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An acoustic echo cancellation structure with a single loudspeaker and multiple microphones is, from a system identification per-
spective, generally modelled as a single-input multiple-output system. Such a system thus implies specific echo-pathmodels (adap-
tive filter) for every loudspeaker tomicrophone path. Due to the often large dimensionality of the filters, which is required tomodel
rooms with standard reverberation time, the adaptation process can be computationally demanding. This paper presents a selec-
tive updating normalized least mean square (NLMS)-based method which reduces complexity to nearly half in practical situations,
while showing superior convergence speed performance as compared to conventional complexity reduction schemes. Moreover,
the method concentrates the filter adaptation to the filter which is most misadjusted, which is a typically desired feature.
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1. INTRODUCTION

Acoustic echo cancellation (AEC) [1, 2] is used in telecon-
ferencing equipment in order to provide high quality full-
duplex communication. The core of an AEC solution is an
adaptive filter which estimates the impulse response of the
loudspeaker enclosure microphone (LEM) system. Typical
adaptive algorithms for the filter update procedure in the
AEC are the least mean square, normalized least mean square
(LMS, NLMS) [3], affine projection (AP), and recursive least
squares (RLS) algorithms [4]. Of these, the NLMS-based al-
gorithms are popular in industrial implementations, thanks
to their low complexity and finite precision robustness.

Multimicrophone solutions are frequent in teleconfer-
encing equipment targeted for larger conference rooms. This
paper considers a system consisting of one loudspeaker and
three microphones. The base unit of the system contains the
loudspeaker and one microphone and it is connected to two
auxiliary expansionmicrophones, as shown in Figure 1. Such
multimicrophone system constitutes a single-input multiple-
output (SIMO) multichannel system with several system im-
pulse responses to be identified, Figure 2. Thus, the signal
processing task can be quite computational demanding.

Several methods for computational complexity reduction
of the LMS/NLMS algorithms have been proposed and ana-

lyzed, for example, [5–14]. In this paper a related low com-
plexity algorithm for use in a multimicrophone system is
proposed.

2. COMPLEXITY REDUCTIONMETHODS

The LEM system can be modelled as a time invariant lin-
ear system, h(k) = [h0(k), . . . ,hN−1(k)]T , where N − 1 is
the order of the finite impulse response (FIR) model [11]
and k is the sample index. Thus, the desired (acoustic echo)
signal d(k) is given by d(k) = h(k)Tx(k), where x(k) =
[x(k), . . . , x(k−N +1)]T and x(k) is the input (loudspeaker)
signal. The measured (microphone) signal y(k) is obtained
as y(k) = d(k) + n(k), where n(k) is near-end noise. As-

suming an adaptive filter ̂h(k) of length N is used, that is,
̂h(k) = [̂h0(k), . . . , ̂hN−1(k)]T , the NLMS algorithm is given
by

e(k) = y(k)− ̂d(k) = y(k)− x(k)T ̂h(k), (1)

β(k) = μ
∥

∥x(k)
∥

∥

2
+ ε

,

̂h(k + 1) = ̂h(k) + β(k)e(k)x(k),

(2)
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Figure 1: AEC unit with expansion microphones.

h1

h2

h3

h1

h2

h3

Figure 2: Schematic picture over multimicrophone system mod-
elled as a single-input multiple-output system.

where ̂d(k) is the estimated echo, e(k) the error (echo can-
celled) signal, β(k) the step-size, ‖x(k)‖2 = x(k)Tx(k) the
squared Euclidian norm, μ the step size control parameter,
and ε a regularization parameter [4].

