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Abstract 

Over the past few decades, extensive research has been devoted to the design of artificial reverberation algorithms 
aimed at emulating the room acoustics of physical environments. Despite significant advancements, automatic 
parameter tuning of delay-network models remains an open challenge. We introduce a novel method for find-
ing the parameters of a feedback delay network (FDN) such that its output renders target attributes of a measured 
room impulse response. The proposed approach involves the implementation of a differentiable FDN with train-
able delay lines, which, for the first time, allows us to simultaneously learn each and every delay-network parameter 
via backpropagation. The iterative optimization process seeks to minimize a perceptually motivated time-domain loss 
function incorporating differentiable terms accounting for energy decay and echo density. Through experimental 
validation, we show that the proposed method yields time-invariant frequency-independent FDNs capable of closely 
matching the desired acoustical characteristics and outperforms existing methods based on genetic algorithms 
and analytical FDN design.
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1  Introduction
Room acoustic synthesis involves simulating the acoustic 
response of an environment, a task that finds application 
in a variety of fields, e.g., in music production, to artisti-
cally enhance sound recordings; in architectural acous-
tics, to improve the acoustics of performance spaces; or 
in VR/AR/computer games, to enhance listeners’ sense of 
realism [1], immersion [2], and externalization [3].

Room acoustic models can be broadly classified in 
physical models, convolution models, and delay-network 
models [4]. Physical ones can be further divided in wave-
based models, which provide high physical accuracy but 

at the cost of significant computational complexity, and 
geometrical-based ones, which make the simplifying 
approximation that sound travels like rays. Convolution 
models involve a set of stored room impulse responses 
(RIRs) and are therefore capable of replicating the true 
response of a real room [4]. Convolution is, however, an 
operation that despite recent advances  [5] still carries a 
computational load that makes it ill-suited in certain 
real-time applications.

Delay-network models consist of recursively con-
nected networks of delay lines and have a significantly 
lower computational cost than convolution. Rather 
than modeling the physical response of a specific room, 
delay-network models only aim to replicate certain per-
ceptual aspects of room acoustics. These models have a 
long history, which can be traced back to the Schroeder 
reverberator  [6]. Since then, a number of designs have 
been proposed, including feedback delay networks 
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(FDNs) [7–9], scattering delay networks (SDNs) [10], and 
waveguide networks (WGNs) [11].

The parameters of delay-network models are typically 
designed to obtain certain desired acoustical character-
istics, e.g., a target reverberation time. An alternative 
design paradigm is to fit the parameters such that the 
output is as close as possible to that of a measured RIR, 
hence combining the accuracy of convolution models 
with the low computational complexity of delay-network 
models. Several methods following this alternative design 
paradigm have been recently proposed for the case of 
FDNs, for instance using gradient-free methods [12–16] 
and gradient-based machine learning techniques [17, 18]. 
Existing approaches, however, involve a certain degree of 
human intervention and require heuristic-driven ad hoc 
choices for several model parameters.

This paper proposes a new method for automatic FDN 
parameter tuning. The present work is rooted in a recent 
framework for the parameter estimation of lumped-ele-
ment models [19] based on automatic differentiation [20], 
and its novelty is twofold. First, the cost function com-
bines two objective measures of perceptual features, i.e., 
the Energy Decay Curve (EDC) and a differentiable ver-
sion of the normalized Echo Density Profile (EDP)  [21]. 
Second, the delay line lengths are optimized via back-
propagation along with every other FDN parameter, thus 
allowing exploiting the flexibility of delay-network mod-
els to the fullest. We thus introduce a simple, robust, and 
fully automatic method for matching acoustic measure-
ments. The learned parameters can be then seamlessly 
plugged into off-the-shelf FDN software without further 
processing or mapping.

The paper is organized as follows. Section 2 introduces 
the background information on FDNs. Section  3 dis-
cusses the prior art on automatic FDN parameter tuning. 
Section 4 describes the proposed method, and Section 5 

presents its evaluation. Finally, Section  6 concludes the 
manuscript.

2 � Feedback delay networks
The block diagram of a single-input-single-output (SISO) 
FDN is shown in Fig.  1. This system is characterized 
by [22]

where u[n] is the input signal, y[n] is the output signal, 
b ∈ R

N is a vector of input gains, c ∈ R
N is a vector of 

output gains, (·)T denotes the transpose operation, 
A ∈ R

N×N is the feedback matrix, d ∈ R is the scalar gain 
associated to the direct path, and m = [m1, ...,mN ] is a 
vector containing the length of the N delay lines expressed 
in samples. The vector s[n] ∈ R

N denotes the output of 
the delay lines at time index n, and we use the follow-
ing notation s[n+m] = [s1[n+m1], ..., sN [n+mN ]]T to 
indicate N parallel delay operations of m1, ...,mN samples, 
respectively, applied to s[n].

If m = [1, ..., 1] , then (1) corresponds to the measure-
ment and state equations of a state-space model. In other 
words, an FDN corresponds to a generalized version of a 
state-space model with non-unit delays [22].

The standard approach to designing the FDN param-
eters involves choosing the feedback matrix, delays, and 
input/output weights so as to obtain certain desired 
acoustic characteristics—usually a sufficient echo den-
sity and a pre-set reverberation time. The most impor-
tant parameters are the ones associated to the recursive 
loop, i.e., m and A , since they determine the energy decay 
behavior of the model, as well as its stability. The delays, 
m , are typically chosen as co-prime of each other, so as 
to reduce the number of overlapping echoes and increase 
the echo density [23]. The design of the feedback matrix, 

(1)y[n] = c
T
s[n] + du[n]

s[n+m] = A s[n] + bu[n],

Fig. 1  Block diagram of a SISO FDN with N = 3
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A , starts from a lossless prototype, usually an orthogonal 
matrix such as Hadamard or Householder matrix, which 
have been shown to ensure (critical) stability regardless 
of the delays, a property defined by Schlecht and Habets 
as unilosslessness  [8]. Losses are then incorporated by 
multiplying the unilossless matrix by a diagonal matrix of 
scalars designed to achieve a pre-set reverberation time, 
T60.

While it is possible to design feedback matrices as time 
varying and/or frequency dependent  [7, 24], this paper 
focuses on the time-invariant and frequency-independ-
ent case. With this assumption, the stability of the system 
can be easily enforced throughout the training, thanks to 
the model reparameterization strategies discussed later 
in Section  4. Moreover, time-invariant frequency-inde-
pendent FDNs benefit from having a low computational 
complexity. From visual inspection of Fig.  1, indeed, 
such an FDN only requires 2N + 1 multiplications, 2N 
additions and one vector-matrix multiplication per sam-
ple. The vector-matrix multiplication requires N 2 scalar 
multiplications and N (N − 1) additions for the case of 
a generic feedback matrix (while it becomes O(N) for a 
Householder matrix). Assuming equal cost of additions 
and multiplications, the overall computational complex-
ity of an FDN amounts to fs (2N 2 + 3N + 1) floating-
point operations per second (FLOPS), where fs is the 
sampling rate. For N = 6 and fs = 44.1  kHz, that cor-
responds to a computational complexity of 4  MFLOPS. 
For comparison, modeling a 0.5 s long RIR using an FIR 
filter (i.e., naive convolution) at the same sampling rate 
would carry a computation complexity of 1945 MFLOPS. 
In real-time applications, one would normally use 
faster methods such as partitioned convolution  [5] or 
overlap-add (FFT-based) convolution  [25]. Under the 
same conditions and assuming a frame refresh rate of 
50  Hz, overlap-add convolution carries a complexity of 
207  MFLOPS   [10], which is still nearly two orders of 
magnitude larger than an FDN.

