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Recent research on the TIMIT corpus suggests that longer-length acousticmodels aremore appropriate for pronunciation variation
modelling than the context-dependent phones that conventional automatic speech recognisers use. However, the impressive speech
recognition results obtained with longer-length models on TIMIT remain to be reproduced on other corpora. To understand the
conditions in which longer-length acoustic models result in considerable improvements in recognition performance, we carry out
recognition experiments on both TIMIT and the Spoken Dutch Corpus and analyse the differences between the two sets of results.
We establish that the details of the procedure used for initialising the longer-length models have a substantial effect on the speech
recognition results. When initialised appropriately, longer-length acoustic models that borrow their topology from a sequence of
triphones cannot capture the pronunciation variation phenomena that hinder recognition performance the most.
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1. INTRODUCTION

Conventional large-vocabulary continuous speech recognis-
ers use context-dependent phone models, such as triphones,
to model speech. Apart from their capability of modelling
(some) contextual effects, the main advantage of triphones
is that the fixed number of phonemes in a given language
guarantees their robust training when reasonable amounts
of training data are available and when state tying methods
are used to deal with infrequent triphones. When using tri-
phones, one must assume that speech can be represented as
a sequence of discrete phonemes (beads on a string) that can
only be substituted, inserted, or deleted to account for pro-
nunciation variation [1]. Given this assumption, it should be
possible to account for pronunciation variation at the level of
the phonetic transcriptions in the recognition lexicon. Mod-
elling pronunciation variation by adding transcription vari-
ants in the lexicon has, however, met with limited success,
in part because of the resulting increase in lexical confus-
ability [2]. Furthermore, while triphones are able to capture
short-span contextual effects such as phoneme substitution
and reduction [3], there are complexities in speech that tri-
phones cannot capture. Coarticulation effects typically have
a time span that exceeds that of the left and right neighbour-

ing phones. The corresponding long-span spectral and tem-
poral dependencies are not easy to capture with the limited
window of triphones [4]. This is the case even if the feature
vectors implicitly encode some degree of long-span coartic-
ulation effects thanks to the addition of, for example, deltas
and delta-deltas, or the use of augmented features and LDA.
In an interesting study with simulated data, McAllaster and
Gillick [5] showed that recognition accuracy decreases dra-
matically if the sequence of HMMmodels that is used to gen-
erate speech frames is derived from accurate phonetic tran-
scriptions of Switchboard utterances, rather than from se-
quences of phonetic symbols in a sentence-independentmul-
tipronunciation lexicon. At the surface level, this implies that
the recognition accuracy drops substantially if the state se-
quence licensed by the lexicon is not identical to the state
sequence that corresponds to the best possible segmental ap-
proximation of the actual pronunciation. At a deeper level,
this suggests that triphones fail to capture at least some rele-
vant effects of long-span coarticulation. Ultimately, then, we
must conclude that a representation of speech in terms of a
sequence of discrete symbols is not fully adequate.

To alleviate the problems of the “beads on a string” rep-
resentation of speech, several authors propose using longer-
length acoustic models [4, 6–12]. These word or subword
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#-sh+ix sh-ix+n ix-n+#

Figure 1: Syllable model for the syllable /sh ix n/. The model states
are initialised with the triphones underlying the canonical syllable
transcription [8]. The phones before the minus sign and after the
plus sign in the triphone notation denote the left and right con-
text in which the context-dependent phones have been trained. The
hashes denote the boundaries of the context-independent syllable
model.

models are expected to capture the relevant detail, possi-
bly at the cost of phonetic interpretation and segmentation.
Syllable models are probably the most commonly suggested
longer-length models [4, 6–12]. Support for their use comes
from studies of human speech production and perception
[13, 14], and the relative stability of syllables as a speech unit.
The stability of syllables is illustrated by Greenberg in [15]
finding that the syllable deletion rate of spontaneous speech
is as low as 1%, as compared with the 12% deletion rate of
phones.

The most important challenge of using longer-length
acoustic models in large-vocabulary continuous speech
recognition is the inevitable sparseness of training data in
the model training. As the speech units become longer,
the number of infrequent units with insufficient acoustic
data for reliable model parameter estimation increases. If
the units are words, the number of infrequent units may
be unbounded. Many languages—for instance, English and
Dutch—also have several thousands of syllables, some of
which will have very low-frequency counts in a reasonably
sized training corpus. Furthermore, as the speech units com-
prise more phones, increasingly complex types of articula-
tory variation must be accounted for.

The solutions suggested for the data sparsity problem
are two-fold. First, longer-length models with a sufficient
amount of training data are used in combination with
context-dependent phone models [4, 8–12]. In other words,
context-dependent phone models are backed off to when a
given longer-length speech unit does not occur frequently
enough for reliable model parameter estimation. Second, to
ensure that a much smaller amount of training data is suf-
ficient, the longer-length models are cleverly initialised [8–
10]. Sethy and Narayanan [8], for instance, suggest initialis-
ing the longer-length models with the parameters of the tri-
phones underlying the canonical transcription of the longer-
length speech units (see Figure 1). Subsequent Baum-Welch
reestimation is expected to incorporate the spectral and tem-
poral dependencies of speech into the initialised models by
adjusting the means and covariances of the Gaussian com-
ponents of the mixtures associated with the HMM states of
the longer-length models.