Low-complexity periodical and partial updating schemes
reduce the computational complexity of the LMS/NLMS by
performing only a part of the filtering update, (2). The peri-
odic NLMS performs the filter update only at periodical sam-
ple intervals. This updating can be distributed over the in-
termediate samples [5]. The sequential NLMS updates only
a part of the N coefficients at every sample in a sequential
manner [5]. Several methods for choosing which coefficients
to update at what sample instant have been proposed, for ex-
ample, choosing a subset containing the largest coefficients in
the regressor vector [6], low-complexity version of largest re-
gressor vector coefficient selection [7], block-based regressor
vector methods [8, 9], and schemes based on randomization
in the update procedure [10]. The updating can also be based
on assumptions of the unknown plant [11, 12]. Another ap-
proach of omitting updates is possible in algorithms where
the step size is zero for a large number of updates [13, 14].

In a SIMO-modelledM microphone system, there areM

adaptive filters ̂hm(k) with m ∈ {1, . . . ,M}, to be updated at
each sample, that is,

̂hm(k + 1) = ̂hm(k) + μem(k)x(k)
∥

∥x(k)
∥

∥

2
+ ε

m = 1, . . . ,M, (3)

see Figure 2 for an example with M = 3. The updating
scheme proposed in this paper explores the possibility of
choosing between the different update equations based on
comparison between theM different error signals em(k).

3. THE PROPOSED ALGORITHM

An adaptive linear filtering process can generally be divided
in two parts the filtering (1) and the adaptation (2). In an
echo cancellation environment, the filtering part generally
is performed at every sample instant in order to produce a
constant audio stream. Although it is most often efficient

Table 1: Example to illustrate the matrix E(k).

Sample index Filter 1 Filter 2 Filter 3

k e1(k) e2(k) e3(k)

k − 1 Update e2(k − 1) e3(k − 1)

k − 2 X e2(k − 2) Update

k − 3 X Update X

(in terms of convergence) to perform filter updating at ev-
ery sample instant, it is not necessary. In practice, this might
not even be possible due to complexity issues. This especially
applies to acoustic echo cancellation environments where the
dimension of the system filters is large.

One approach in a M-microphone system is to update
only one adaptive filter every sample in a round-robin man-
ner, that is, periodic NLMS. This also ensures equal (for all
filters) and predictable convergence since the update occur-
rences are deterministic. The disadvantage is that conver-
gence is slow.

This paper proposes another updating method which in-
stead updates the filter with the largest output error. To illus-
trate the method, assume thatM = 3 (3 adaptive filters), the
present sample index is k, and filter 1 was updated at sample
index k − 1, filter 3 at k − 2, and filter 2 at k − 3, as illus-
trated in Table 1. Thus, the available errors that can be used
in the update at the present sample index k are e1(k) for filter
1, e2(k), e2(k − 1) and e2(k − 2) for filter 2, and e3(k) and
e3(k − 1) for filter 3. For example, the error e1(k − 2) cannot
be used since it is related to the configuration of filter 1 prior
to the latest update. From the available errors, the algorithm
chooses the error with the largest magnitude and then per-
forms the corresponding update (compare with (6) and (7)
below).

An algorithm for the method is as follows. After filter-
ing allM-output channels according to (1), the output errors
from all filters are inserted in a L×M matrix

E(k) =
(

e1(k) e2(k) e3(k) . . . eM(k)
E(k − 1)

)

, (4)

where M is the number of adaptive filters (channels) and L
determines the number of previous samples to consider. The
L − 1 ×M matrix E(k − 1) consists of the L − 1 upper rows
of E(k − 1), that is,

E(l + 1,m, k) = E(l,m, k − 1) l = 1, . . . ,L− 1,

m = 1, . . . ,M,
(5)

where l and m denote row and column indexes, respectively,
and E(l,m, k) is the element at row l and columnm in E(k).

The decision of which filter to update and with what out-
put error (and corresponding input vector) is determined by
the element in E(k) with maximum absolute value,

emax(k) = max
l,m

∣

∣E(l,m, k)
∣

∣ l = 1, . . . ,L,

m = 1, . . . ,M.
(6)

The row and column indexes of the element in E(k) with the
maximum absolute value are denoted lmax(k) and mmax(k).
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For clarity of presentation, the sample index is omitted, that
is, lmax = lmax(k) andmmax = mmax(k).

