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maintaining a low error rate for different noisy conditions.
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1. INTRODUCTION

Speech/nonspeech detection is simply the task of discrimi-
nating noise-only frames of a signal from its noisy speech
frames. In the literature, this process is usually known as
voice activity detection (VAD) and it becomes an important
problem in many areas of speech processing such as real-time
noise reduction for speech enhancement, speech recognition,
digital hearing aids, and modern telecommunication sys-
tems. In multimedia communications, silence compression
algorithms are usually applied to reduce the average trans-
mission rate during silence periods of speech. These com-
pression algorithms are also based on speech/silence detec-
tion and they allow the speech channel to be shared with
other information so that the capacity of channel can be
improved. Furthermore, VAD is an essential component in
variable rate speech coders to achieve efficient bandwidth re-
duction without speech quality degradation. Several meth-
ods that trade off the accuracy, delay, perceptual quality, and
computational complexity have been proposed in the litera-
ture to deal with the problem of speech/nonspeech detection.

A silence compression speech communication system
with VAD was standardized by ITU-T Recommendation
G. 729 [1, Annex B]. It uses a feature vector consist-
ing of four parameters: full-band energy, low-band energy,

zero-crossing rate, and a spectral measure for the multi-
boundary decisions. Based on the difference between each
parameter and its respective long-term average, the fourteen
boundary decisions are defined. The initial voice activity de-
cision for each frame is set to 1 if one of these multibound-
ary decisions in the space of the four difference measures is
true. Final decision is made by smoothing the initial decision
in four stages (i.e., hangover scheme). A voice detection al-
gorithm based on a pattern recognition approach and fuzzy
logic was proposed for wireless communications in noisy en-
vironments [2]. This algorithm uses the same acoustic pa-
rameters adopted by G.729 for feature extraction.

A VAD standardized for the GSM cellular communica-
tion system is the ETSI speech coder [3]. Based on the spec-
tral estimation and periodicity detection, this adaptive multi-
rate speech coder (AMR) specifies two options for VAD to be
used in DTX (discontinuous transmission) mode. For appli-
cations like mobile phones and packet networks, discontinu-
ous transmission (DTX) mode is usually required for lower
bit-rate transmission speech coder. In AMR Option 1, the
input signal is divided into subbands and the level of sig-
nal in each band is calculated. The VAD decision is made
by using the outputs from pitch detection, tone detection,
complex signal analysis modules, and signal level. A hang-
over scheme is also added before the final decision is made.
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In AMR Option 2 the input signal is first converted into
frequency domain using discrete Fourier transform (DFT).
Then, based on the channel energy estimator, channel SNR
estimator, spectral deviation estimator, background noise es-
timator, peak-to-average-ratio module, and voice metric cal-
culation module, the VAD decision is made.

Apart from the above voice activity detection methods,
most of which are based on the parameters of speech, model-
based VADs have been introduced recently. Formulating the
problem of speech pause detection into a statistical decision
theory, two detectors based on maximum a posteriori prob-
ability (MAP) and Neyman-Pearson test were described in
[4]. A Gaussian statistical model which assumes that the dis-
crete Fourier transform coefficients of speech and noise are
asymptotically independent Gaussian random variables was
proposed in [5, 6]. Assuming the distributions of speech and
noise signals to be Laplacian and Gaussian models, the au-
thors in [7] developed a soft voice activity detector by de-
composing the speech signal into discrete cosine transform
(DCT) components.

Noise is a well-known factor which degrades the qual-
ity and intelligibility of speech in many applications’ areas.
To reduce the noise level without affecting the quality of
speech signals, a noise reduction algorithm is usually em-
ployed. Spectral subtraction is a widely used approach in
practical noise suppression schemes. This scheme usually es-
timates the noise characteristics from the nonspeech inter-
vals of the signal. Therefore, identification of nonspeech pe-
riods is an important and sensitive part of existing noise re-
duction schemes. In this context, accuracy and reliability of
a VAD becomes critical in determining the performance of
noise reduction algorithm. Most papers reporting on noise
reduction refer to speech pause detection when dealing with
the problem of noise estimation. Speech pause detectors are
very sensitive and often limiting part of the systems for the
reduction of noise in speech [8].

