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where wm is a weighting factor, emphasizing the current 
frame. Denote the principal eigenvector of �̂z(n) as ψ̂(n) . 
The instantaneous RTF estimate is given by:

where e⊤1 = [1 01×M−1] . Note that the first element of 
ĝ(n) can be omitted from the input matrix since it always 
equals 1. The spatial cues are separated into real and 
imaginary components and normalized across the fre-
quency and microphone indexes:

The feature matrix 
[

a(n) B⊤(n)
]

 constitutes the input 
for each frame n.

The algorithm’s latency, attributed to the estimation of 
the spatial cues used for classifying the current frame, 
is determined by the frame length plus the number of 
future frames ( m2 ). Although reducing m2 can decrease 
latency, our experiments demonstrated that doing so had 
a negative impact on the results.

3.3  Database construction
The training comprises various simulated recordings out-
lined below to capture a diverse range of real-life scenarios. 
The number of microphones and the constellation of the 
microphone array remain consistent across all training and 
test conditions. The configurations for source-array con-
stellations and room parameters are illustrated in Table 1. 
This table encompasses permissible ranges for various fac-
tors, such as room dimensions, microphone array position 

(9)�̂z(n) =

n+m2
∑

m=n−m1

wmz(m)zH(m)

(10)ĝ(n) =
�

H/2
v ψ̂(n)

e⊤1 �
H/2
v ψ̂(n)

(11)

B(n) = Normalize

([

Re
([

ĝ(n, 1), . . . , ĝ(n,K )
])

Im
([

ĝ(n, 1), . . . , ĝ(n,K )
])

])

.

and orientation, speaker positions, speaker-to-microphone 
distance, directional noise position, diffuse noise signal-to-
noise ratio (SNR), and reverberation level ( T60).

The activity patterns of speakers are randomly deter-
mined to imitate realistic scenarios. Each activity class and 
each DOA range comprise an equal number of utterances. 
While the training data comprises only static speakers, the 
algorithm was also tested with dynamic speakers.

3.4  DNN architecture
The proposed DNN model comprises three convolutional 
layers, succeeded by three fully connected (FC) layers. Sub-
sequently, two distinct branches are established for each 
classification task: (1) an FC layer with N outputs for the 
DOA classification and (2) an FC layer with three outputs 
for the speaker activity classification. The activation func-
tion employed in each layer’s output is rectified linear unit 
(ReLU), except the final layer, where Softmax activation is 
utilized, producing N outputs for DOA range and three for 
the speaker activity. The final decision for both the CSD 
and DOA classifiers is made by selecting the class with the 
highest probability. The model incorporates dropout, batch 
normalization, and weight constraint operations to miti-
gate overfitting. The categorical cross-entropy (CCE) loss 
function was employed during the model training with the 
adaptive moment estimation (ADAM) optimizer.

To tailor the loss function to the specific goal of enhanc-
ing LCMV beamforming, three crucial updates were incor-
porated for both the CSD and DOA tasks. Let pCSD and 
aCSD be the predicted and actual CSD, respectively. Simi-
larly, let pDOA and aDOA be the predicted and actual 
DOA, respectively.

3.4.1  CSD Loss
In our experiments, we observed that our CSD estimator 
tends to misclassify between single-speaker and multi-
speaker classes. Detecting multi-speaker activity when 
only a single speaker is active does not significantly impact 
the performance of the LCMV-BF. However, identifying 
single-speaker activity during multi-speaker scenarios may 
adversely affect the performance of the RTF estimator. To 
mitigate the effects of the latter error, we suggest altering 
the CSD loss as follows:

where CCECSD is the CCE between the actual CSD and 
the model prediction, and α > 1 a scaling parameter.