3 � Related work
As mentioned earlier, the automatic tuning of FDN 
parameters has been previously investigated by means 
of gradient-free methods, such as Bayesian optimiza-
tion [12] and genetic algorithms [13–16], as well as gradi-
ent-based machine learning techniques [17, 18].

Some works are concerned with the automatic tuning 
of off-the-shelf reverberation plug-ins. In [26], Heise and 
colleagues investigate four gradient-free optimization 
strategies: simulated evolution  [27], the Nelder-Mead 
simplex method  [28], Nelder-Mead with brute-force 
parallelization, and particle swarm optimization  [29]. 
More recently, [12]  applies Bayesian optimization using 
a Gaussian process as a prior to iteratively acquire the 

control parameters of an external FDN plug-in that mini-
mize the mean absolute error between the multiresolu-
tion mel-spectrogram of the target RIR convolved with a 
3 s logarithmic sine sweep and that of the artificial rever-
berator output. The FDN control parameters include the 
delay line length, reverberation time, fade-in time, high/
low cutoff, high/low Q, high/low gain, and dry-wet ratio.

Conversely, other studies assume to have white-box 
access to the delay-network structure and apply genetic 
algorithms (GA) to optimize a subset of the FDN param-
eters. In [13], a GA is used to find both the N 2 coefficients 
of the feedback matrix A and N cutoff frequencies of low-
pass filters, one for each delay line. The authors of  [14] 
aim at finding a mapping between room and FDN param-
eters for VR/AR applications. To this end, they synthesize 
the binaural RIRs of a set of virtual shoebox rooms, apply 
a GA to tune the FDN’s delay lines and scalar feedback 
gain, and use the resulting training pairs to fit a support 
vector machine (SVM) regressor. In [15], Coggin and 
Pirkle apply a GA for the estimation of m, b, and c. For 
every individual in a generation, attenuation and output 
filters are designed using the Yule-Walker method. The 
authors investigate several fitness functions before favor-
ing the Chebyshev distance between the power envelopes 
of the target and predicted IR. The optimization is run 
for late reverberation only: the first 85 ms of the RIR are 
cut and convolved with the input signal, before being fed 
to the FDN to model late reverberation. Following  [15], 
Ibnyahya and Reiss recently introduced a multi-stage 
method  [16] combining more advanced analytical filter 
design methods and GAs to estimate the FDN parame-
ters that would best approximate a target RIR in terms of 
an MFCC-based fitness function similar to the cost func-
tion used in [26].

Due to the well-known limitations of genetic algo-
rithms, such as the high risk of finding sub-optimal solu-
tions, overall slow convergence rate, and the challenges 
of striking a good exploration-exploitation balance  [30], 
gradient-based techniques have been recently proposed.

Inspired by groundbreaking research on differentiable 
digital signal processing [31], Lee et al. [17] let the gradi-
ents of a multiresolution spectral loss flow through a dif-
ferentiable artificial reverberator so that they may reach a 
trainable neural network tasked with yielding the rever-
berator parameters. This way, the authors train a convo-
lutional-recurrent neural network tasked with inferring 
the input, output, and absorption filters of a FDN from 
a reference reverberation (RIR or speech). It is worth 
mentioning, however, that it is not the delay-network 
parameters those that are optimized via stochastic gradi-
ent descent, but rather it is the weights of the neural net-
work serving as black-box parameter estimator. As such, 
the differentiable FDN is effectively used as a processing 
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block in computing the loss of an end-to-end neural 
network instead of being the target of the optimization 
process.

In a different vein, several recent works aim at learn-
ing lumped parameters via gradient-based optimiza-
tion directly within the digital structure of the model 
and forgo parameter-yielding neural networks alto-
gether. In this respect, automatic differentiation has been 
recently proposed to find A, b, and c of an FDN (with-
out parameterizing them as a neural network) so as to 
minimize spectral coloration and obtain a flat frequency 
response  [18]. Similar yet distinct, other works adopt a 
white-box system identification approach and use back-
propagation to find the parameters of predetermined 
mathematical models so as to match measured data as 
closely as possible [19, 32, 33].

In this work, we adopt the latter approach and use the 
method detailed in the next section to find the values of 
A, b, c, m, and d such that the resulting FDN is capable of 
modeling perceptually meaningful characteristics of the 
acoustic response of real-life environments.

4 � Proposed method
The proposed method involves an iterative gradient-
based optimization algorithm. As a learning objective, 
we choose a perceptually informed loss function, L(h, ĥ) , 
between a target RIR, h[n], and the time-domain FDN 
output, ĥ[n] , obtained by setting the FDN input to the 
Kronecker delta, i.e., u[n] = δ[n].

We initialize the FDN parameters with no prior knowl-
edge of h[n]. Then, at the beginning of each iteration, we 
calculate ĥ[n] by evaluating (1) while freezing the current 
parameter estimates. Thus, we evaluate L(h, ĥ) . Finally, 
each trainable FDN parameter θ undergoes an optimiza-
tion step using the error-free gradient ∇θL computed via 
reverse-mode automatic differentiation [20].

A typical approach is to use a delay network to only 
model the late reverberation while handling early reflec-
tions separately  [12, 14–16]. Instead, we optimize the 
FDN such that it accounts for both early and late rever-
beration at the same time, exploiting thus the advantages 
of synthesizing the entire RIR with an efficient recursive 
structure.

At training time, we strip out the initial silence due 
to direct-path propagation and disregard every sample 
beyond the T60 of the target RIR. In other words, we only 
consider the first LT60 := T60 · fs  samples of h[n] and 
ĥ[n] in computing the loss. The reason behind restricting 
the temporal scope only to the segment of the RIR asso-
ciated with the T60 is that, beyond this point, the values 
involved in the ensuing computations become so small 
that numerical errors might occur when using single-pre-
cision floating-point numbers, and the training process 

would unwantedly focus on the statistics of background/
numerical noise. Notice that, at inference time, i.e., once 
the FDN parameters have been learned, the room acous-
tics simulation can be run indefinitely at a very low com-
putational cost.

In this work, we optimize the input gains b ∈ R
N
≥0 , 

the output gains c ∈ R
N
≥0 , the direct gain d ∈ R≥0 , the 

feedback matrix A ∈ R
N×N , and the delays m ∈ R

N
≥0 

expressed in fractional samples.

4.1 � Model reparameterization
Let θ be a scalar parameter of the FDN such that θ ∈ X 
where X ⊆ R . In general, instead of learning θ directly, 
we learn an unconstrained proxy θ̃ ∈ R that maps onto θ 
through a differentiable (and possibly nonlinear) function 
f : R → X . Hence, we can use f (θ̃) in place of θ in any 
computation involved in the forward pass of the FDN. In 
case of vector-valued parameters θ ∈ X

N , we apply f in an 
element-wise fashion, i.e., θ := [f (θ̃1), ..., f (θ̃N )]T.

The reason behind such an explicit reparameterization 
method is that, while we would like θ to take values in XN 
at every iteration, gradient-based optimization may yield 
parameters that do not respect such a constraint, even 
when using implicit regularization strategies, e.g., by 
means of auxiliary loss functions and regularizers.

In our FDN model, we treat every parameter in a dif-
ferent fashion. We discuss gain reparameterization in 
Section  4.2 and present the feedback matrix reparam-
eterization in Section  4.3. Finally, we outline the imple-
mentation of the differentiable delay lines and their 
reparameterization in Section 4.4.