A speech pause detection algorithm based on an auto-
correlation voicing detector algorithm was developed in [9].
The algorithm was designed for real-time system and im-
plemented on a DSP platform for the application of speech
enhancement for hearing aids. An adaptive Karhunen-Loéve
transform (KLT) tracking-based algorithm was also pro-
posed for enhancement of speech degraded by additive color
noise [10]. An algorithm, which detects the speech pauses
by tracking the dynamics of the signal’s temporal power
envelope, was proposed in [8]. Sometimes, detection algo-
rithms were designed for specific applications such as noise
suppression [11] and wideband coding [12]. Voice activ-
ity detection algorithms for cellular networks in the pres-
ence of babble noise and vehicular noise were presented
in [13] by adopting the approach used in European digi-
tal mobile cellular standard [14]. Combining the geometri-
cally adaptive energy threshold method (GAET) and least-
square periodicity estimator (LSPE), conversational speech
is separated from silence [15]. A fuzzy polarity correlation
function is also applied to determine speech sections and
background noise in the environment of telephone network
[16].

In this paper, a method to discriminate the active and in-
active periods of speech signals corrupted by unknown type
and unknown level of noise is presented. It is assumed that
intervals of the inactive segments can be short as well as
long (i.e., while some active segments are located very closely,
some active segments may be separated by longer periods).
Taking the simplicity of binary Walsh transform as an advan-
tage, the proposed speech/nonspeech detection algorithm is
developed. First, the signal to be classified is modified em-
ploying binary Walsh basis functions. The minimal num-
ber of basis functions to be applied is determined by using
a technique for the selection of wavelet decomposition at
natural scale [17]. Using the statistics of the modified sig-
nals, which are highly informative about the characteristics
of noisy speech frames as well as noise only frames, classifi-
cation is performed with a decision scheme.

Unlike other VAD methods, in which the decision is
made on a frame-by-frame basis, the proposed method in-
stantaneously obtains the set of consecutive frames as speech
and nonspeech segments. The effectiveness of the proposed
method is evaluated by conducting the objective perfor-
mance on different types of noise with varying SNRs using
the criteria of error rate, speech/nonspeech detection rates,
and false alarm rate. ROC analyses have been shown to com-
pare the standardized algorithms: G.729 and AMR Option 1
and Option 2. Experimental results show that the detection
accuracy of the proposed algorithm is high for both speech
and nonspeech frames regardless of noise levels.

2. PROPOSED ALGORITHM

The block diagram of the proposed speech/nonspeech detec-
tion algorithm based on the binary Walsh basis functions
is depicted in Figure 1. First, the signal is represented us-
ing FFTs. These representations are then modified by Walsh
basis functions before reconstructing. The number of basis
functions to be applied is determined using SVD. Finally,
speech/nonspeech periods are detected from the modified
signals utilizing a decision scheme. Details of the algorithm
are explained in the following sections.

2.1. Modification of signal

The noisy input signal is reconstructed as a modified se-
quence based on an analysis/synthesis scheme described in
[18]. Firstly, the input signal x(n) of sampling frequency
8 kHz is multiplied by a Hanning window to yield succes-
sive windowed segments of x;(n). These window segments
are transformed into the spectral domain by using FFTs of
size 128. In this manner, a time varying spectrum X,(n, k) =
|X;(n, k)|e/*%) withn = 0,1,...,N—landk =0,1,...,N—
1 for each windowed segment is computed. Here, X;(n, k)
denotes the spectral component of the noisy input signal at
frequency index k and time index n. Before synthesis, each
sth windowed segment is modified as the weighted sum of
the magnitude |X;(n, k)| using binary Walsh basis functions.
Using basis functions, the number of parameters to track
along the variations between active and inactive regions of
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FIGURE 1: Block diagram of the proposed algorithm.

the noisy signal can be lessened. In this context, SVD is used
to determine the minimal number of Walsh basis functions
to be applied. The detailed procedure for the identification of
the minimal number of Walsh basis functions is described in
the next section. Applying the ith basis function ¢;, a modi-
fied sequence, y;(n), for each windowed segment can be ob-
tained as

N-1
ys(n) = > [Xi(m k)| - gilk). (1)
k=0

All the modified segments of S are then concatenated pro-
ducing an output signal y(n) by showing the time-varying
magnitude responses:

S—-1
yi(n) = > yi(n—sN). ()

s=0

2.2. Determination of minimal Walsh basis functions

The Walsh transform is a matrix consisting of a complete
orthogonal function set having only two values +1 and —1
over their definition intervals. The motivation for using
Walsh transform rather than other transforms is its com-
putational simplicity giving a realistic processing time. The

where u = 0,1,...,N — 1, N = 24, and b;(x) is the ith bit
value of x. In this context, the Walsh functions are arranged
into sequence order, the number of zero crossings of Walsh
function per definition interval, to obtain a set of basis func-
tions. The number of zero crossings increases with the order
of basis functions W = [¢o, ¢1,..., dn-1].