3.4.1.1 DOA loss While small DOA errors may be toler-
able, large DOA errors may severely degrade the consist-

(12)

LossCSD =

{

α · CCECSD pCSD = 1 & aCSD = 2
CCECSD otherwise

,

Table 1 Source-array constellation and room configuration

Parameter Range Comments

T60 0.3, . . . , 0.55 s

Array orientation 0◦ , . . . , 360◦

Room dimensions 4− 40 sqm

Array position All over the room At least 0.5 m 
from the walls

Speakers position All over the room At least 0.5 m 
between speakers

Directional noise position All over the room At least 2 m from array

Diffuse noise SNR 10–20 dB

Speaker to mic distance 1–1.5 m
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ency of the LCMV outputs. We, therefore, amplify the loss 
function when the DOA error is larger:

where CCEDOA is the CCE between the actual DOA and 
the model prediction.

3.4.2  Weighted loss
Recall that the DOA estimates in speaker-absent or 
multi-speaker frames are discarded, and the corre-
sponding loss is set to zero:

Consequently, approximately 2/3 of the utterances are 
not used for the DOA classification. We therefore over-
stress LossDOA by a factor β > 1:

4  Determining the number of active sources
Denote the set of active DOAs at frame n as DOA(n):

where DOAj(n) ∈ {0, . . . , N − 1} , is the class num-
ber attributed to the DOA range of an active source 
j = 1, 2, . . . , J (n) . The procedure for determining DOA(n) 
is outlined below: 

1 If, in a single-speaker frame, the speaker’s angle is 
classified to the j-th DOA range, then DOA(n) = j , 
is added to the set of active sources DOA(n) . If an 
adjacent DOA range is already active, it is substituted 
by the currently estimated DOA; otherwise, a new 
active direction is declared. If |DOA(n)| = M − 1 , 
the oldest DOA is removed from the set of active 
sources, and the new DOA takes its place.

2 In the multi-speaker case, namely CSD=2, DOA(n) 
remains intact.

3 A DOA is removed from the list of currently active 
DOAs if it was inactive for Q consecutive frames 
(further denoted “expiry time”).

5  RTFs and noise PSD matrix estimation
A procedure that utilizes the dual-task CSD and DOA 
classifiers for estimating the noise PSD matrix and the 
speakers’ RTFs is now described.

(13)LossDOA =

∣

∣pDOA − aDOA
∣

∣

N
CCEDOA

(14)LossDOA =

{

0 aCSD = 0, 2
LossDOA aCSD = 1

.

(15)Loss = βLossDOA + LossCSD.

(16)
DOA(n) =

{

DOA1(n), DOA2(n), . . . , DOAJ(n)(n)
}

,

5.1  Noise PSD estimation
The noise PSD matrix is updated during frames that are 
classified by the CSD as noise-only (Class #0), using the 
following adaptation rule (per frequency k:

where γnos is the learning rate.

5.2  RTF estimation
The LCMV-BF  (5) necessitates estimates of the RTFs 
associated with the dominant active speakers. The LCMV 
criterion may support up to M − 1 speakers.

A note on the steering vector of the BF is in place. In 
this work, we use an RTF-based BF rather than the sim-
pler DOA-based BF due to its higher capabilities in sup-
pressing the competing speakers [7, 10]. To maintain 
consistency in the LCMV outputs, each estimated RTF 
is associated with a specific DOA range. Thus, the DOAs 
are merely used as attributes of the estimated RTFs and 
do not directly construct the steering vectors.

The following procedure is applied. First, we construct 
a library of PSD matrices with each entry attributed to 
one of the DOA ranges. Namely, a frame classified as 
CSD = 1 and DOA = j , is used to update the PSD matrix 
�j(n) (per frequency k):

where δj is the learning rate. The RTFs are assumed to be 
time-varying since the sources may move. Hence, it is 
required that they will be continuously updated by apply-
ing the GEVD procedure  (10). This may impose a large 
computational burden that may be alleviated using sub-
space tracking methods [13, 47]. Note that while (9) is an 
instantaneous estimate of the correlation matrix of the 
(whitened) received microphone signals, �j(n, k) in (18) 
is estimated using a longer averaging and hence provides 
a more accurate RTF estimate.