Figure 2 summarizes the proposed approach, listing all 
the unconstrained trainable parameters (top), the corre-
sponding reparameterization (middle), and illustrating 
once again how, through (1), the FDN processes time-
domain signals, including unit impulses δ[n] (bottom).

4.2 � Trainable gains
We would like the input, output, and direct gains of 
our differentiable FDN to be nonnegative. This way, 
the gains only affect the amplitude of the signals and 
do not risk inverting their polarity. Instead, we let A 
model phase-reversing reflections. To enforce gain non-
negativity, we employ a differentiable nonlinear func-
tion f≥0 : R → R≥0 , such as the Softplus or exponential 
function. We then learn, e.g., b̃ = [b̃1, ..., b̃N ]T while 
using b = [f≥0(b̃1), ..., f≥0(b̃N )]T in every computation 
concerning the FDN. Among other options, we select 
f≥0(x) = |x| [19], where the requirement of f≥0 being dif-
ferentiable everywhere was relaxed as it is common for 
many widely adopted activation functions, such as ReLU.
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4.3 � Trainable feedback matrix
We focus on lossy FDNs. In prior work [18], frequency-
independent homogeneous decay has been modeled 
by parameterizing A as the product of a unilossless 
matrix U and a diagonal matrix Ŵ(m) = diag(γ1, ..., γN )

= diag(γm1 , ..., γmN ) containing a delay-dependent 
absorption coefficient for each delay line, where γ ∈ (0, 1) 
is a constant gain-per-sample parameter. The feedback 
matrix is thus expressed as

We let U be an orthogonal matrix, satisfying the unitary 
condition for unilosslessness [8]. To ensure this property, 
U is further parameterized by means of W̃ ∈ R

N×N that, 
at each iteration, yields [18]

where WTr is the upper triangular part of W̃ , and exp(·) is 
the matrix exponential. In other words, instead of trying 
to directly learn a unilossless matrix, we learn an uncon-
strained real-valued matrix W̃ that maps onto an orthog-
onal matrix through the exponential mapping in  (3).1 

(2)A = UŴ(m).

(3)U = exp
(

WTr −W
T
Tr

)

,

In particular, U is ensured to be orthogonal because 
WTr −W

T
Tr is skew-symmetric [34].

As for the matrix Ŵ(m) , we noticed that tying the val-
ues of the absorption coefficients γ1, ..., γN to those of the 
fractional delays m1, ...,mN as previously done in [18] led 
to instability during training since the values in m were 
concurrently acting on the temporal location of the IR 
taps as well as their amplitude.2 Conversely, we decouple 
Ŵ from m, thus learning a possibly inhomogeneous FDN 
characterized by A = UŴ , as opposed to the homogene-
ous FDNs studied in [18].

In learning the unconstrained absorption matrix ˜Ŵ =

diag(γ̃ ) = diag(γ̃1, ..., γ̃N ) , we define f(0,1) : R → (0, 1) and 
optimize γ̃ ∈ R

N so that Ŵ = diag
(

f(0,1)(γ̃1), ..., f(0,1)(γ̃N )
)

 . 
In the following, we use the well-known Sigmoid function 
to force the absorption coefficients to take values in the 
range of 0 to 1, i.e.,

4.4 � Trainable delay lines
In the digital domain, an integer delay can be efficiently 
implemented as a reading operation from a buffer that 

(4)f(0,1)(x) =
1

1+ e−x
.

Fig. 2  Summary of the proposed method

1  It is worth noting that, although W̃ is a N × N matrix, only the N(N − 1)/2 
upper triangular entries are actually learned and used in downstream com-
putations.

2  This problem is unique to our approach, as previous studies employed 
non-trainable delay lines with fixed lengths [18].



Page 6 of 20Mezza et al. EURASIP Journal on Audio, Speech, and Music Processing         (2024) 2024:51 

accumulates past samples. Unfortunately, this approach 
is not differentiable. Instead, since the Fourier transform 
is a linear and differentiable operator, we opt to work in 
the frequency domain to circumvent the problem.

In  [35], Pei and Lai proposed a closed-form variable 
fractional delay filter, which turns out to be inherently dif-
ferentiable. In our FDN implementation, each delay line 
is equipped with a Q-sample buffer, so that the ith buffer 
stores the signal xi[n] . First, we zero-pad xi[n] to reduce 
artifacts due to the ensuing circular convolution. Then, 
we compute the K-point fast Fourier transform (FFT) 
of the resulting signal, with K = 2Q . Following  [35], we 
apply a delay of mi (fractional) samples by multiplying 
the discrete spectrum with the conjugate symmetric fre-
quency response Di[k] defined in (6). Finally, we go back 
in the time domain by computing the inverse FFT. We 
can express this sequence of differentiable operations as

where

which, in the time domain, corresponds to a windowed-
sinc finite impulse response [35].

Delays m1, ...,mN must be nonnegative to realize a cas-
ual system. Hence, we use f≥0 to reparameterize them. 
Moreover, we clip the resulting values so not to exceed 
the given buffer length. This yields3

where m̃i ∈ R is the ith trainable delay-line length proxy, 
i = 1, ...,N .

Finally, it is worth highlighting three main reasons 
for labeling our FDN model as time-domain, despite 
implementing the differentiable delay lines in the fre-
quency domain. First, we stress that our FDN yields the 
output one sample at a time according to  (1). Second, 
frequency-domain operations are confined within the 
delay filterbank. Since delay lines being differentiable is 
only required at training time, the inference model can 
thus feature a different fractional delay implementation, 
possibly in the time domain. Third, we emphasize the 
difference between our approach and existing methods 

(5)xi[n−mi] = IFFT
{

Di[k] · FFT{xi[n]}
}

,

(6)

Di[k] =















1, k = 0

e−jmi(2π/K )k , k = 1, ..., K2 − 1

cos(miπ), k = K
2

e−jmi(2π/K )(K−k), k = K
2 + 1, ...,K − 1

(7)mi = min
(

Q − 1, f≥0(m̃i)
)

,

implementing every FDN operation in the frequency 
domain [17, 18].

4.5 � Loss function
Our goal is to learn an FDN capable of capturing percep-
tual qualities of a target room. Hence, we avoid pointwise 
regression objectives such as Lp-losses between IR taps. 
Instead, we set out to minimize an error function ( LEDC ) 
between the true and predicted EDCs. Additionally, we 
use a novel regularization loss ( LEDP ) aimed at matching 
the echo distribution of the target RIR by acting on the 
normalized EDP. Namely, the composite loss function 
can be written as

where � ∈ R≥0 . Similarly to [19], the loss is evaluated in 
the time domain, and, at each iteration, requires a for-
ward pass through the discrete-time model defined by 
the current parameter estimates. In the following sec-
tions, we analyze each of the terms in (8).

4.5.1 � Energy Decay Curve loss
For a discrete-time RIR of length L, the EDC can be com-
puted through Schroeder’s backward integration [36]

Since (9) is differentiable, we can train the FDN to 
minimize a normalized mean squared error (NMSE) loss 
defined on the EDCs, i.e.,

where ε̂[n] =
∑L

τ=n ĥ
2[τ ].

It is worth noting that, whereas the EDC is typically 
expressed in dB, (10) is evaluated on a linear scale. The 
idea here is that a linear loss emphasizes errors in the 
early portion of ε[n] , i.e., where discrepancies are percep-
tually more relevant [37], compared to a logarithmic loss 
that would put more focus on the reverberation tail.