The filter corresponding to the row index mmax, that is,

the filter ̂hmmax (k), is then updated with

̂hmmax (k + 1) = ̂hmmax (k) +
μemax(k)x

(

k − lmax + 1
)

∥

∥x
(

k − lmax + 1
)∥

∥

2
+ ε

. (7)

This filter update of filter ̂hmmax (k) will make the error el-
ements E(l,mmax, k), l = 1, . . . ,L obsolete, since these are er-
rors generated by ̂hmmax (k) prior to the update. Consequently,
to avoid future erroneous updates, these elements should be
set to 0, that is, set

E
(

l,mmax, k
) = 0 for l = 1, . . . ,L. (8)

An advantage over periodic NLMS is that the proposed struc-
ture does not limit the update to be based on the current in-
put vector x(k), but allows updating based on previous input
vectors as well, since the errors not yet used for an update are
stored in E(k). Further, largest output-error update will con-
centrate the updates to the corresponding filter. This is nor-
mally a desired feature in an acoustic echo cancellation envi-
ronment with multiple microphones. For example, consider
the setup in Figure 1 with all adaptive filters fairly converged.
If then one of the microphones is dislocated, this results in an
echo-path change for the corresponding adaptive filter. Nat-
urally, it is desired to concentrate all updates to this filter.

4. ANALYSIS

In the previously described scenario, where several input
vectors are available but only one of them can be used for
adaptive filter updating (due to complexity issues), it might
seem intuitive to update with the input vector correspond-
ing to the largest output error magnitude. In this section, it
is shown analytically that, under certain assumptions, choos-
ing the largest error maximizes the reduction.

The error deviation vector for the mth filter vm(k) is de-
fined as vm(k) = hm(k) − ̂hm(k), and the mean-squared de-
viation as D(k) = E{‖vm(k)‖2}, where E{·} denotes ex-
pectation [4]. Assume that no near-end sound is present,
n(k) = 0, and no regularization is used, ε = 0, and that
the errors available for updating filter m are em(k − lm) with
lm = 0, . . . ,Lm and Lm < L, that is, the available errors in ma-
trix E(k) that correspond to filter m. Updating filter m using
error em(k − lm) gives

∥

∥vm(k + 1)
∥

∥

2 = ∥∥vm(k)− β(k)em
(

k − lm
)

x
(

k − lm
)∥

∥

2

(9)

and by using

em
(

k − lm
) = x

(

k − lm
)T
vm(k) = vm(k)Tx

(

k − lm
)

(10)

in (9), the following is obtained:

∥

∥vm(k + 1)
∥

∥

2 = vm(k)Tvm(k)−
(

2μ− μ2
)

∥

∥x
(

k − lm
)∥

∥

2 e
2
m

(

k − lm
)

.

(11)

Thus, the difference inmean-square deviation from one sam-
ple to the next is given by

Dm(k + 1)−Dm(k) = −
(

2μ− μ2
)

E

{

e2m
(

k − lm
)

∥

∥x
(

k − lm
)∥

∥

2

}

,

(12)

which corresponds to a reduction under the assumption that
0 < μ < 2.

Further, assuming small fluctuations in the input energy
‖x(k)‖2 from one iteration to the next, that is, assuming

∥

∥x(k)
∥

∥

2 = ∥∥x(k − 1)
∥

∥

2 = · · · = ∥∥x(k − Lm + 1
)∥

∥

2
, (13)

gives [4],

Dm(k + 1)−Dm(k) = −
(

2μ− μ2
)E
{

e2m
(

k − lm
)}

E
{∥

∥x(k)
∥

∥

2} . (14)

The total reduction r(k) in deviation, considering all M fil-
ters is thus

r(k) =
M
∑

m=1
Dm(k + 1)−Dm(k). (15)

Only one filter is updated each time instant. Assume error
E(l,m, k) is chosen for the update. Then r(k) is given by

r(k) = −(2μ− μ2
)E
{

E2(l,m, k)
}

E
{∥

∥x(k)
∥

∥

2} . (16)

From (16), it can be seen that the reduction is maximized if
emax(k), (see (16)), is chosen for the update, that is, as done
in the proposed algorithm.