Several research groups have published promising, but
somewhat contradictory, results with longer-length acous-
tic models [4, 8–12]. Sethy and Narayanan [8] used the
above described mixed-model recognition scheme, combin-

ing context-independent word and syllable models with tri-
phones. They reported a 62% relative reduction in word er-
ror rate (WER) on TIMIT [16], a database of carefully read,
and annotated American English. We adopted their method
for our research, repeating the recognition experiments on
TIMIT and, in addition, carrying out similar experiments on
a corpus of Dutch read speech equipped with a coarser anno-
tation. As was the case with other studies [4, 9, 10], the im-
provements we gained [11, 12] on both corpora were more
modest than those that Sethy and Narayanan obtained. Part
of the discrepancy between Sethy and Narayanan’s impres-
sive improvements and the much more equivocal results of
others [4, 9–12] may be due to the surprisingly high base-
line WER (26%) Sethy and Narayanan report. We did, how-
ever, also find much larger improvements on TIMIT than on
the Dutch corpus. The goal of the current study is to shed
light on the reasons for the varying results obtained on dif-
ferent corpora. By doing so, we showwhat is necessary for the
successful modelling of pronunciation variation with longer-
length acoustic models.

To achieve the goal of this paper, we carry out and com-
pare speech recognition experiments with a mixed-model
recogniser and a conventional triphone recogniser. We do
this for both TIMIT and the Dutch read speech corpus, care-
fullyminimising the differences between the two corpora and
analysing the remaining (intrinsic) differences. Most impor-
tantly, we compare results obtained using two sets of tri-
phone models: one trained with manual (or manually ver-
ified) transcriptions and the other with canonical transcrip-
tions. By doing so, we investigate the claim that properly ini-
tialised and retrained longer-length acoustic models capture
a significant amount of pronunciation variation.

Both TIMIT and the Dutch corpus are read speech cor-
pora. As a consequence, they are not representative of all
the problems that are typical of spontaneous conversational
speech (hesitations, restarts, repetitions, etc.). However, the
kinds of fundamental issues related to articulation that this
paper addresses are present in all speech styles.

2. SPEECHMATERIAL

2.1. TIMIT

The DARPA TIMIT Acoustic-Phonetic Continuous Speech
Corpus [16] is a database comprising a total of 6300 read
sentences—ten sentences read by 630 speakers that represent
eight major dialects of American English. Seventy percent of
the speakers are males and 30% are females.

Two of the sentences for each speaker are identical, and
are intended to delineate the dialectal variability of the speak-
ers. We excluded these two sentences from model training
and evaluation. Five of the sentences for each speaker origi-
nate from a set of 450 phonetically compact sentences, so that
seven different speakers speak each of the 450 sentences. The
remaining three sentences for each speaker are unique for the
different speakers.

The TIMIT data are subdivided into a training set, and
two test sets that the TIMIT documentation refers to as the
complete test set and the core test set. No sentence or speaker
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Table 1: The syllabic structure of the word tokens in TIMIT and
CGN.

No. of Syllables TIMIT/Proportion (%) CGN/Proportion (%)

1 63.1 62.2

2 22.7 22.6

3 9.3 9.9

4 3.5 3.9

≥ 5 1.4 1.4

Table 2: Proportions of the different types of syllable tokens in
TIMIT and CGN.

Type TIMIT/Proportion (%) CGN/Proportion (%)

CV 31.6 38.0

CVC 23.8 31.4

VC 10.1 12.6

V 7.3 2.2

CVCC 6.1 5.9

CCV 5.9 3.4

CCVC 4.5 3.4

Other 10.7 3.1

appears in both the training set and the test sets. We used
the training set, which comprises 462 speakers and 3696 sen-
tences, for training the acoustic models. The complete test
set contains 168 speakers and 1344 sentences, the core test
set being a subset of the complete test set and containing
24 speakers and 192 sentences. We used the core test set as
the development test set—that is, for optimising the lan-
guage model scaling factor, the word insertion penalty, and
the minimum number of training tokens required for the
further training of a longer-length model (see Section 3.3.2).
To ensure nonoverlapping test and development test sets, we
created the test set by removing the core test set material from
the complete test set. We used this test set, which comprised
144 speakers and 1152 sentences, for evaluating the acoustic
models.

We intended to build longer-lengthmodels for words and
syllables for which a sufficient amount of training data was
available. To understand the relation between words and syl-
lables, we analysed the syllabic structure of the words in the
corpus. The statistics in the second column of Table 1 show
that the large majority of all word tokens were monosyllabic.
For these words, there was no difference between word and
syllable models. In fact, no multisyllabic words occurred of-
ten enough in the training data to warrant the training of
multisyllabic word models. Hence, the difference between
word and syllable models becomes redundant, and we will
hereafter refer to the longer-length models as syllable mod-
els. According to Greenberg [15], pronunciation variation af-
fects syllable codas and—although to a lesser extent—nuclei
more than syllable onsets. To estimate the proportion of syl-
lable tokens that were potentially sensitive to large deviations
from their canonical representation, we examined the struc-
ture of the syllables in the TIMIT database (see the second
column of Table 2). If one considers all consonants after the

Table 3: TIMIT phone mappings. The remaining phonetic labels of
the original set were not changed.