4.5.2 � Differentiable normalized Echo Density Profile
In  [21], Abel and Huang introduced the so-called nor-
malized Echo Density Profile (EDP) as a means to quan-
tify reverberation echo density by analyzing consecutive 
frames of the reverberation impulse response. The EDP 
indicates the proportion of IR taps that fall above the 
local standard deviation. The resulting profile is normal-
ized to a scale ranging from nearly zero, indicating a min-
imal presence of echoes, to around one, denoting a fully 
dense reverberation with Gaussian statistics [38].

(8)L = LEDC + �LEDP,

(9)ε[n] =
L

∑

τ=n

h2[τ ].

(10)LEDC =
∑

n

(

ε[n] − ε̂[n]
)2

∑

n ε[n]2
,

3  It is worth pointing out that (7) is not the only way to account for the 
implicit periodization of the buffered signal when computing the FFT. For 
instance, an alternative parameterization is mi = (Q − 1) · f(0,1)(m̃i) , which 
ensures that mi ∈ (0,Q − 1) at all times.
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The EDP is defined as [21]

where erfc(·) is the complementary error function,

is the standard deviation of the nth frame, w[n] is a win-
dow function of length 2ν + 1 samples (usually 20  ms) 
such that 

∑

τ w[τ ] = 1 , and 1{·} is an indicator function

Notably, 1{·} is non-differentiable. Thus, the EDP can-
not be utilized within our automatic differentiation 
framework.

To overcome this problem, this section introduces a 
novel differentiable EDP approximation, which we call 
Soft Echo Density Profile.

First, we notice that the indicator function 1
{

|h[τ ]| > σ
}

 
can be equivalently expressed as a Heaviside step function 
H(|h[τ ]| − σ) . Then, we let g(x) denote the Sigmoid func-
tion. We define the scaled Sigmoid function gκ(x) = g(κx) , 
where κ ∈ R>0 . Since

we can define the Soft EDP function as

which approximates (11) for κ ≫ 1.
It is worth mentioning that, whilst the EDP approxima-

tion improves as κ becomes larger, this also has the side 
effect of increasing the risk of vanishing gradients. In 
fact, the derivative of the scaled Sigmoid function can be 
written as

which approaches zero for large or small inputs. Hence, 
g ′κ(x) takes on near-zero values outside of a neighbor-
hood of x = 0 whose size is inversely proportional to κ , 
which, in turn, may impede the gradient flow for κ ≫ 1.

In practice, we would like to choose a large value of κ 
but not larger than what is needed. Notably, the need for 
a large scaling factor is not constant throughout the tem-
poral evolution of a RIR. Early taps are typically sparse, 
and (|h[τ ]| − σn) tends to fall within the saturating region 

(11)η[n] = 1

erfc(1/
√
2)

n+ν
∑

τ=n−ν

w[τ ]1
{

|h[τ ]| > σn
}

,

(12)σn =

√

√

√

√

n+ν
∑

τ=n−ν

w[τ ]h2[τ ],

(13)1
{

|h[τ ]| > σ
}

=
{

1 |h[τ ]| > σ ,
0 |h[τ ]| ≤ σ .

(14)lim
κ→∞

gκ(x) = H(x),

(15)ηκ [n] =
1

erfc(1/
√
2)

n+ν
∑

τ=n−ν

w[τ ]gκ(|h[τ ]| − σn),

(16)g ′κ(x) = g(κx)
(

1− g(κx)
)

,

of gκ(·) , even for lower values of κ . Conversely, in later 
portions of the RIR, κ must take on very large values 
to contrast the fact that the amplitude of (|h[τ ]| − σn) 
progressively decreases. For this reason, we introduce 
a time-varying scaling parameter, κn = ξn+  ̺, where 
ξ ∈ R>0 and ̺ ∈ R≥0 are hyperparameters. Progres-
sively increasing the scaling coefficient has the benefit 
of enhancing the gradient flow for the early reflections, 
while improving the EDP approximation for late rever-
beration. In general, a more principled definition for κn 
could be devised, e.g., by tying it to the local statistics of 
the target RIR or its energy decay. In this work, however, 
we favor a simple and reproducible approach as it proved 
to work well in practice.

4.5.3 � Soft EDP loss
Despite the trade-off between vanishing gradients and 
goodness of fit discussed in the previous section, every 
operation involved in the computation of (15) is differen-
tiable almost everywhere. This allows us to use the fol-
lowing EDP loss term as a regularizer during the FDN 
training

where η̂κ [n] is the Soft EDP of the predicted RIR, and 
LT60 =

⌈

T60 · fs
⌉

.

5 � Evaluation
We evaluate the proposed method using real-world 
measured RIRs from the 2016 MIT Acoustical Rever-
beration Scene Statistics Survey [39]. The MIT cor-
pus contains single-channel environmental IRs of 
both open and closed spaces. Of the 271 IRs, we select 
three according to their reverberation time, which, 
across the dataset, ranges from a minimum of 0.06  s to 
a maximum of 1.99  s. We select three indoor environ-
ments:4 (i) a small room ( T60 ≈ 0.2  s), (ii) a medium 
room ( T60 ≈ 0.6  s), and (iii) a larger room ( T60 ≈ 1.2  s). 
For reproducibility, the ID of the chosen RIRs is 
reported: (i) h214_Pizzeria_1txts, (ii) h270_
Hallway_House_1txts, and (iii) h052_Gym_
WeightRoom_3txts. The full IR Survey dataset is 

(17)LEDP = 1

LT60

∑

n

(

ηκ [n] − η̂κ [n]
)2
,

4  Although the proposed parameter tuning method shares some similarities 
with neural network training, particularly in their use of backpropagation, 
differentiable FDNs require a dedicated optimization routine for each tar-
get RIR. When it comes to evaluation, this study thus focuses on a limited 
number of illustrative examples; this approach is consistent with white-box 
system identification literature while contrasting with the way deep learning 
models are typically evaluated, which, instead, involves large-scale training 
and test sets.
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available online.5 For the evaluation, all IRs are resampled 
to 16 kHz and scaled to unit norm.

5.1 � Baseline methods
From the overview presented in Section 3, it appears that 
no method in the literature is directly comparable with 
ours. In fact, existing automatic tuning approaches either 
focus on off-the-shelf reverb plug-ins  [12, 26], limit the 
set of target parameters to just a few [13, 14], or augment 
the FDN topology with auxiliary frequency-dependent 
components [15, 16]. To the best of our knowledge, there 
is no state-of-the-art method addressing the simultane-
ous estimation of every parameter of a time-invariant 
frequency-independent FDN in a purely data-driven 
fashion.

That being said, with the aim of comparing our 
approach with existing techniques, we implement three 
baseline methods.

The first is based on a classic method for homogeneous 
reverberation time control  (HRTC) and involves choos-
ing all FDN parameters but the absorption coefficients 
heuristically. For simplicity, we refer to this method as 
“HRTC baseline.”

The second method, which we call “Colorless base-
line,” also relies on HRTC to control the decay rate. 
However, contrary to the HRTC baseline, all remaining 
FDN parameters are optimized following the approach 
detailed in  [18] as so to achieve a maximally flat fre-
quency response.

The third and final baseline, inspired by [16], makes 
use of a genetic algorithm  (GA) to optimize every FDN 
parameter except for the feedback matrix. We call this 
method “GA baseline.”

In the following sections, we detail the three baseline 
methods one at a time.