It is very important to select the proper basis functions
so that variations between the dynamics of speech and non-
speech can be captured more precisely. A method to select
the global natural scale in discrete wavelet transform [17]
is adopted to determine the required number of basis func-
tions. This method adaptively detects the optimal scale using
SVD while decomposition is being carried out. Consider an
input noisy speech signal x of length 'V, and y4(v) being its
modified sequence obtained applying the basis functions of
order d into (1) and (2).

Modified sequences { yd(v)}dD;Ol can be represented in a
matrix P of size D x V. To determine the order of basis func-
tions with dominant eigenvalues, the SVD of the matrix P is
calculated adaptively starting with the first two orders (i.e.,
¢o and ¢;) while adding the higher orders.

In order to determine the number of basis functions to
be applied, we studied the probability distributions of ba-
sis function orders as a function of SNRs. In this analysis,
speech signals from TIDIGITS database spoken by male and
female speakers were used. If there exist long interword si-
lences, they were removed first. Silence segments of different
sizes were then introduced to have varying intervals between
active regions. To generate the noisy signals, the commonly
used white Gaussian noise was artificially added with SNR
levels of 20 dB, 10 dB, 5 dB, and 0 dB. Here, SNR is defined as

(4)

Ny 2
SNR = 10log,, {Z‘ls(”)}

zﬁ,\l1 v2(n)

where s is speech, v is noise, and N; and N, are the lengths of
speech and noise signals, respectively.

Figure 2 displays the probability of occurrence of a ba-
sis function order, termed as coverage, for changing levels of
SNR. It is observed that dominant eigenvalue is located only
within the first few basis functions. In particular, the mini-
mal order for highly noisy signals of 5dB and 0 dB is found
to be 1. And for the signals at high SNR of 20 dB, 10 dB, and
clean, the dominant eigenvalue is found when the order of
basis function is 3. Hence, the lower-order basis functions
of Walsh transform matrix are highly informative and they
should be used in modification process. Moreover, it is found
that higher-order coefficients carry less weight in terms of
their magnitude and may not be evident to interpret a large
Walsh kernel [19].
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In practice, it is not possible to obtain any a priori in-
formation about noise level and noise type. Hence, the pro-
posed algorithm defines the minimal order of basis functions
Nmin as 3 throughout the experiments. In the original algo-
rithm [17], optimal scale is defined as the average of the de-
tails from the first level to the natural scale, the level associ-
ated with the dominant eigenvalues. However, this averaging
may introduce clipping effect for the signals with low speech
level. To avoid this effect, a shifting operator which swaps the
right and left halves of the basis function coefficients is ap-
plied first. Then a good estimate of the binary Walsh basis
function at dominant eigenvalue is defined as

¢o — S CS ()
max { | ¢ — SV CS (¢1) |}

(5)

where Npin = 3 is the largest-order relating the most promi-
nent eigenvalues and CS(-) is the shifting operator. This new
basis function ¥ provides sharper representation and higher
discriminating features. It is also found that identification
between noisy speech periods and noise only components
with narrow intervals become more apparent in the modi-
fied sequence obtained by using .

For length N, the function ¥ consists of 1’s for n =
0,...,N/2 — 1 followed by —1’s for n = N/2,...,3N/4 — 1
and s for n = 3N/4,...,N — 1, where # is the sample index.
Substituting the values of ¥ in (1), we find

N/2-1 N-1 3N/A-1
ys(n)= > |Xs(n,k)|+< > Xk |- D |Xs(n,k)|).

k=0 k=3N/4 k=N/2
(6)
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In order to compare ¥ with ¢,, we replace ¢; with ¢, and
rewrite (1) as

N-1
ys(n) = > | X(n k). (7)
k=0

Using (7), the difference between the “short-term area under
the magnitude spectrum” for the noisy speech case and the
noise only case (specially for white Gaussian noise) will be
less due to the sum taken over the whole 0—4 kHz frequency
band. Based on the expressions of (6) and (7), we can no-
tice that the discrimination between speech and nonspeech
segments will be higher for using ¥ compared to ¢,.