Original label New label

dx d

q —

jh d z

ch t sh

zh z y

em m

en n

eng ng

nx n

hv hh

el l

ih ix

aw aa uw

oy ao ix

ux uw

er axr

ax-h ax

vowel as coda phonemes, 53.7% of the syllable tokens had
coda consonants, and were therefore potentially subject to a
considerable amount of pronunciation variation.

TIMIT is manually labelled and includes manually ver-
ified phone and word segmentations. For consistency with
the experiments on the corpus of Dutch read speech (see
Section 2.2), we reduced the original set of phonetic labels
to a set of 35 phone labels, as shown in Table 3. To deter-
mine the best possible phone mapping, we considered the
frequency counts and durations of the original phones, as
well as their acoustic similarity with each other. Most im-
portantly, we merged closures with the following bursts and
mapped closures appearing on their own to the correspond-
ing bursts. Using the revised set of phone labels, the aver-
age number of pronunciation variants per syllable was 2.4.
The corresponding numbers of phone substitutions, dele-
tions, and insertions in syllables were 18040, 7617, and 1596.

2.2. CGN

The Spoken Dutch Corpus (Corpus Gesproken Nederlands,
CGN) [17] is a database of contemporary standard Dutch
spoken by adults in The Netherlands and Belgium. It con-
tains nearly 9 million words (800 hours of speech), of which
approximately two thirds originate from The Netherlands
and one third from Belgium. All of the data are transcribed
orthographically, lemmatised (i.e., grouped into categories
of related word forms identified by a headword), and en-
riched with part-of-speech information, whereas more ad-
vanced transcriptions and annotations are available for a core
set of the corpus.

For this study, we used read speech from the core set;
these data originate from the Dutch library for the blind.
To make the CGN data more comparable with the carefully
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Table 4: CGN phone mapping. The remaining phonetic labels of
the original set were not changed.

Original label New label

g k

S s j

Z z j

J n j

E: E

Y: Y

O: O

E∼ E

A∼ A

O∼ O

Y∼ Y

spoken TIMIT data, we excluded sentences with tagged
particularities, such as incomprehensible words, nonspeech
sounds, foreign words, incomplete words, and slips of the
tongue from our experiments. The exclusions left us with
5401 sentences uttered by 125 speakers, of which 44% were
males and 56% were females. TIMIT contains some repeated
sentences; it therefore has higher frequency counts of indi-
vidual words and syllables, as well as more homogeneous
word contexts. Thus, we carried out the subdivision of the
CGN data into the training set and the two test sets in a con-
trolled way aimed at maximising the similarity between the
training set and the test set on the one hand, and the training
set and the development test set on the other hand. First, we
created 1000 possible data set divisions by randomly assign-
ing 75% of the sentences spoken by each speaker to the train-
ing set and 12.5% to each of the test sets. Second, for each
of the three data sets, we calculated the probabilities of word
unigrams, bigrams, and trigrams appearing 30 times or more
in the set of 5401 sentences. Finally, we computed Kullback-
Leibler distances (KLD) [18] between the training set and
the two test sets using the above unigram, bigram, and tri-
gram probability distributions. We made each KLD symmet-
ric by calculating it in both directions and taking the average
(KLD(p1, p2) = KLD(p2, p1)). The overall KLD-based mea-
sure used in evaluating the similarity between the data sets
was a weighted sum of the KLDs for the unigram probabil-
ities, the bigram probabilities, and the trigram probabilities.
As the final data set division, we chose the division with the
lowest overall KLD-based measure.

The final optimised training set comprised 125 speakers
and 4027 sentences, whereas the final test sets contained 125
speakers and 687 sentences each. The third column of Table 1
shows how much data was covered by words with different
numbers of syllables. As Table 1 illustrates, the word struc-
ture of CGN was highly similar to that of TIMIT. The third
column of Table 2 illustrates the proportions of the different
types of syllable tokens in CGN. CGN had slightly more CV
and CVC syllables than TIMIT, but fewer V syllables.

The CGNdata comprisedmanually verified (broad) pho-
netic and word labels, as well as manually verified word-
level segmentations. Only 35 of the original 46 phonetic

labels occurred frequently enough for the robust training
of triphones. The remaining phones were mapped to the
35 phones, as shown in Table 4. After reducing the num-
ber of phonetic labels, the average number of pronuncia-
tion variants per syllable was 1.8. The corresponding num-
bers of phone substitutions, deletions and insertions in syl-
lables were 16358, 6755, and 2875, respectively. Compared
with TIMIT, the average number of pronunciation variants,
as well as the number of substitutions and deletions, was
lower. These numerical differences reflect the differences be-
tween the transcription protocols of the two corpora. The
TIMIT transcriptions were made from scratch, whereas the
CGN transcription protocol was based on the verification
of a canonical phonemic transcription. In fact, the CGN
transcribers changed the canonical transcription if, and only
if, the speaker had realised a clearly different pronuncia-
tion variant. As a consequence, the CGN transcribers were
probably more biased towards the canonical forms than the
TIMIT transcribers; hence, the difference between the man-
ual transcriptions and the canonical representations in CGN
is smaller than that in TIMIT.