6  The construction of the LCMV beamformer
The LCMV can accommodate a maximum of M − 1 con-
straints per time frame. The rest of the degrees of free-
dom are allocated to noise reduction. To achieve higher 
noise reduction capabilities, it is recommended that the 

(17)

�v(n) =







γnos�v(n− 1)+

(1− γnos)y(n, k)y
H(n), pCSD = 0

�v(n− 1) otherwise

(18)

�j(n) =











δj�j(n− 1)+ . . .
�

1− δj
�

y(n)yH(n), pCSD(n) = 1,
pDOA = j

�j(n− 1) otherwise
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number of constraints be kept as low as possible without 
sacrificing the suppression of the competing speakers. It 
is, therefore, imperative to construct the LCMV-BF with 
only the RTFs related to the currently active speakers.

The entire processing flow, from the noisy inputs to 
the enhanced and separated speakers, is summarized in 
Algorithm 1 and is illustrated in Fig. 1.

Figure  2 illustrates a sample processing flow. The 
upper panel of the figure illustrates the actual activities 

of all speakers. In this example, five directions are active 
throughout the utterance, with no more than three 
sources concurrently active. We represent the various 
directions using a color code. Due to the dynamic nature 
of the problem, it is important to note that the same 
speaker can occupy different directions.

The active DOAs along the frame axis and the cor-
responding number of the BF outputs are depicted in 
the central panel. Note that in this illustration, M = 4 , 

Fig. 1 Processing flow

Fig. 2 Schematic activity patterns illustrating the algorithm flow outlined in Sect. 4. For illustration, a resolution of 10◦ was chosen. The actual 
activities per DOA are depicted, together with the corresponding CSD(n) , and DOA(n) , in frames when only a single speaker is active. The content 
of DOA(n) can be deduced from the color code of the constructed beams



Page 8 of 15Schwartz et al. EURASIP Journal on Audio, Speech, and Music Processing         (2024) 2024:50 

and hence, the maximum number of outputs (i.e., BF 
beams) is M − 1 = 3 . The colors of the BF outputs cor-
respond to the active DOA colors. We can easily distin-
guish between frames with a single speaker and those 
with multiple speakers. The depiction also highlights the 
expiration time of each beam, the tracking of angularly 
adjacent DOAs (see the gradual change from “pink” to 
“red”), and the substitution of the oldest DOA with the 
newest one (see the transition from “blue” to “orange”) 
when the number of allowed constraints is exhausted. 
As per our design paradigm, the number of LCMV 
constraints is upper limited by M − 1 . Consequently, 
we discard the beam associated with the oldest active 
speaker. For instance, in the right-hand section of the 
figure illustration, the “orange” beam replaces the “blue” 
beam. If the number of instantaneously active speakers 
exceeds the permissible number of constraints, namely if 
J (n) > M − 1 , the LCMV beamformer may fail to extract 
the desired speaker and/or direct a null towards the inter-
ference sources. Note that in the illustration, M − 1 = 3 ; 
hence, no more than three beams can be simultaneously 
formed. In this example, the total number of sources in 
the scene is J = 5 , but this does not hinder the ability of 
the beamformer to extract the desired source while atten-
uating the interfering sources.

Finally, in the bottom panel, the CSD class, DOA class, 
and the number of active BF outputs are also numerically 
designated.

Algorithm 1 Processing flow

7  Experimental study
In this section, we assess the performance of the pro-
posed scheme. We conduct separate evaluations of the 
building blocks and the overall system, comparing the 
results with different baseline techniques: (1) CSD results 
are compared with those from [44], (2) DOA results are 
compared with the steered response power with phase 
transform (SRP-PHAT) algorithm  [48], and (3) speaker 
separation capabilities (in static scenarios) are compared 
with the ILRMA algorithm [45, 46]. For dynamic scenar-
ios, we provide a qualitative demonstration of the perfor-
mance of the proposed method.