5.1.1 � HRTC baseline
Given the FDN model shown in Fig. 1, a classic method 
to introduce homogeneous loss in an otherwise lossless 
prototype is to replace each unit delay z−1 with a lossy 
delay element γ z−1 , where γ is thought of as a gain-per-
sample coefficient [7, 18, 40].

In practice, the loss of each delay line is lumped into 
a single attenuation term proportional to its length. We 
can thus define Ŵ(m) = diag(γm1 , ..., γmN ) as discussed 
in Section 4.3, where γ controls the decay rate according 
to the desired reverberation time. Namely, γ should sat-
isfy [7]

where T60 is estimated from the target RIR.
Whereas the absorption coefficients are given by (18), 

every other parameter in the HRTC baseline are deter-
mined by means of heuristics. We parameterize the feed-
back matrix as in (2), where U is a random orthogonal 
matrix. To ensure that the HRTC baseline is most com-
parable with the proposed method (Section 4.3) and the 
Colorless baseline (Section  5.1.2), we obtain U through 
the exponential mapping in (3). The scalar gain d is set 
equal to the amplitude of the target RIR at the time index 
associated with the direct path. We use unity input gains, 
i.e., b = 1N , where 1N is a vector of N = 6 ones. The out-
put gains are chosen so that c = 1

N 1N . As such, the dot 
product cT s[n] in (1) is equivalent to the arithmetic aver-
age of the outputs of the N delay lines at time n. Finally, 
the delays m = [997, 1153, 1327, 1559, 1801, 2099] consist 
of logarithmically distributed prime numbers from Delay 
Set #1 in [18], and the corresponding non-differentiable 
integer delay lines are implemented via buffer readout.

5.1.2 � Colorless baseline
In the previous section, we discussed a baseline method 
consisting of a homogeneous FDN where the reverbera-
tion time is controlled by choosing γ according to (18), 
with the other parameters being manually selected. Here, 
we present an alternative baseline method that foregoes 
some of these arbitrary choices in favor of an optimiza-
tion approach.

In [18], the authors implement a differentiable homo-
geneous FDN in the frequency domain and find A, b, 
and c via gradient descent so as to minimize spectral 
coloration.

Colorless reverberation [41] is here defined as the 
acoustic quality of an artificial reverberation algorithm 
whose frequency response is flat, i.e., constant at all 
frequencies.

To achieve this, A, b, and c are iteratively updated via 
backpropagation using Adam [42] to minimize a ref-
erence-free6 loss function comprising two terms [18]. 
The first term encourages the magnitude of the sampled 
transfer function of each delay network channel to be as 
close to one as possible. The second term penalizes IR 
sparsity in the time domain and avoids trivial solutions.

The delays m are kept constant, and A is parameter-
ized through (2) and (3). Like in the HRTC baseline, we 

(18)20 log10 γ = −60

fsT60
,

6  With reference-free, we emphasize that, unlike our method, the loss func-
tion in [18] is computed solely on the FDN response and does not consider 
a reference RIR as the target of the optimization process.

5  [Online] IR Survey dataset: https://​mcder​mottl​ab.​mit.​edu/​Reverb/​IR_​Sur-
vey.​html

https://mcdermottlab.mit.edu/Reverb/IR_Survey.html
https://mcdermottlab.mit.edu/Reverb/IR_Survey.html
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use the lengths in samples comprised in Delay Set  #1 
from [18], and γ is set according to (18).

With this baseline, our goal is to test whether an FDN 
optimized to obtain a flat magnitude response brings 
about any benefit when it comes to modeling the energy 
decay and echo density of a target RIR. It is worth noting, 
however, that the learning objective in [18] is not con-
cerned with matching the behavior of a reference RIR. 
As such, the resulting A, b, and c might prove suboptimal 
for what concerns reproducing the reverberation of the 
target space.

5.1.3 � GA baseline
In [16], Ibnyahya and Reiss proposed a multi-stage auto-
matic tuning approach that combines genetic optimi-
zation  [43] and analytical filter design  [44]. Adhering 
to well-established design principles  [7], the prototype 
FDN considered in [16] is equipped with attenuation fil-
ters Hi(z) that modify the frequency and total energy of 
the normal modes of the system’s response, and a tone-
correction filter T(z) [45] that modify the system’s power 
spectral density by imposing a desired magnitude fre-
quency response. While we depict the model architecture 
with N = 3 in Fig. 3, our implementation uses N = 6.

As in [16], we aim to optimize m, b, c, and d, whereas 
A is fixed throughout the procedure. The GA is run for 
50 generations (i.e., ten times more than in  [16]), each 
with a population of 50 FDNs. Each FDN is therefore an 
individual characterized by 3N + 1 mutable parameters, 
namely, m, b, c, and d. During the optimization, sca-
lar gains are constrained to take values in [–1, 1]. Simi-
larly, delays are constrained to take values in the range of 
200 µs to 64 ms.

The attenuation filters are analytically determined 
according to the individual’s delay values in m and the 
desired octave-band reverberation times  [44]. In turn, 
the output graphic EQ filter  [46] is found based on 
the initial level of the desired octave-band EDCs. All 
individuals implement the same random orthogonal 

feedback matrix  [47], which is not affected by genetic 
optimization. The fitness of each individual at every 
generation is assessed through the mean absolute error 
between the MFCCs of the target RIR and those of the 
FDN output [16].

In our implementation, we avail of the Feedback 
Delay Network Toolbox by S. J. Schlecht [40] for fitting 
the graphic EQ filters and implementing the FDN, and 
use the GA solver included in MATLAB’s Global Opti-
mization Toolbox for finding m, b, c, and d.

It is worth emphasizing the differences between the 
prototype FDN used in  [16] (Fig.  3) and the proposed 
delay network (Fig. 1). First, [16] does not optimize the 
feedback matrix A, whereas we do. Second, [16]  relies 
on IIR filters to achieve the desired reverberation 
time, whereas our model does not. Introducing Hi(z) 
and T(z) makes the baseline arguably more powerful 
in modeling a target RIR. At the same time, though, 
prior knowledge must be injected into the model by 
means of filter design to successfully run the GA and 
obtain meaningful results in a reasonable number of 
generations.

5.2 � Evaluation metrics
As evaluation metrics, we select the T20 , T30 , and T60 , i.e., 
the reverberation time extrapolated considering the nor-
malized IR energy decaying from –5 to –25 dB, –35 dB, 
and –65  dB, respectively. Ideally, these three metrics 
are the same if the EDC exhibits a perfectly linear slope. 
In practice, this is often not the case, as it can be seen, 
e.g., in Fig. 4. Hence, we believe that it is more informa-
tive to report all three of them, as together they provide 
a richer insight into the global behavior of the EDC as it 
approaches the –60 dB threshold. It is also worth point-
ing out that it is unclear whether the T60 is entirely reli-
able in measuring the reverberation time of real-world 
RIRs due to the often non-negligible noise floor.

Furthermore, we report the following ISO 3382 meas-
ures [48]: Clarity (C80 ), expressed in dB, Definition (D50 ), 

Fig. 3  Block diagram of the prototype FDN used in [16] with N = 3
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expressed as a percentage, and Center time (ts ), expressed 
in ms. Having defined Lτ :=

⌈

τ · fs · 10−3
⌉

 , these metrics 
are given by

For each metric, we report the error with respect to the 
target values. Absolute deviations are denoted by � in 
Tables 2, 3, and 4.

Finally, it is worth pointing out that the EDPs shown in 
the following sections are obtained using the (non-differ-
entiable) formulation given in (11) unless explicitly stated 
otherwise.