2.3. Differences between TIMIT and CGN

Regardless of our efforts to minimise the differences between
TIMIT and CGN, there are some intrinsic differences be-
tween them. First and foremost, the two corpora represent
two distinct—albeit Germanic—languages. Second, TIMIT
contains carefully spoken examples of manually designed or
selected sentences, whereas CGN comprises sections of books
that the speakers read aloud and, in the case of fiction, some-
times also acted out. Due to the differing characters of the
two corpora—and regardless of the optimised data set divi-
sion of the CGNmaterial—TIMIT contains higher frequency
counts of individual words and syllables, and more homo-
geneous word contexts. Because of this, we chose the CGN
training and development data sets to be larger than those
for TIMIT. A larger training set guaranteed a similar number
of syllables with sufficient training data for training syllable
models, and a larger development test set ensured that the
corresponding syllables occurred frequently enough for de-
termining the minimum number of training tokens for the
models. An additional intrinsic difference between the cor-
pora is that TIMIT comprises five times as many speakers as
CGN. Due to the relatively small number of CGN speakers,
we included speech from all of the speakers in all of the data
sets, whereas the TIMIT speakers do not overlap between the
different data sets. All in all, each corpus has some character-
istics that make the recognition task easier, and others that
make it more difficult, as compared with the other corpus.
However, we are confident that the effect of these character-
istics does not interfere with our interpretation of the results.

3. EXPERIMENTAL SETUP

3.1. Feature extraction

Feature extraction was carried out at a frame rate of 10
milliseconds using a 25-millisecond Hamming window.
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First-order preemphasis was applied to the signal using a co-
efficient of 0.97. 12Mel frequency cepstral coefficients and
log-energy with first, and second-order time derivatives were
calculated for a total of 39 features. Channel normalisation
was applied using cepstral mean normalisation over individ-
ual sentences for TIMIT and complete recordings (with a
mean duration of 3.5 minutes) for CGN. Feature extraction
was performed using HTK [19].

3.2. Lexica and languagemodels

The vocabulary consisted of 6100 words for TIMIT and
10535 words for CGN. Apart from nine homographs in
TIMIT and five homographs in CGN, each of which had two
pronunciations, the recognition lexica comprised a single,
canonical pronunciation per word. We did not distinguish
homophones from each other. The language models were
word-level bigram networks. The test set perplexity, com-
puted on a persentence basis using HTK [19], was 16 for
TIMIT and 46 for CGN. These numbers reflect the inherent
differences between the corpora and the recognition tasks.

3.3. Building the speech recognisers

In preparation for building a mixed-model recogniser that
employed context-independent syllable models and tri-
phones, we built and tested two recognisers: a triphone and a
syllable-model recogniser. The performance of the triphone
recogniser determined the baseline performance for each
recognition task.

3.3.1. Triphone recogniser

A standard procedure with decision tree state tying was used
for training the word-internal triphones. The procedure was
based on asking questions about the left and right contexts
of each triphone; the decision tree attempted to find the con-
texts that made the largest difference to the acoustics and
that should, therefore, distinguish clusters [19]. First, mono-
phones with 32 Gaussians per state were trained. The manual
(or manually verified) phonetic labels and linear segmenta-
tion within the manually verified word segmentations were
used for bootstrapping the monophones. Then, the mono-
phones were used for performing a sentence-level forced
alignment between the manual transcriptions and the train-
ing data; the triphones were bootstrapped using the resulting
phone segmentations. When carrying out the state tying, the
minimum occupancy count that we used for each cluster re-
sulted in about 4000 distinct physical states in the recogniser.
We trained and tested these “manual triphones”with up to 32
Gaussians per state.

3.3.2. Syllable-model recogniser

The first step of implementing the syllable-model recogniser
was to create a recognition lexicon with word pronunciations
consisting of syllables. In this lexicon, syllables were repre-
sented in terms of the underlying canonical phoneme se-

quences. For instance, the word “action” in TIMIT was now
represented as the syllable models ae k and sh ix n.

To create the syllable lexicon, we had to syllabify the
canonical pronunciations of words. In the case of TIMIT, we
used the tsylb2 syllabification software available from NIST
[20]. tsylb2 is based on rules that define possible syllable-
initial and syllable-final consonant clusters, as well as pro-
hibited syllable-initial consonant clusters [21]. The syllabifi-
cation software produces a maximum of three alternative syl-
lable clusters as output. Whenever several alternatives were
available, we used the alternative based on the maximum on-
set principle (MOP); the syllable onset comprised as many
consonants as possible. In the case of CGN, we used the syl-
labification available in the CGN lexicon and the CELEX lex-
ical database [22]. As in the case of TIMIT, the syllabification
of the words adhered to MOP.