7.1  Database generation
Train and test data generation is now discussed.

7.1.1  Training data
The proposed classifier was trained using simulated data. 
Signals from the TIMIT database  [49] were convolved 
with synthetic room impulse responses (RIRs), generated 
using open-source software package1 for RIR generation, 
which effectively implements the image method  [50]. 
The reverberation level was randomly drawn in the range 
T60 = 0.3− 0.55  s. The same array, comprising M = 4 
microphones, was used throughout the training and test 
simulations. The microphones were organized in a semi-
circle with a 10-cm radius and equal inter-microphone 
distance. We also used a similar structure in the real-life 
experiments. The DOA resolution of our model was set 
to 10◦ ( N = 18 classes). The distance between the speak-
ers and the microphone array center was set in the range 
1÷ 1.5 m.

Mixtures with a maximum of two concurrent speakers 
were simulated. Each signal is a summation of two par-
tially overlapping single-speaker signals, thus construct-
ing frames with 0,1,2 concurrent speakers, such that all 
values of the CSD are covered uniformly. The speakers’ 
signals were added with signal-to-interference ratio (SIR) 
in the −5÷ 5 dB range. To diversify the training data, the 
DOAs of the speakers were randomized for each utter-
ance to cover the permissible range of directions uni-
formly. In the training stage, each speaker was static, 
while for the test database, speakers were free to move.

Three background noise types were added: (1) direc-
tional noise with SNR equal to 20 dB played from arbi-
trary positions in the room, (2) diffuse noise with SNR 
randomly drawn in the range 10÷ 20 dB, and (3) spatially 
white sensor noise with SNR set to 30  dB. Throughout 
the experiments, the signal-to-noise ratio is measured 
with respect to the stronger speaker. Overall, the training 

1 https:// github. com/ ehabe ts/ RIR- Gener ator

https://github.com/ehabets/RIR-Generator
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set comprises 500 simulated signals, each approximately 
40-s long (5.55 h). We work in 16K Hz sampling rate, and 
the window size of the STFT was 2048 samples with an 
overlap of 1024 samples. The various simulation param-
eters are summarized in Table 1.

7.1.2  Test data: static speakers
Ten 40-s-long signals and static speakers were generated. 
Each signal starts with a 3-s-long noise-only segment2, 
then each speaker speaks alone for 10 s, and finally, the 
two speakers are concurrently speaking for approxi-
mately 10 s. The speech signals are randomly drawn from 
the TIMIT test set. The DOAs of the speakers is rand-
omized for each utterance.

7.1.3  Test data: simulated dynamic speakers
Ten 40-s-long signals and dynamic speakers were gen-
erated, which we have about 6500 frames. The speakers 
move at a speed of one meter every 3 s. In the simulated 
dynamic scenario, the first speaker starts at 0◦ , walks 
towards 140◦ , and then returns to 0◦ . The second speaker 
alternately moves between 160◦ and 180◦ . The speakers’ 
movement is simulated using a signal generator3. Each 
speaker was static for a sufficiently long time before the 
concurrent speakers period to facilitate the RTF estima-
tion. Overall, we used ten sentences in this test scenario.

7.1.4  Test data: real dynamic speakers
We conducted experiments in real dynamic scenarios 
to further evaluate the proposed method. The record-
ings took place at the acoustic lab at Bar-Ilan Univer-
sity, allowing for a wide range of reverberation levels. 
In this specific case, we examined a reverberation level 
of T60 = 390 ms. The setup involved four AKG CK32 
microphones arranged on a semi-circle array constella-
tion, similar as much as possible to the simulated array, 
assembled on a plastic construction. During the experi-
ments, speakers walked naturally along an arc, keeping 
a distance of approximately 2.2 m from the center of the 
microphone array. We recorded three signals in this test 
scenario. To facilitate the evaluation of the separation 
algorithm using real recordings, we individually recorded 
each speaker and the noise signal. Then, we combined 
these recordings to create the mixture.

7.2  Performance measures
Each building block of the proposed system was sepa-
rately evaluated, and then the entire system’s per-
formance was assessed. The following performance 
measures were used.

The performance of the CSD was evaluated by analyz-
ing confusion matrices.

The performance of the DOA classifier was evaluated 
by analyzing the histogram of the estimation errors, as 
detailed below.