To demonstrate the effectiveness of the proposed modi-
fication presented above, an example is shown in Figures 3—
5. A clean signal is shown in Figure 3. The modified version
of this signal in white Gaussian noise at 5dB SNR using 0-
order basis function ¢ and estimated basis function v is also
shown in Figures 4 and 5, respectively. It is observed from
Figures 4 and 5 that discriminating ability of the modified
signal y,, as obtained using v is better for the speech and
nonspeech frames due to its deeper and sharper representa-
tion.

It seems that the function y is more efficient to cap-
ture the intrasegment variation between the noisy speech seg-
ments and noise only segments of narrow interval.

2.3. Decision scheme

First, 0-order basis function, ¢ is used to produce a modified
sequence, yo(v), to get the global information of the original
noisy signal. This modified sequence is used as a reference or
pilot signal as in the area of telecommunication. In telecom-
munication, a pilot signal is usually transmitted over a com-
munication system for supervisory, control, or reference pur-
poses. Carrying the local characteristics, another modified
signal, y,,(7), is formed using the new basis function y. From
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this sequence, locations and durations of speech active and
inactive periods can be captured more precisely. In this way,
the approximate locations of active and inactive frames are
first determined from the modified signal, yo(v). Then, the
accuracy of these reference decisions are improved by using
the second modified signal, y,,(7), containing the detailed in-
formation. Applying the reconstructed signals yy and y,,, the
procedure of detection scheme can be described as follows.

(i) Extract two sequences of local minima, {ocoi}le and
{ami}tt,, where L is the number of frames, from every 4 ms
frame of yy(v) and y,(v) for which it is assumed that the
initial 200 ms consists of noise only period.

(ii) Set thresholds, 7y and 7,,, for each minima sequence
which are obtained using a simple statistics as 7o = yo — k0o
and T, = pm — k8, where po and §y are the mean and the
standard deviation of the first set of local minima, and py,
and §,, are those of the second set of local minima while x is a

positive value. After experimenting with the modified wave-
forms for a number of clean as well as noisy speech data, « is
set to be 0.75.

(ii1) Declare a frame as an inactive frame if either ap; <
To OF Qi < Ty In this way, the nonactive frame indices are
obtained from y,(7) and y,,(v) as R and 7

(8)

R = {r,r,...,ro},
T ={ti,t...,to}.

(iv) Combine the two initial boundary decisions as fol-
lows:

C=RNT, 9)

where C={c}, c2,...,¢} is the set of elements common to R
and 7. Considering that the members of C are the indices
of the inactive frames, the final decision for detecting speech
and nonspeech frames are obtained.

Here, we decide that there exist inactive frames whenever
some or all of the prominent local minima obtained from
the first modified signal yo(v) would coincide with the local
minima found from the second modified signal y,,(v). For
those detected frames when their corresponding local min-
ima are not obtained from both modified sequences of yo(v)
and y,,(v) are discarded as outliers.

3. EXPERIMENTAL RESULTS AND COMPARISON

In this section, the results and objective evaluation of the pro-
posed method is presented. The detection result for a noisy
speech signal is illustrated in Figure 6, where the signal is at
0dB SNR and embedded in white Gaussian noise. The re-
sults obtained by the proposed detection scheme are shown
together with manually determined actual speech and non-
speech detection results. It is seen that the detection accuracy
is high for both speech and nonspeech periods. And thus the
proposed algorithm achieves a good performance level.

3.1. Evaluation data

To evaluate the efficiency of the proposed method, its perfor-
mance was compared with G.729 VAD and AMR Options 1
and 2. For the comparison purpose, the speech signals from
11 speakers of TIDIGITS database were extracted. Three sig-
nals from each of these male and female speakers were con-
catenated to generate the signals of 8 s to 11 s long. Silence or
pause segments of varying intervals were then inserted be-
tween the active segments as described in Section 2.2. Test
sequences consist of nearly 70% of active speech components
and 30% of inactive speech components. The silence seg-
ments of very short as well as long durations are also included
in the test sequences. For reference decisions, active and in-
active frames of all clean signals were marked manually. Five
types of noise, white Gaussian, babble, car, street, and train,
were added to the original signals with different SNRs 20 dB,
10dB, and 0dB.
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TasLE 1: Comparison of speech detection rates, nonspeech detection rates, and error rates of the proposed method to standard methods
(G.729, AMRI, and AMR?2) for different levels of SNRs in various noisy environments.