5.3 � Parameter initialization
We initialize the differentiable FDN parameters as fol-
lows. We let b̃(0) ∼ N (0, 1

N IN ) , where IN is the N × N  
identity matrix. We let c̃(0) = 1

N 1N , where 1N is a vec-
tor of N ones. We set d̃(0) = 1 . We initialize W̃(0) and 
Ŵ̃
(0) so that W̃(0)

ij ∼ N (0, 1
N ) and γ̃ (0)

i ∼ N (0, 1
N ) . We 

initialize m̃(0) so that m̃(0)
i = ψm̃⋆

i  with m̃⋆
i ∼ Beta(α,β) , 

for i = 1, ...,N  , where α ≥ 1 and β > α . We empirically 
set ψ = 1024 , α = 1.1 , and β = 6 to ensure a maximum 
possible delay of 64  ms (the same as in the GA base-
line) and a mean value of about 10  ms. We let the Sig-
moid scaling term κn increase linearly from 102 to 105 as 
n = 0, ..., LT60 − 1.

5.4 � Implementation details
We implement our differentiable model in Python using 
PyTorch. We define the FDN as a class inheriting from 
nn.Module. We thus define the unconstrained trainable 

(19)C80 = 10 log10

∑L80−1
n=0 h2[n]

∑L−1
n=L80

h2[n]
,

(20)D50 = 100 ·
∑L50−1

n=0 h2[n]
∑L−1

n=0 h
2[n]

,

(21)ts = 103 ·
∑L−1

n=0 n · h2[n]
fs ·

∑L−1
n=0 h

2[n]
.

parameters as instances of nn.Parameter. Our model 
operates at a sampling rate of 16  kHz. As a result, its 
memory footprint turns out to be contained, allowing 
us to train all FDNs considered in the present study on 
a single 16  GB NVIDIA Tesla V100 graphics card.7 We 
optimize the models for a maximum of 1000 iterations 
using Adam  [42] with a learning rate of 0.1, β1 = 0.9 , 
β2 = 0.999 , and no weight decay. In all test cases, the 
EDP loss term is weighted by � = 0.1.

The average training time per iteration is reported in 
Table 1. At each step, just below 24% of the time is taken 
by the forward pass of the FDN, approximately 12% is 
spent computing the loss function, and just above 64% 
is spent backpropagating the gradients and updating the 
parameters. Notably, we observe that the computation 
time increases linearly with the estimated T60 . For each 
test case, we present the model with the lowest compos-
ite loss.

5.5 � Test case: Gym (h052)
We start by considering the Gym RIR (h052). As shown 
in Table  1, the best model is reached at iteration 935, 
after the loss has decreased by three orders of magnitude 
with respect to the initial value obtained with the random 
initialization described in Section  5.3. Here, we present 
a comparison between the target room acoustics (solid 
black line), the GA baseline  [16] (dotted blue line), the 
HRTC baseline (dash-dotted green line), the Colorless 
baseline [18] (dash-dotted blue line), and, finally, the pro-
posed differentiable FDN (dashed orange line).

Figures 4, 5, and 6 show that the proposed method is 
capable of closely matching the EDC, EDP, and envelope 
of the target RIR, respectively. Conversely, the baseline 
methods produce poorer results.

In Fig. 4, we may notice that the EDC of the GA base-
line deviates from that of the target RIR after just 100 ms 

Table 1  Reverberation time, iteration indices, loss values, and average time per training step in seconds (NVIDIA Tesla V100). Iterations 
denoted with (0) indicate pre-training random initialization

T60 iter L LEDC LEDP time [s]

Gym 1.225 (0) 0.9959 0.9768 0.1909 41.86

935 0.0067 0.0058 0.0095

Hallway 0.607 (0) 1.0068 0.9812 0.2560 20.76

796 0.0041 0.0034 0.0068

Pizzeria 0.206 (0) 0.9254 0.9038 0.2161 5.71

992 0.0526 0.0501 0.0255

7  Preliminary experiments carried out with increased computational 
resources indicate that results comparable with those reported in the pre-
sent study can be obtained at a sampling rate of 48 kHz.
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and exhibits an overall steeper decay. The EDC of both 
the HRTC and Colorless baselines, instead, overshoot the 
target after the very first few ms before decaying with a 
linear slope. It is interesting to notice, though, that HRTC 
approaches and matches the target EDC at around the 
estimated T60 , i.e., 1.225 s, differently from the Colorless 
baseline, which had overshoot the target curve more.

In Fig.  5, the EDP of the baseline methods indicate a 
scarce echo density in the first 250 ms, especially for the 
HRTC and Colorless methods. The output of the FDN 
obtained with GA, instead, becomes identically zero just 
after approximately 0.9  s. The ensuing EDP pathologies 
are confirmed by the IR depicted in Fig.  6, where the 
baselines are shown to yield fewer, more prominent taps 
compared to the IR of the proposed FDN model.

Notably, Fig. 6 also suggests that all methods estimate 
a larger d than what would correctly render the direct 
sound. We attribute this phenomenon to an attempt at 
compensating the lack of a noise floor that, in real-life 
measurements, contributes to the total energy of the RIR. 
We argue that, in FDN models with tunable direct gain, 
offsetting this bias is naively achieved by increasing d.

Table 2 shows that the proposed method has an over-
all better performance in five out of the six reverbera-
tion metrics, with a �T20 , �T30 , �C80 , �D50 , and �ts 
of 16.5 ms, 55.2 ms, 0.02 dB, 0.09%, and 180 µs, respec-
tively. In particular, T20 , T30 , and ts are estimated with 
an error over one order of magnitude lower than those 
of the other methods. Likewise, the proposed FDN 
improves upon the baselines by two orders of magnitude 
as far as clarity C80 and definition D50 are concerned. On 

Fig. 4  Gym (h052) EDCs

Fig. 5  Gym (h052) EDPs

Fig. 6  Gym (h052) IRs. The time axis is limited to the T60 for visual clarity
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the contrary, the proposed approach yields and error of 
90.2 ms when it comes to the T60 , and it is surpassed by 
HRTC and Colorless, whose �T60 is 6.3 ms and 35.7 ms, 
respectively. This, however, was largely expected given 
that, in both baseline methods, the parameter γ is specifi-
cally designed to match the desired T60 according to (18).

5.6 � Test case: Hallway (h270)
Let us now consider the Hallway RIR (h270), which is 
characterized by nearly half the T60 of the previous case. 
Table 1 shows that the best results are obtained at itera-
tion 796, where the loss is again lower by three orders of 
magnitude with respect to the starting point.

Figure 7 reports the EDCs of target, baselines, and pro-
posed methods following the color conventions reported 
in the previous subsection. Once again, we evince the 
good matching between ours and the target decay, espe-
cially in the early and late portion of the curve. GA cor-
rectly matches the target EDC only in the first 100  ms 
before rapidly decaying. The HRTC and Colorless meth-
ods, instead, present a sharp energy drop after the direct 
path, which results in IRs characterized by an almost 
total absence of reflections for the first few ms, as shown 
in Fig. 9. HRTC, in turn, presents a slight overshoot that 
lasts for the first 300 ms, after which it closely matches 
the target EDC. The proposed method, instead, devi-
ates from the target in its central part, approximately 
from 180 to 500 ms. Arguably, however, these two kind 
of errors are not equivalent since the earlier portion of 
the RIR is known to be more relevant from a perceptual 
point of view [37].