The proposed algorithm can be seen as a version of the
periodic NLMS. Analysis of convergence, stability, and ro-
bustness for this branch of (N)LMS algorithms are provided
in, for example, [5, 15].

5. COMPLEXITY AND IMPLEMENTATION

The algorithm proposed in this paper is aimed for imple-
mentation in a general digital signal processor (DSP), typi-
cally allowing multiply add and accumulate arithmetic oper-
ations to be performed in parallel with memory reads and/or
writes (e.g., [16]). In such a processor, the filtering operation
can be achieved in N instructions and the NLMS update will
require 2N instructions. Both the filtering and the update re-
quire two memory reads, one addition and one multiplica-
tion per coefficient, which can be performed by the DSP in
one instruction. However, the result from the filter update is
not accumulated but it needs to be written back to memory.
Therefore, the need for two instructions per coefficient for
the update operation.
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Suppose an M-channel system with the same number of
adaptive filters, all with the length of N . The standard NLMS
updating thus requires 3MN DSP instructions.

Updating the matrix E(k), (4), can be implemented using
circular buffering and thus requires onlyM store instructions
(possible pointer modifications disregarded), while clearing
of E(k), (8), takes a maximum of L instructions (also dis-
regarding possible pointer modifications). Searching for the
maximum absolute valued element in E(k), (6), requires a
maximum of 2LM instructions (LM abs-instructions and
LM max-instructions). The parameter ‖x(k)‖2 can be cal-
culated very efficient through recursion, that is,

∥

∥x(k)
∥

∥

2 = ∥∥x(k − 1)
∥

∥

2
+ x2(k)− x2(k −N), (17)

and its computational complexity can be disregarded in this
case.

All together, this means that the number of DSP instruc-
tions required for the proposed solution can be approxi-
mated with

MN +M + L + 2ML + 2N. (18)

For acoustic echo cancellation, N is generally quite large
(>1000) due to room reverberation time. In this case, we typ-
ically have N � L and N � M, which means that (18) is
approximately N(M + 2). The complexity reduction in com-
parison with standard NLMS updating is then

M + 2
3M

, (19)

which forM = 3 gives a complexity reduction of nearly a half
(5/9). For higher values of M, the reduction is even larger.
Further reduction in complexity can also be achieved if up-
dates are performed say every other or every third sample.

6. SIMULATIONS

The performance of the proposed method was evaluated
through simulations with speech as input signal. Three im-
pulse responses (h1, h2, and h3), shown in Figure 3, all
of length N = 1800 were measured with three micro-
phones, according to the constellation in Figure 1, in a nor-
mal office. The acoustic coupling between the loudspeaker
and the closest microphone, AC1, was manually normal-
ized to 0 dB and the coupling between the loudspeaker and
the second and third microphones, AC2 and AC3, were
then estimated to −6 dB and −7 dB, respectively. Thus,
10 log10(‖h2‖2/‖h1‖2) = −6 dB and 10 log10(‖h3‖2/‖h1‖2)
= −7 dB.

Output signals y1(k), y2(k), and y3(k) were obtained by
filtering the input signal x(k) with the three obtained impulse
responses and adding noise,

y1(k) = x(k)Th1 + n1(k),

y2(k) = x(k)Th2 + n2(k),

y3(k) = x(k)Th3 + n3(k).

(20)
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Figure 3: Impulse responses used in the simulations.