After building the syllable lexicon, we initialised the
context-independent syllable models with the 8-Gaussian
triphone models corresponding to the underlying (canon-
ical) phonemes of the syllables. Reverting to the example
word “action” represented as the syllable models ae k and
sh ix n, we carried out the initialisation as follows. States 1–
3 and 4–6 of the model ae k were initialised with the state
parameters of the 8-Gaussian triphones #-ae+k and ae-k+#,
and states 1–3, 4–6, and 7–9 of the model sh ix n with the
state parameters of the 8-Gaussian triphones #-sh+ix, sh-
ix+n, and ix-n+# (see Figure 1). In order to incorporate the
spectral and temporal dependencies in the speech, the syl-
lable models with sufficient training data were then trained
further using four rounds of Baum-Welch reestimation. To
determine the minimum number of training tokens neces-
sary for reliably estimating the model parameters, we built
a large number of model sets, starting with a minimum of
20 training tokens per syllable, and increasing the thresh-
old in steps of 20. After each round, we tested the resulting
recogniser on the development test set. We continued this
process until the WER on the development set stopped de-
creasing. Eventually, the syllable-model recogniser for TIMIT
comprised 3472 syllable models, of which those 43 syllables
with a frequency of 160 or higher were trained further. These
syllables covered 31% of all the syllable tokens in the train-
ing data. The syllable-model recogniser for CGN consisted
of 3885 syllable models, the minimum frequency for further
training being 130 tokens and resulting in the further train-
ing of 94 syllables. These syllables covered 41% of all the syl-
lable tokens in the training data. Syllable models with insuf-
ficient training data consisted of a concatenation of the orig-
inal 8-Gaussian triphone models.

3.3.3. Mixed-model recogniser

We derived the lexicon for the mixed-model recogniser from
the syllable lexicon by keeping the further-trained syllables
from the syllable-model recogniser and expanding all other
syllables to triphones. In effect, the pronunciations in the lex-
icon consisted of the following:

(a) syllables,
(b) canonical phones, or
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(c) a combination of (a) and (b).

To use the word “action” as an example, the possible pronun-
ciations were the following:

(a) /ae k sh ix n/,
(b) /#-ae+k ae-k+sh k-sh+ix sh-ix+n ix-n+#/,
(c) /#-ae+k ae-k+# sh ix n/, or /ae k #-sh+ix sh-ix+n ix-

n+#/.

The syllable frequencies determined that the actual represen-
tation in the lexicon was /#-ae+k ae-k+# sh ix n/.

The initial models of the mixed-model recogniser origi-
nated from the syllable-model recogniser and the 8-Gaussian
triphone recogniser. Four subsequent passes of Baum-Welch
reestimation were used to train the mixture of models fur-
ther. The difference between the syllable-model and mixed-
model recognisers was that the triphones underlying the
syllables with insufficient training data for further training
were concatenated into syllable models in the syllable-model
recogniser, whereas they remained free in the mixed-model
recogniser. In practice, the triphones whose frequency ex-
ceeded the experimentally determined minimum number of
training tokens for further training were also trained further
in the mixed-model recogniser. The minimum frequency for
further training was 20 in the case of TIMIT and 40 in the
case of CGN. In the case of TIMIT, the mixed-model recog-
niser comprised 43 syllable models and 5515 triphones. The
mixed-model recogniser for CGN consisted of 94 syllable
models and 6366 triphones.

4. SPEECH RECOGNITION RESULTS

Figures 2 and 3 show the recognition results for TIMIT and
CGN. We trained and tested manual triphones with up to 32
Gaussian mixtures per state; we only present the results for
the triphones with 8 Gaussian mixtures per state, as they per-
formed the best for both corpora. The use of longer-length
acoustic models in both the syllable-model and the mixed-
model recognisers resulted in statistically significant gains in
the recognition performance (using a significance test for
a binomial random variable), as compared with the per-
formance of the triphone recognisers. However, the perfor-
mance of the syllable-model and of the mixed-model recog-
nisers did not significantly differ from each other. In the case
of TIMIT, the relative reduction in WER achieved by going
from triphones to a mixed-model recogniser was 28%. For
CGN, the figure was a more modest 18%. Overall, the results
for CGN were slightly worse than those for TIMIT. This can,
however, be explained by the large difference in the test set
perplexities (see Section 3.2).

The second and third columns of Tables 5 and 6 present
the TIMIT and CGN WERs as a function of syllable count
when using the triphone and mixed-model recognisers. The
effect of the number of syllables is prominent: the probabil-
ity of ASR errors in the case of monosyllabic words is more
than five times the probability of errors in the case of poly-
syllabic words. This confirms what has been observed in pre-
vious ASR research: the more syllables a word has, the less
susceptible it is to recognition errors. This can be explained

Triphone Syllable-model Mixed-model

Recogniser type

0

2

4

6

8

10

W
E
R
(%

)

5.7

4.2 4.1

Figure 2: TIMIT WERs, at the 95% confidence level, when using
manual triphones.