Figure  8 indicates that our approach is able to closely 
match the target EDP, further validating the effective-
ness of the proposed Soft EDP loss function. Indeed, the 
orange dashed curve follows the target curve until the 

T60 . We remind, in fact, that the training is performed 
only on such a span of time. Conversely, the EDP of the 
baseline methods show low values in the first 200  ms 
compared to the target one, and afterward, even if they 
take on comparable values, they do not follow the same 
trend. This is confirmed by the RIRs shown in Fig.  9. 
Indeed, even in this test case, the FDN optimized by 
means of the proposed approach has an IR that resem-
bles more of a realistic RIR, even though the amplitude of 
individual taps is not entirely matched.

Table  3 reports the reverberation metrics. We can 
observe that the proposed optimization approach yields 
results comparable to the previous case, outperform-
ing the baseline methods in five out of the six metrics. 
This time, due to the aforementioned mismatch in the 
central part of the EDCs in Fig.  7, HRTC and Color-
less showcase a �T30 lower than that of the proposed 
method, with an error of 22.6  ms and 54.6  ms against 
the 85 ms obtained with our approach. Oppositely, both 
HRTC and the proposed FDN render the T60 equally 
well, with errors of 10.1  ms and 9.2  ms, respectively. 
Our �C80 is one order of magnitude less than what 
can be achieved with the other methods. Likewise, our 
�D50 is one order of magnitude less than what can be 
achieved with GA and HRTC, and two orders of mag-
nitude less than Colorless’. In addition, the center time 
error �ts reaches 40.6 µs, while all baselines have errors 
one to three orders of magnitude larger, thus shifting 
the center of mass of the predicted IR energy more 
toward the reverberation tail.

5.7 � Test case: Pizzeria (h214)
Finally, let us focus on the shortest RIR of the three con-
sidered in the present study, i.e., h214, having a T60 of 
just above 0.2 s.

Table 2  Metrics for the Gym RIR

The best error values are underlined

T20 �T 20 T30 �T 30 T60 �T 60

Target 0.8616 – 0.9161 – 1.2257 –

GA 0.6334 0.2282 0.6969 0.2193 0.8117 0.4139

HRTC​ 1.2566 0.3951 1.2597 0.3436 1.2194 0.0063

Colorless 1.2589 0.3973 1.2504 0.3342 1.1900 0.0357

Ours 0.8451 0.0165 0.9714 0.0552 1.1355 0.0902

C80 �C80 D50 �D50 ts �ts

Target 12.106 – 89.009 – 22.899 –

GA 11.985 0.1208 91.194 2.1848 19.343 3.5560

HRTC​ 7.8183 4.2877 79.402 9.6070 38.346 15.447

Colorless 2.7802 9.3258 56.329 32.679 77.035 54.135

Ours 12.126 0.0200 88.912 0.0974 23.079 0.1805
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Here, all the baseline methods  appear to fail at mod-
eling the target room (Figs.  10 and 11). In particular, 
the IRs shown in Fig. 12 exhibit a few sparse taps, being 
thus far from resembling a real RIR. Since the backward-
integrated energy abruptly decays with every peak, this 
results in a staircase-like behavior in the early portion of 
the EDC depicted in Fig. 10.

Facing the same difficulties, the proposed optimiza-
tion method takes more gradient steps compared to the 
previous test case, converging at iteration 992 with a loss 
function two orders of magnitude lower than the starting 
value. In Fig. 10, the resulting EDC (dashed orange line) 
closely follows that of the target RIR (solid black line) 
until the two reach approximately −45 dB. Still, a direct 
comparison between EDCs in the range of −45 to −70 dB 
is not entirely reliable since the RIR has so little energy 
that background and sensor noise take on a much more 
relevant role when it comes to integrating the energy of 
the measured signal.

Overall, the proposed optimization method proves 
to perform well in fitting the RIR under scrutiny, with 
Table 4 reporting an error of 4.7 ms, 1.8 ms, and 12.6 ms 
when it comes to the three reverberation times. Further-
more, �C80 is 0.41 dB, �D50 is 0.13%, and �ts is 62.5 µs. 
As in Section 5.5, the only metric for which the proposed 
method shows a performance worse than one of the 
baselines is the T60 . As a matter of fact, the HRTC is the 
only baseline to be once again characterized by a lower 
�T60 , with a value of 5.2 ms.

Fig. 7  Hallway (h270) EDCs

Fig. 8  Hallway (h270) EDPs

Fig. 9  Hallway (h270) IRs. The time axis is limited to the T60 for visual clarity
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5.8 � Excluding the EDP loss term
In developing our method, we noticed that using only the 
EDC loss function leads to ill-behaved IRs. Namely, we 
found that, while closely matching the desired EDC, the 
IR of an FDN trained with � = 0 , i.e., using only LEDC , 
tends to exhibit an unrealistic echo distribution com-
pared to the RIRs of real-life environments. In this sec-
tion, we compare the results of our differentiable FDN 
trained without Soft EDP regularization with those pre-
sented in Section 5.6 obtained using the composite loss 
function in (8). For conciseness, we limit our analysis 
to the Hallway RIR (h270); results obtained with other 
RIRs are comparable to what is shown below.

When excluding the EDP loss term from (8), the NMSE 
between true and predicted EDCs  (10) is comparable 
with that of the proposed method, totaling 2.8× 10−3 
( � = 0 ) and 3.4 × 10−3 ( � = 0.1 ), respectively. Yet, the 
MSE between true and predicted EDPs  (17) is 0.342, 
i.e., two orders of magnitude higher than the 6.8× 10−3 
reported in Table 1 for the proposed method. This can be 
observed in Fig. 13b, showing that the echo density when 
� = 0 (dash-dotted purple line) is far from the desired 
profile (solid black line). The target RIR and the proposed 
method (dashed orange line) produce an EDP with values 
consistently around one, indicating dense reverberation. 
On the contrary, the FDN trained without Soft EDP reg-
ularization yields an EDP with values below 0.5, signal-
ing an uneven echo density due to the presence of a few 
prominent reflections [38]. This observation is confirmed 
by the IR shown in Fig. 13a that exhibits an exponentially 
decaying cluster of four taps periodically peaking above a 
denser reverberation tail with negative polarity.

Excluding the EDP loss term means solving a mini-
mization problem with no constraints discouraging 
the model to use just a small number of delay lines to 

capture the overall EDC behavior. Since FDNs extend a 
parallel comb-filter structure, we believe that the behav-
ior observed in Fig.  13a is related to the well-under-
stood problem occurring when only some delay lines 
are strongly excited and recirculated, which, in turn, 
aggravates the comb-like behavior of the delay network, 
ultimately resulting in an unpleasing metallic sound qual-
ity [18, 41].

5.9 � Soft EDP approximation
Finally, we discuss the approximation capabilities of the 
proposed Soft EDP function introduced in Section 4.5.2. 
Figure 14 shows the non-differentiable EDP (solid black 
line) defined in (11) against several Soft EDP approxima-
tions of the three RIRs considered in the present study. 
We test various scaling parameters κ , namely, 102 , 103 , 
and 104 , along with the proposed time-varying κn linearly 
increasing from 102 ( n = 0 ) to 105 ( n = LT60 − 1 ). We 
depict the profiles only for time indices below the T60 , as 
this range is the one considered when training the FDNs.