Speech detection DS(%) Nonspeech detection DNS(%) Error rate E(%)
Noise SNR | Proposed G.729 AMRI AMR2 | Proposed G.729 AMRI AMR2 | Proposed G.729 AMR1 AMR2
20dB 89.20 96.79  96.26 97.07 95.48 31.51 61.09 48.21 9.81 20.85  12.41 15.56
White 10dB 88.48 90.42  93.03 92.01 95.13 4221  45.11 52.52 10.53 22.74  18.68 18.12
0dB 87.07 67.09 81.32 60.57 81.26 62.37 56.98 77.97 15.97 34.72 24.72 35.49
20dB 88.76 97.65 97.84 98.06 96.40 19.19 62.61 45.95 9.76 23.55 11.04 15.62
Car 10dB 88.01 95.42 96.36 93.64 92.47 17.04 51.21 50.31 11.74 25.59 15.30 17.76
0dB 87.37 91.55  81.02 64.46 70.35 16.57  55.53 70.50 18.28 28.67  26.10 34.92
20dB 88.34 97.02  98.20 97.82 95.45 19.60  56.84  42.51 10.33 23.84  12.32 17.17
Babble 10dB 89.11 93.85 98.44 95.28 84.44 18.58  29.09  40.81 13.48 26.91 19.81 19.69
0dB 86.19 90.46 90.85 85.87 56.32 14.44 31.02 37.46 22.74 29.99 25.04 27.23
20dB 88.55 96.41 97.33 98.37 95.20 21.85 66.16 47.36 10.31 23.90 10.45 15.07
Street 10dB 89.60 92.49 97.36 93.12 83.51 17.28 45.98 51.95 12.95 27.75 15.85 17.79
0dB 84.51 88.81 86.80 69.22 65.61 13.75 46.46 67.87 21.55 31.26 23.89 31.71
20dB 88.86 97.22 97.20 98.66 95.85 23.47 67.40 50.69 9.84 22.91 10.20 13.85
Train 10dB 88.10 9347  96.44 96.08 92.40 25.50  60.08 54.42 11.50 24.66  12.68 14.81
0dB 84.83 90.92  86.10 78.88 82.87 14.22  62.16 70.22 16.75 29.65  19.91 23.89
Noisy speech Manual detection
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FIGURE 6: (a) Noisy speech at 0 dB SNR in white Gaussian noise, (b) manual detection, (c) estimated detection.

3.2. Performance evaluation

As performance criteria, the speech detection rate, non-
speech detection rate, and error rate were employed. Speech
and nonspeech detection rates are defined as the ratio of
the correctly classified speech frames to the total number of
speech frames and the ratio of the correctly classified non-
speech frames to the total number of nonspeech frames, re-
spectively. The error rate is defined as the ratio of the in-
correctly classified frames to the total number of frames.
In Table 1, speech/nonspeech detection rates and error rates

of the proposed method are compared to the standardized
VADs: G.729, AMR Options 1 and 2 under different noise
sources and SNR levels. Speech detection accuracy of ITU
G.729, ETSI AMRI, and AMR2 decreases with increasing
noise levels in all noise types. Proposed binary Walsh trans-
form based method can consistently detect the speech frames
with almost constant rate regardless of noise types and lev-
els. Considering the nonspeech detection rates, G.729 is the
worst with an accuracy of less than 20% for most of the time.
Although AMR1 and AMR? yield better detection rate than
G.729, the proposed method is found to be the best one in
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FIGURE 8: Performance comparison for average speech detection
rate of the proposed method and standard VADs (G.729, AMRI,
and AMR?2) in different backgrounds with varying SNRs.

the problem of nonspeech detection for all noise conditions.
Moreover, the proposed method can detect both speech and
nonspeech frames with least error probabilities for all levels
of SNRs in all environments.