Triphone Syllable-model Mixed-model

Recogniser type

0

2

4

6

8

10
W
E
R
(%

)
8.2

7.1
6.7

Figure 3: CGN WERs, at the 95% confidence level, when using
manual triphones.

by the fact that a large proportion of monosyllabic words are
function words that tend to be unstressed and (heavily) re-
duced. Polysyllabic words, on the other hand, are more likely
to be content words that are less prone to heavy reductions.

The fourth columns of Tables 5 and 6 show the percent-
age change in the WERs when going from the triphones to
the mixed-model recognisers. For TIMIT, the introduction
of syllable models results in a 50% reduction in WER in the
case of bisyllabic and trisyllabic words. For CGN, the situa-
tion is different. TheWER does decrease for bisyllabic words,
but only by 11%. The WER for trisyllabic words remains
unchanged. We believe that this is due to a larger propor-
tion of bisyllabic and trisyllabic words with syllable deletions
in CGN. Going from triphones to syllable models without
adapting the lexical representations will obviously not help if
complete syllables are deleted.
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Table 5: TIMIT WERs and percentage change as a function of syllable count when using the triphone and mixed-model recognisers based
on manual triphones.

No. of Syllables Triphone/WER (%) Mixed-model/WER (%) Change (%)

1 4.8 3.6 −25
2 0.6 0.3 −50
3 0.2 0.1 −50
4 0.1 0 −100

≥ 5 0 0 ±0

Table 6: CGNWERs and percentage change as a function of syllable count when using the triphone and mixed-model recognisers based on
manual triphones.

No. of Syllables Triphone/WER (%) Mixed-model/WER (%) Change (%)

1 7.1 5.7 −20
2 0.9 0.8 −11
3 0.2 0.2 ±0
4 0.1 0 −100

≥ 5 0 0 ±0

5. ANALYSING THE DIFFERENCES

The 28% and 18% relative reductions in WER that we
achieved fall short of the 62% relative reduction in WER
that Sethy and Narayanan [8] present. Other studies have
also used syllable models with varying success. The absolute
improvement in recognition accuracy that Sethy et al. [9]
obtained with mixed-models was only 0.5%, although the
comparison with the Sethy and Narayanan study might not
be fair for at least two reasons. First, Sethy et al. used a
cross-word left-context phone recogniser, the performance
of which is undoubtedly more difficult to improve upon than
that of a word-internal context-dependent phone recogniser.
Second, their recognition task was particularly challenging
with a large amount of disfluencies, heavy accents, age-
related coarticulation, language switching, and emotional
speech. On the other hand, however, the best performance
was achieved using a dual pronunciation recogniser in which
each word had both a mixed syllabic-phonetic and a pure
phonetic pronunciation variant in the recognition lexicon.
Even though Jouvet and Messina [10] employed a param-
eter sharing method that allowed them to build context-
dependent syllable models, the gains from including longer-
length acoustic models were small and depended heavily
on the recognition task: for telephone numbers, the perfor-
mance even decreased. In any case, it appears that the im-
provements on TIMIT, as reported by Sethy and Narayanan
and ourselves, are the largest.

Obviously, using syllable models only improves recogni-
tion performance in certain conditions. To understand what
these conditions are, we carried out a detailed analysis of the
differences between the TIMIT and CGN experiments. First,
we examined the possible effects of linguistic and phonetic
differences between the two corpora. Second, since it is only
reasonable to expect improvements in recognition perfor-

mance if the acoustic models differ between the recognisers,
we investigated the differences between the retrained syllable
models and the triphones used to initialise them.

5.1. Structure of the corpora

In our experiments, we only manipulated the acoustic mod-
els, keeping the language models constant. As a consequence,
any changes in the WERs are dependent on the so-called
acoustic perplexity (or confusability) of the tasks [23]. One
should expect a larger gain from better acoustic modelling
if the task is acoustically more difficult. The proportion of
monosyllabic and polysyllabic words in the test sets pro-
vides a coarse approximation of the acoustic perplexity of a
recognition task. Table 1, as well as Tables 5 and 6, suggest
that TIMIT and CGN do not substantially differ in terms of
acoustic perplexity.

Another difference that might affect the recognition re-
sults is that the speakers in the TIMIT training and test sets
do not overlap, whereas the CGN speakers appear in all three
data sets. One might argue that long-span articulatory de-
pendencies are speaker-dependent. Therefore, one would ex-
pect syllable models to lead to a larger improvement in the
case of CGN, and not vice versa. So, this difference certainly
does not explain the discrepancy in the recognition perfor-
mance.

Articulation rate is known to be a factor that affects
the performance of automatic speech recognisers. Thus, we
wanted to know whether the articulation rates of TIMIT and
CGN differed. We defined the articulation rate as the num-
ber of canonical phones per second of speech. The rates were
12.8 phones/s for TIMIT and 13.1 phones/s for CGN, a dif-
ference that seems far too small to have an impact.

We also checked for other differences between the cor-
pora, such as the number of pronunciation variants and the
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Figure 4: KLD distributions for the states of retrained syllable mod-
els for TIMIT when using manual triphones.
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Figure 5: KLD distributions for the states of retrained syllable mod-
els for CGN when using manual triphones.

durations of syllables. However, we were not able to identify
any linguistic or phonetic properties of the corpora that
could possibly explain the differences in the performance
gain.