In Fig.  14, we may notice that κ = 102 yields a poor 
approximation of the reference EDP beyond the very 
first few ms. We also observe that κ = 103 and κ = 104 
provide relative improvements. However, after some 
time, the approximation starts to degrade in a similar 
fashion as for κ = 102 . Conversely, the proposed Soft 
EDP with time-varying scaling (dashed orange line) is 
able to closely match the non-differentiable reference 
profile all the way up to the T60 in Fig. 14a, while grace-
fully combating gradient vanishing (see Section  4.5.2). 
Notably, however, Fig.  14c shows that the approxima-
tion in the very last portion of the longest RIR consid-
ered, i.e., Gym (h052), significantly differs from the 
reference profile. To a lesser extent, this is also notice-
able in Fig.  14b. Nevertheless, it is worth mentioning 

Table 3  Metrics for the Hallway RIR

The best error values are underlined

T20 �T20 T30 �T30 T60 �T60

Target 0.5289 – 0.6010 – 0.6067 –

GA 0.4200 0.1089 0.4233 0.1777 0.4329 0.1738

HRTC​ 0.6362 0.1072 0.6236 0.0226 0.6168 0.0101

Colorless 0.7007 0.1717 0.6556 0.0546 0.6335 0.0268

Ours 0.4749 0.0540 0.5160 0.0850 0.5975 0.0092

C80 �C80 D50 �D50 ts �ts

Target 14.079 – 90.691 – 20.116 –

GA 15.502 1.4223 92.106 1.4147 18.365 1.7514

HRTC​ 11.412 2.6678 88.246 2.4453 20.793 0.6767

Colorless 8.327 5.7520 77.850 12.841 31.269 11.152

Ours 13.759 0.3204 90.856 0.1648 20.075 0.0406
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that, around the estimated T60 , the energy of the RIR is 
already almost entirely vanished, and the EDP itself suf-
fers from statistical uncertainty due to sensor and 16-bit 
quantization noise.

5.10 � Limitations
In this work, we focused on two important perceptual 
characteristics of room impulse responses: integrated 
energy decay and echo density. While rendering these 
time-domain features is key for any artificial reverbera-
tion algorithm that aims to be realistic, by themselves, 
Schroeder’s EDC and Abel and Huang’s EDP are not 
enough to comprehensively model the perceptual quali-
ties of reverberation. In fact, it is well known that fre-
quency- and time-frequency features play a crucial role 
in room acoustic simulation [4, 39].

However, Figs.  15, 16, and 17 show that none of the 
FDNs considered in the present study manages to cap-
ture the magnitude frequency response of the target 
RIRs. Likewise, Fig.  18 reveals a significant discrepancy 
between the target Energy Decay Relief (EDR) [49] and 
those of the FDN models.

Such a conspicuous mismatch entails that the output 
signals of the FDNs sound different not only from one 
another but also from the corresponding input signal 
convolved with the target RIR. In turn, this undermines 
the reliability of any perceptual test assigning similar-
ity scores to each method with respect to the target, as 
subjective judgments would be significantly influenced 
by differing spectro-temporal coloration and decay. In 
this respect, pilot experiments proved inconclusive, 

Fig. 10  Pizzeria (h214) EDCs

Fig. 11  Pizzeria (h214) EDPs

Fig. 12  Pizzeria (h214) IRs. The time axis is limited to the T60 for visual clarity
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highlighting the need for further investigation into time-
frequency modeling.

After all, matching the spectro-temporal characteris-
tics of the target RIRs is not among the objectives of the 
parameter selection/tuning algorithms considered in the 
present study. Moreover, in this work, we mainly focused 
on time-invariant frequency-independent FDN proto-
types. This holds true for proposed and baseline meth-
ods but GA, whose fitness function consists of a L1-loss 
between MFCCs. Still, despite considering cepstral fea-
tures, the result obtained with GA is far from resembling 
the reference spectro-temporal behavior. This evidences 
that it is not straightforward to accurately capture both 
time- and frequency-domain characteristics through an 
optimization process, even when including dedicated 

absorption and tone correction filters in the FDN proto-
type (cf. Fig. 3).

Although said filters can be implemented in a differ-
entiable fashion, the poor performance of GA points out 
that extending the cost function (8) to the frequency-
dependent case may not be sufficient, ultimately suggest-
ing that a more thorough and comprehensive study is 
necessary to accomplish the goal. We leave such an inves-
tigation for future work.

6 � Conclusions
In this work, we proposed a method for optimizing 
every parameter of a time-invariant frequency-inde-
pendent feedback delay network (FDN) so as to match 
the reverberation of a given room through perceptually 

Table 4  Metrics for the Pizzeria RIR

The best error values are underlined

T20 �T20 T30 �T30 T60 �T60

Target 0.1643 – 0.1794 – 0.2062 –

GA 0.1172 0.0471 0.1235 0.0559 0.1417 0.0645

HRTC​ 0.2286 0.0643 0.2185 0.0391 0.2114 0.0052

Colorless 0.2668 0.1026 0.2557 0.0764 0.2367 0.0306

Ours 0.1689 0.0047 0.1811 0.0018 0.1936 0.0126

C80 �C80 D50 �D50 ts �ts

Target 30.988 – 99.382 – 7.1698 –

GA 40.683 9.6950 99.799 0.4170 6.4524 0.7174

HRTC​ 24.860 6.1277 98.611 0.7708 9.4454 2.2756

Colorless 21.849 9.1389 96.895 2.4862 10.749 3.5798

Ours 30.576 0.4123 99.250 0.1322 7.2323 0.0625

Fig. 13  a IR and b EDP obtained by training the FDN without EDP regularization term ( � = 0)
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Fig. 14  Non-differentiable EDP (Reference) compared with the proposed Soft EDP function for different values of the Sigmoid scaling parameter
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meaningful metrics. The main contributions are the 
following: 

	 i.	 We introduced a differentiable FDN with learnable 
delay lines.

	 ii.	 We developed a novel optimization framework for 
all FDN parameters based on automatic differen-
tiation.

	iii.	 We applied gradient-based optimization with the 
objective of matching selected acoustic features of 
measured RIRs.

	iv.	 We presented an innovative use of established 
perceptually motivated acoustic measures as loss 
terms.

	 v.	 We proposed a differentiable approximation of 
the well-known normalized Echo Density Profile 
named Soft EDP.

In particular, we presented a new differentiable FDN 
that is characterized by learnable delay lines realized 
exploiting operations in the frequency domain. Thus, 
we jointly trained all FDN parameters via backpropaga-
tion taking into account a composite loss consisting of 
two terms: the normalized mean square error between 
target and predicted backward-integrated EDCs and 
the mean square error between target and predicted 
Soft EDPs. We evaluated the proposed method on three 
real-world RIRs taken from a publicly available dataset, 
and we demonstrated that the Soft EDP term is essen-
tial for obtaining an IR that resembles a realistic RIR. 
Finally, we tested our approach against three baseline 
methods considering widespread metrics, including 
reverberation time, clarity, definition, and center time. 
Overall, the proposed approach was able to outperform 

Fig. 15  Magnitude of the frequency response of the Gym RIR (h052) 
and corresponding FDN transfer functions

Fig. 16  Magnitude of the frequency response of the Hallway RIR 
(h270) and corresponding FDN transfer functions

Fig. 17  Magnitude of the frequency response of the Pizzeria RIR 
(h214) and corresponding FDN transfer functions
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the baseline methods by a large margin across different 
metrics.

Future work includes the application of the proposed 
framework to frequency-dependent FDNs, which are 
able to account for a frequency-specific decay in time, 
or to multiple-input multiple-output (MIMO) delay 
networks.
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