When assessing the separation and noise reduc-
tion capabilities of the algorithms, three measures were 
employed, namely, short-term objective intelligibility 
(STOI) [51], signal-to-interference ratio (SIR) [52], and 
scale-invariant signal-to-distortion ratio (SI-SDR) [53]. 
Only double-talk segments, namely if pCSD = 2 , were 
used for this evaluation.

7.3  CSD performance
In this section, the performance of the proposed CSD 
is compared to the multi-channel concurrent speak-
ers detector (MCCSD)  [44]. There are two main differ-
ences between the proposed model and the MCCSD. 
First, the input to MCCSD is the individual log-spectrum 
log

∣

∣y(n, k)
∣

∣ of all microphone signals (with the past and 
future context frames); hence, no phase information is 
considered. In the proposed model, the log-spectrum of 
the reference microphone is used together with an esti-
mate of all RTFs, which considers the acoustic propaga-
tion between the microphones. Second, in the proposed 
model, another output is defined, namely a classification 
of the DOA) range. Overall, the proposed model is only 
10% computationally more intensive than the MCCSD.

The results of the CSD were obtained using the 
dynamic test data, as detailed in Sect. 7.1.3. Tables 2, 3, 
and 4 depict the confusion matrices of the MCCSD, the 
proposed CSD without the DOA classification branch, 
and the proposed CSD with the DOA classification 
branch, respectively.

It can be observed that the proposed model is more 
accurate than the MCCSD, even without the additional 
DOA classification branch. When the DOA classification 
branch is incorporated, the accuracy of Class #1 clas-
sification is higher. This may be attributed to the addi-
tional DOA loss function during single-speaker frames, 
improving its detection accuracy. Moreover, we note 
from Table 4 that misclassifying Class #2 frames as Class 
#1 occurs less frequently compared to other schemes. 
This has a beneficial effect on the overall performance 
of the separation algorithm, as such an error could lead 
to incorrect estimation of the steering vector, potentially 
directing the beam away from the sources of interest 
(either desired or interfering).

2 Note that it is not mandatory to start the recording with noise-only seg-
ments. In cases where a speaker is active from the beginning of the utter-
ance, the noise spatial PSD matrix will be initialized with an identity matrix. 
This should not have a major impact on the source extraction capabilities 
and may only degrade the noise reduction capabilities.
3 https:// github. com/ ehabe ts/ Signal- Gener ator

https://github.com/ehabets/Signal-Generator
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7.4  Performance of the DOA classifier
In this section, the performance of the proposed DOA-
range classifier is compared with the classical SRP-
PHAT [48] algorithm. In our model, the DOA output of 
the DNN model is only valid for frames classified by the 
CSD as single speaker frames.

We evaluated the DOA classification accuracy using 
speech utterances with a single speaker moving along an 
arc from 0◦ to 180◦ in reverberant environments for sev-
eral reverberation levels and SNR levels. The speaker’s 
movement speed was set to 0.33 m/s. As a baseline algo-
rithm, we chose the SRP-PHAT [48]. Let

be an instantaneous estimate of the spatial PSD matrix of 
the received microphone signals, obtained by averaging 
the context frames n−m1, . . . , n+m2).

Assuming far-field propagation (an assumption that is 
violated in a reverberant environment and/or when the 
source is close to the microphone array), the propagation 
between j-th speaker and microphone q is determined by 
the propagation delay:

(19)�̂y(n, k) =

n+m2
∑

m=n−m1

wmy(m)yH(m)

(20)Gj,q = exp

(

−ι
2πk

K

τj,q

Ts

)

,

where τj,q is the time delay between the j-th speaker and 
microphone q.

The SRP-PHAT DOA estimator is obtained by 
maximizing:

where �̂y,q1q2 are the elements of the spatial PSD 
matrix, with q1, q2 representing the indexes of a pair of 
microphones.

For a fair comparison with the proposed DOA estima-
tor, we scan over all ranges defined in (7).

The DOA estimation plays a crucial role in supporting 
the speaker separation task. When evaluating the estima-
tion error of the DOA, we categorize the errors into three 
levels. Recall that in our analysis, the resolution of the 
DOA estimates is 10◦ . 