5.2. Effect of further training

To investigate what happens when syllable models are trained
further from the sequences of triphones used for initialis-
ing them, we calculated the distances between the probability
density functions (pdfs) of the HMM states of the retrained
syllable models and the pdfs of the corresponding states
of the initialised syllable models in terms of the Kullback-
Leibler distance (KLD) [18]. Figures 4 and 5 illustrate the
KLD distributions for TIMIT and CGN. The distributions
differ from each other substantially, the KLDs generally be-
ing higher in the case of TIMIT. This implies that the fur-
ther training affected the TIMIT models more than the CGN
models. Given the greater impact of the longer-length mod-
els on the recognition performance, this is what one would
expect.

There were two possible reasons for the larger impact of
the further training on the TIMITmodels. Either the bound-
aries of the syllable models with the largest KLDs had shifted
substantially, or the effect was due to the switch from the
manually labelled phones to the retrained canonical repre-
sentations of the syllable models. Since syllable segmenta-
tions obtained through forced alignment did not showmajor
differences, we pursued the issue of potential discrepancies
between manual and canonical transcriptions. To that end,
we performed additional speech recognition experiments, in
which triphones were trained using the canonical transcrip-
tions of the uttered words. These “canonical triphones” were
then used for building the syllable-model and mixed-model
recognisers.

In the case of TIMIT, the mixed-model recogniser based
on canonical triphones contained 86 syllable models that had
been trained further within the syllable-model recogniser us-
ing a minimum of 100 tokens. The corresponding syllables
covered 42% of all the syllable tokens in the training data.
The mixed-model recogniser for CGN comprised 89 sylla-
ble models trained further using a minimum of 140 tokens,
and the corresponding syllables covered 56% of all the sylla-
ble tokens in the training data. Further Baum-Welch reesti-
mation was not necessary for the mixture of triphones and
syllable models; tests on the development test set showed
that training the mixture of models further would not lead
to improvements in the recognition performance. This was
different from the syllable models initialised with the man-
ual triphones; tests on the development test set showed that
the mixture of models should be trained further for optimal
performance. With hindsight, this is not surprising. As a re-
sult of the retraining, the syllable models initialised in the
two different ways became very similar to each other. How-
ever, the syllable models that were initialised with the man-
ual triphones were acoustically further away from this final
“state” than the syllable models that were initialised with the
canonical triphones and, therefore, needed more reestima-
tion rounds to conform to it.

Figures 6 and 7 present the results for TIMIT and CGN.
The best performing triphones had 8 Gaussian mixtures per
state in the case of TIMIT and 16 Gaussian mixtures per state
in the case of CGN. Surprising as it may seem, the results
obtained with the canonical triphones substantially outper-
formed the results achieved with the manual triphones (see
Figures 2 and 3). In fact, the canonical triphones even out-
performed the original mixed-model recognisers (see Figures
2 and 3). The performances of the mixed-model recognisers
containing syllable models trained with the two differently
trained sets of triphones did not differ significantly at the
95% confidence level. In addition, the performance of the
canonical triphones was similar to that of the new mixed-
model recognisers. Smaller KLDs between the initial and the
retrained syllable models (see Figures 8 and 9) reflected the
lack of improvement in the recognition performance. Evi-
dently, only a few syllable models benefited from the further
training, leaving the overall effect on the recognition perfor-
mance negligible. These results are in line with results from
other studies [4, 9, 10], in which improvements achieved
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Figure 6: TIMIT WERs, at the 95% confidence level, when using
canonical triphones.
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Figure 7: CGN WERs, at the 95% confidence level, when using
canonical triphones.

with longer-length acoustic models are small, and deterio-
rations also occur.

The second and third columns of Tables 7 and 8 present
the TIMIT and CGN WERs as a function of syllable count
when using the triphone and mixed-model recognisers. As
in the case of the experiments with manual triphones (see
Tables 5 and 6), the probability of errors was considerably
higher for monosyllabic words than for polysyllabic words.
The fourth columns of the tables show the percentage change
in the WERs when going from the triphones to the mixed-
model recognisers. The data suggest that the introduction
of syllable models might deteriorate the recognition perfor-
mance in particular in the case of bisyllabic words. This may
be due to the context-independency of the syllable models
and the resulting loss of left or right context information at
the syllable boundary. As words tend to get easier to recog-
nise as they get longer (see Section 5.1), the words with more
than two syllables do not seem to suffer from this effect.

The most probable explanation for the finding that the
canonical triphones outperform the manual triphones is
the mismatch between the representations of speech dur-
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Figure 8: KLD distributions for the states of retrained syllable mod-
els for TIMIT when using canonical triphones.
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Figure 9: KLD distributions for the states of retrained syllable mod-
els for CGN when using canonical triphones.

ing training and testing. While careful manual transcriptions
yield more accurate acoustic models, the advantage of these
models can only be reaped if the recognition lexicon contains
a corresponding level of information about the pronuncia-
tion variation present in the speech [24]. Thus, at least part, if
not all, of the performance gain obtained with retrained syl-
lable models in the first set of experiments (and probably also
in Sethy and Narayanan’s work [8]) resulted from the reduc-
tion of the mismatch between the representations of speech
during training and testing. Because the manual transcrip-
tions in CGNwere closer to the canonical transcriptions than
those in TIMIT (see Section 2.2), the mismatch was smaller
for CGN. This also explains why the impact of the syllable
models was smaller for CGN.