The noise sources n1(k), n2(k), and n3(k) were indepen-
dent, but had the same characteristics (bandlimited flat spec-
trum). Echo-to-noise ratio was approximately 40 dB for mi-
crophone 1 and 34 dB and 33 dB for microphones 2 and 3,
respectively.

In the simulations four low-complexity methods of sim-
ilar complexity were compared; the periodic (N)LMS [5],
random NLMS (similar to SPU-LMS [10]) selecting which
filter to be updated in a stochastic manner (with all filters
having equal probability of an update), M-Max NLMS [6],
and the proposed NLMS. The performance of the full update
NLMS is also shown for comparison. The periodic NLMS,
random NLMS, and the proposed method limit the updates
to one whole filter at each time interval, while M-Max NLMS
instead updates all filters but only does this for a subset (1/3
in this case) of all coefficients. However, since M-Max NLMS
requires sorting of the input vectors, the complexity for this
method is somewhat larger (2 log2N + 2 comparisons and
(N−1)/2memory transfers [9]). Zero initial coefficients were
used for all filters and methods. The result is presented in
Figure 4, where the normalized filter mismatch, calculated as

10 log10

(∥

∥hm − ̂hm(k)
∥

∥

2

∥

∥hm
∥

∥

2

)

m = 1, 2, 3, (21)

for the three individual filters and solutions are presented.
Of the four variants with similar complexity, the proposed
method is clearly superior to the conventional periodic



Fredric Lindstrom et al. 5

0 20 40 60 80 100 120

Seconds

�50

�40

�30

�20

�10

0

M
is
m
at
ch

(d
B
)

Filter 1

NLMS updated every sample

Periodic NLMS

Proposed NLMS updating scheme

Random NLMS
M-Max NLMS

0 20 40 60 80 100 120

Seconds

�40

�30

�20

�10

0

M
is
m
at
ch

(d
B
)

Filter 2

NLMS updated every sample

Periodic NLMS

Proposed NLMS updating scheme

Random NLMS
M-Max NLMS

0 20 40 60 80 100 120

Seconds

�40

�30

�20

�10

0

M
is
m
at
ch

(d
B
)

Filter 3

NLMS updated every sample

Periodic NLMS

Proposed NLMS updating scheme

Random NLMS
M-Max NLMS

Figure 4: Mismatch for the the evaluated methods.

NLMS and also to the random NLMS. The performance of
the M-Max NLMS and the proposed solution is comparable,
although the proposed solution performs better or equal for
all filters.

The algorithm automatically concentrates computational
resources to filters with large error signals. This is demon-
strated in Figure 5, where filter 2 undergoes an echo-path
change, that is, a dislocation of the microphone. In Figure 5,
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Figure 5: Mismatch for the the evaluated methods, where an echo-
path change occurs for filter 2 after 55 seconds.

it can be seen that the proposed algorithm basically follows
the curve of the full update NLMS immediately after the
echo-path changes.

If one specific microphone is subject to an extreme
acoustic situation, for example, it is placed in another room
or placed immediately next to a strong noise source, there is
a risk of “getting stuck,” that is, the corresponding filter has
large output error for all input vectors and thus is updated all
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the time. This problem can be reduced by setting a limit on
the lowest rate of updates for a filter, that is, if filterm has not
been updated for the last U samples it is forced to update the
next iteration. However, this does not resolve the issue opti-
mally. A more sophisticated method is to monitor the echo
reduction of the filters and bypass or reduce the resources
allocated to filters not providing significant error reduction.
Implementing these extra functions will of course add com-
plexity.

7. CONCLUSIONS

In an acoustic multichannel solution with multiple adaptive
filters, the computation power required to update all filters
every sample can be vast. This paper has presented a solution
which updates only one filter every sample and thus signifi-
cantly reduces the complexity, while still performing well in
terms of convergence speed. The solution also handles echo-
path changes well, since the most misadjusted filter gets the
most computation power, which often is a desirable feature
in practice.
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