1 Successful estimation: The estimated DOA class is 
correct, namely pDOA = aDOA.

2 Low estimation error: If |pDOA − aDOA| ≤ 20◦ , the 
estimation error is categorized as low. Such an error 
may either occur if a speaker is mistakenly associ-
ated with another adjacent speaker or when the same 
speaker is mistakenly classified into two DOAs. The 
latter error will increase the number of constraints in 
the LCMV design and could potentially degrade the 
noise reduction capabilities of the beamformer.

3 High estimation error: If |pDOA − aDOA| > 20◦ , the 
estimation error is categorized as high. In such cases, 
the speech frames may be miscategorized into the 
wrong DOA range, leading to inaccurate estimates 
of the PSD matrices. Consequently, this will result in 
erroneous estimates of the RTF.

The proposed DOA estimator and the SRP-PHAT algo-
rithm are compared in Fig. 3 for different reverberation 
times and SNR = 20 dB. We analyze the errors according 
to the categories explained above. It is evident that the 
performance of the proposed DOA estimator is almost 
independent of the reverberation levels and that it con-
sistently outperforms the SRP-PHAT algorithm across all 
examined values of T60 . Notably, the analysis of the bar 
plots reveals that the proposed method yields mostly suc-
cessful estimates, with a very low occurrence of high esti-
mation errors.

7.5  Overall speaker separation capabilities
In this section, we analyze the speaker separation capa-
bilities of the proposed algorithm, including its CSD, 

(21)ĵSRP(n) = argmaxj

M
∑

q1=1

M
∑

q2=q1+1

∑

k

�̂y,q1q2 (n, k)
∣

∣

∣
�̂y,q1q2 (n, k)

∣

∣

∣

G∗
j,q1

G∗
j,q2

,

Table 2 Confusion matrix of MCCSD [%]

Estimated \ True Class 0 Class 1 Class 2

Class 0 88.3 12.5 0.4

Class 1 9.9 75.4 15.8

Class 2 1.8 12.1 83.8

Table 3 Confusion matrix of CSD without DOA classifier [%]

Estimated \ True Class 0 Class 1 Class 2

Class 0 90.4 3.7 0.4

Class 1 8.6 78.3 9.4

Class 2 1.0 18.0 90.2

Table 4 Confusion matrix of CSD with DOA classifier [%]

Estimated \ True Class 0 Class 1 Class 2

Class 0 91.1 1.9 0.0

Class 1 8.3 85.9 4.7

Class 2 0.6 12.2 95.3
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DOA blocks, and the online LCMV-BF. We compare the 
proposed algorithm in the static case with the ILRMA 
algorithm [45, 46]. ILRMA is an offline algorithm based 
on independent vector analysis (IVA) and non-negative 
matrix factorization (NMF) that extracts a predefined 
number of sources from a mixture, typically equal to the 
number of microphones used. Due to the inherent per-
mutation ambiguity, we report the SIR results for the cor-
rect permutation.

In Table  5, two simulated scenarios are considered: 
static and dynamic. It is essential to highlight that, in 
our analysis, speakers are permitted to move only dur-
ing single-speaker segments. This restriction is imposed 
because the weights of the BF cannot update if more than 
one speaker is active. In the dynamic scenario, the veloc-
ity of the speakers is set to approximately 0.3 m/s. The 
ILRMA algorithm is only examined in the static scenario, 
as it is not designed to operate in dynamic cases.

Fig. 3 DOA estimation: performance comparison between the proposed DNN-based the SRP-PHAT algorithms for different reverberation times

Table 5 Performance measures for the proposed LCMV-BF with control based CSD-DOA classifiers. The STOI measure is presented as 
an improvement from noisy to enhanced signal. The SI-SDR and the SIR measures indicate the improvement compared to the mixture 
signals