6. DISCUSSION

So far, explicit pronunciation variation modelling has made
a disappointing contribution to improving speech recogni-
tion performance [25]. There are many different ways to
attempt implicit modelling. To avoid the increased lexical
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Table 7: TIMIT WERs and percentage change as a function of syllable count when using the triphone and mixed-model recognisers based
on canonical triphones.

No. of Syllables Triphone/WER (%) Mixed-model/WER (%) Change (%)

1 3.2 3.2 ±0
2 0.4 0.5 +25

3 0.1 0.1 ±0
4 0 0 ±0

≥ 5 0 0 ±0

Table 8: CGNWERs and percentage change as a function of syllable count when using the triphone and mixed-model recognisers based on
canonical triphones.

No. of Syllables Triphone/WER (%) Mixed-model/WER (%) Change (%)

1 5.4 5.6 +4

2 0.6 0.8 +33

3 0.2 0.2 ±0
4 0.1 0 −100

≥ 5 0 0 ±0

confusability of a multiple pronunciation lexicon, Hain [25]
focused on finding a single optimal phonetic transcription
for each word in the lexicon. Our study confirms that a sin-
gle pronunciation that is consistently used both during train-
ing and during recognition is to be preferred over multiple
pronunciations derived from careful phonetic transcriptions.
This is in line with McAllaster and Gillick’s [5] findings,
which also suggest that consistency between—potentially
inaccurate—symbolic representations used in training and
recognition is to be preferred over accurate representations
in the training phase if these cannot be carried over to the
recognition phase.

The focus of the present study was on implicit mod-
elling of long-span coarticulation effects by using syllable-
length models instead of the context-dependent phones that
conventional automatic speech recognisers use. We expected
Baum-Welch reestimation of these models to capture pho-
netic detail that cannot be accounted for by means of ex-
plicit pronunciation variation modelling at the level of pho-
netic transcriptions in the recognition lexicon. Because of the
changes we observed between the initial and the retrained
syllable models (see Figures 8 and 9), we do believe that re-
training the observation densities incorporates coarticula-
tion effects into the longer-length models. However, the cor-
responding recognition results (see Figures 6 and 7) show
that this is not sufficient for capturing the most important
effects of pronunciation variation at the syllable level. Green-
berg [15], amongst other authors, has shown that while syl-
lables are seldom deleted completely, they do display consid-
erable variation in the identity and number of the phonetic
symbols that best reflect their pronunciation. Greenberg and
Chang [26] showed that there is a clear relation between
recognition accuracy and the degree to which the acoustic
and lexical models reflect the actual pronunciation. Not sur-
prisingly, the match (or mismatch) between the knowledge
captured in the models on the one hand and the actual ar-

ticulation is dependent on linguistic (e.g., prosody, context)
as well as nonlinguistic (e.g., speaker identity, speaking rate)
factors. Sun and Deng [27] tried to model the variation in
terms of articulatory features that are allowed to overlap in
time and change asynchronously. Their recognition results
on TIMIT are much worse than what we obtained with a
more conventional approach.

We believe that the aforementioned problems are caused
by the fact that part of the variation in speech (e.g., phone
deletions and insertions) results in very different trajectories
in the acoustic parameter space. These differently shaped tra-
jectories are not easy to model with observation densities if
the model topology is identical for all variants. We believe
that pronunciation variation could be modelled better by us-
ing syllable models with parallel paths that represent differ-
ent pronunciation variants, and by reestimating these paral-
lel paths to better incorporate the dynamic nature of articu-
lation. Therefore, our future research will focus on strategies
for developing multipath model topologies for syllables.

7. CONCLUSIONS

This paper contrasted recognition results obtained using
longer-length acoustic models for Dutch read speech from
a library for the blind with recognition results achieved on
American English read speech from TIMIT. The topologies
and model parameters of the longer-length models were ini-
tialised by concatenating the triphone models underlying
their canonical transcriptions. The initialised models were
then trained further to incorporate the spectral and temporal
dependencies in speech into the models. When using man-
ually labelled speech to train the triphones, mixed-model
recognisers comprising syllable-length and phoneme-length
models substantially outperformed them. At first sight, these
results seemed to corroborate the claim that properly ini-
tialised and retrained longer-length acoustic models capture
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a significant amount of pronunciation variation. However,
detailed analyses showed that the effect of training syllable-
sized models further is negligible if canonical representations
of the syllables are initialised with triphones trained with the
canonical transcriptions of the training corpus. Therefore,
we conclude that single-path syllable models that borrow
their topology from a sequence of triphones cannot capture
the pronunciation variation phenomena that hinder recog-
nition performance the most.
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