The results of the performance comparisons for average
rates of speech detection, nonspeech detection and error of
the proposed method to ITU G.729, AMR Options 1 and 2
in five background noise (white, babble, car, street, and train)
and SNR ranging from 20dB to 0 dB are shown in Figures
7, 8, and 9. Average speech detection rates of the proposed

100

80 1

60 4

Error rate (%)

40 A

—— Proposed
-m- G.729
A AMR1
-X- AMR2

FIGURE 9: Performance comparison for average error rate of the
proposed method and standard VADs (G.729, AMRI1, and AMR2)
in different backgrounds with varying SNRs.

method is nearly constant for varying SNRs of 20 dB, 10 dB,
and 0 dB with their respective values of 88.74%, 88.66%, and
85.99%. Although the speech detection rates of above stan-
dardized methods are high in 20 dB, their performance is de-
creased with decreasing SNRs. In terms of nonspeech detec-
tion rates, G.729 yields the lowest rates followed by AMRI.
The nonspeech detection rates of the proposed algorithm
are the highest although AMR2 achieves improved rates over
G.729 and AMRI. The proposed method achieves signifi-
cantly the lowest error rates (10.01%, 12.04%, and 19.05%)
for SNRs of 20dB down to 0dB. Error rates of AMR?2 are
found to be dependent on the noise levels, although it offers
moderate nonspeech detection rates over G.729 and AMRI.

3.3. Computational considerations

The proposed algorithm is implemented in Matlab whereas
the other algorithms are implemented using C. The average
execution time of the proposed algorithm, G. 729, AMR 1,
and AMR II running on Pentium IV (2.4 GHz) with 512 MB
RAM are 4.2655,2.413's,7.353, and 7.316 s, respectively. The
minimum processing time of these algorithms are also found
as 3.563s, 2.047s, 5.594s, and 5.625s. The maximum exe-
cution time of the proposed algorithm is 5.156 s and that of
G.729, AMR 1, and AMR II are measured as 2.875s, 9.734 s,
and 9.5 s. It is found that although the proposed algorithm is
implemented in Matlab, it takes the least computational time
except the G.729 algorithm.

4. RECEIVER OPERATING
CHARACTERISTICS ANALYSIS

In this section, the detectability and discriminability of the
proposed method is verified in terms of receiver operating
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FIGURE 10: Receiver operating characteristic analysis for proposed
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FIGURE 11: Receiver operating characteristic analysis for proposed
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characteristics (ROC) analysis. In signal detection, the rela-
tionship between detection and false alarm probabilities is
often characterized by ROC curves. Only the subset of speech
database in car noise, as described in Section 3, is used in
this ROC analysis. Figures 10, 11, and 12 show the results of
ROC analysis at 20 dB, 10 dB, and 0 dB SNRs. For each noise
level, nonspeech hit rate (nonspeech detection rate) and false

FIGURE 12: Receiver operating characteristic analysis for proposed
method, ITU G.729, AMR1, and AMR?2 at 0 dB with car noise.

alarm rate (1-speech detection rate) are determined over the
proposed method, G.729, ETSI AMR1, and AMR2. The op-
erating points of G.729, AMR1, and AMR?2 shift to the right
in ROC plane with decreasing SNRs. However, the operating
point of the proposed method can maintain an almost con-
stant false alarm rate.

False alarm rates of AMR2 increases with decreasing
SNR although its nonspeech hit rates become higher. Among
these standard VADs, G.729 maintains most of the lowest
false alarm rates. However, it also has poor nonspeech hit
rates for all SNR levels. For more noisy conditions, the non-
speech detectability of AMR?2 is better than AMRI. Obvi-
ously, the proposed method significantly improves the non-
speech hit rate over the other methods with a nearly con-
stant false alarm rates at changing environments. For a given
nonspeech hit rate, the proposed scheme can detect the sig-
nal with the lowest false alarm rate. In addition, for a given
false alarm rate, the highest nonspeech hit rate can be ob-
tained by our method. From this objective evaluation, it can
be concluded that discriminability of the proposed method
between speech and noise is found better compared to the
standardized methods.

5. CONCLUSION

In this paper, the problem of speech/nonspeech detection in
the presence of noise is addressed. A method, which is based
on the binary Walsh functions is developed. The basic idea is
to reconstruct the noisy speech signal as modified sequences
from which speech and nonspeech frames are detected. The
main advantage of this method is its very low computational
complexity. The Walsh basis functions make the proposed al-
gorithm efficient, simple, fewer parameters to be optimized,
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and faster in implementation. Thus the algorithm is appli-
cable in practical situations where processing time is critical.
Experimental results indicate that the proposed method can
detect speech as well as nonspeech frames with lower error
rates across different types of noise with varying SNRs. ROC
analysis also shows that the proposed method consistently
outperforms G.729, AMR1, and AMR2 in terms of discrim-
inability between speech and noise. Since the computational
complexity of the algorithm is relatively low, the algorithm
can be applied in the areas such as real time noise cancella-
tion systems and noise reduction for enhancement of speech
signals.
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