Algorithm STOI SI-SDR SIR STOI SI-SDR SIR STOI SI-SDR SIR

SNR

20dB 15dB 10dB

Static scenario ILRMA [45, 46] 81→90 6.2 8.1 79→90 5.5 7.6 75→86 5.8 7

Proposed 81→99 15.5 16.5 79→98 10.5 10.9 75→95 9.8 7

Dynamic scenario Proposed 72→99 8.8 14.5 68→97 8.5 14.3 63→92 7.8 12.1

RT60

0.3sec 0.4sec 0.5sec

Static scenario ILRMA [45, 46] 80→91 6.2 8.1 75→82 5.4 6.6 70→77 5.1 4.3

Proposed 80→98 10.9 16.5 75→91 10.2 15.3 70→90 9.7 14.6

Dynamic scenario Proposed 70→97 8.8 14.5 64→95 7.2 11.2 60→87 6.5 9.4

SIR in

0dB -5dB -10dB

Static scenario ILRMA [45, 46] 80→91 6.2 8.1 40→63 6.7 9.5 25→42 6.8 9.3

Proposed 80→98 10.6 16.5 40→82 10.9 15.6 25→78 10.1 15.8

Dynamic scenario Proposed 70→98 8.8 14.5 25→88 7.5 14.2 10→51 7.2 13.8
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Fig. 4 CSD and DOA classification results for a sample real recording
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The proposed algorithm consistently outperforms 
ILRMA across all tested cases. Furthermore, it is evident 
that even in dynamic scenarios, the proposed algorithm 
effectively enhances the input measures, yielding results 
comparable to those in the static scenario despite the 
dynamic behavior of the speakers.

Figure 4 depicts an instance of a real recording with an 
input SNR of 10 dB and SIR of 0 dB. The successful clas-
sification results of both the CSD and DOA classifiers are 
clearly evident, even for this challenging real-life dynamic 
scenario. After averaging the outcomes from three actual 
recordings, it was found that the proposed CSD and 
DOA classifiers correctly classified 86.1% and 88.4% of 
the frames, respectively. Moreover, from inspecting the 
estimated DOA trace of the demonstrated utterance, we 
see that the error usually does not exceed 10◦ , namely, 
most of the errors are low estimation errors. The average 
signal-to-distortion ratio (SDR) and SIR improvements 
(of the three real recordings) were 8.6  dB and 12.1  dB, 
respectively.

Several factors may limit the performance of the pro-
posed scheme. First and foremost, the algorithm is 
“blind” during Class #2 frames, namely, the beamformer’s 
building blocks are not updated. Hence, if the source(s) 
move when concurrent speaker activity is detected, the 
“frozen” beamformer weights will become outdated. 
Consequently, the beams will not be properly directed, 
resulting in a performance drop. Another notable limita-
tion of the proposed scheme is actually a limitation of the 
LCMV beamformer. The LCMV criterion can only sup-
port M − 1 constraints. Hence, if the number of sources 
of interest (both desired and interference) is larger than 
this threshold, the constraints cannot be satisfied, hin-
dering the ability to extract the desired source. Besides, 
the CSD and DOA detectors learn from training data 
like all neural network (NN)-based methods. In cases of 
mismatch between the training and test data, e.g., higher 
reverberation level, lower SNR values, and different noise 
types, the performance of the detector may degrade. Fur-
thermore, as the beamformer building blocks are utiliz-
ing an estimate of spatial PSD matrices, having a reliable 
estimate of them is important. If the speed of movement 
of the sources is very high, these estimates may be inac-
curate due to the low number of available frames.

8  Conclusions
We introduced an online algorithm for separating static 
and moving sources. The backbone of the noise reduc-
tion and the separation algorithm is an LCMV-BF. In 
this paper, we proposed a novel control mechanism for 

estimating the building blocks of the beamformer. We 
used a multi-task CSD and DOA classifiers to jointly 
infer the activities of the speakers and their DOA. The 
LCMV-BF is constructed with RTF-based steering vec-
tors, and the consistency of the separated outputs is 
preserved using the associated estimated DOA.

The proposed method was thoroughly evaluated 
using both simulated and recorded data in both static 
and dynamic scenarios and was shown to outperform 
the state-of-the-art ILRMA algorithm. Remarkably, the 
algorithm, which is trained using only simulated and 
static data, was able to separate moving sources even in 
a real-life acoustic environment.
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