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This paper investigates the significance of combining cepstral features derived from the modified group delay function and from
the short-time spectral magnitude like the MFCC. The conventional group delay function fails to capture the resonant structure
and the dynamic range of the speech spectrum primarily due to pitch periodicity effects. The group delay function is modified to
suppress these spikes and to restore the dynamic range of the speech spectrum. Cepstral features are derived from the modified
group delay function, which are called the modified group delay feature (MODGDF). The complementarity and robustness of the
MODGDF when compared to the MFCC are also analyzed using spectral reconstruction techniques. Combination of several spec-
tral magnitude-based features and the MODGDF using feature fusion and likelihood combination is described. These features are
then used for three speech processing tasks, namely, syllable, speaker, and language recognition. Results indicate that combining
MODGDF with MFCC at the feature level gives significant improvements for speech recognition tasks in noise. Combining the
MODGDF and the spectral magnitude-based features gives a significant increase in recognition performance of 11% at best, while
combining any two features derived from the spectral magnitude does not give any significant improvement.
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1. INTRODUCTION

Various types of features have been used in speech pro-
cessing [1]. Variations on the basic spectral computation,
such as the inclusion of time and frequency masking, have
been used in [2—4]. The use of auditory models as the ba-
sis of feature extraction has been beneficial in many sys-
tems [5-9], especially in noisy environments [10]. Perhaps
the most popular features used in speech recognition today
are the Mel frequency cepstral coefficients (MFCCs) [11]. In
conventional speech recognition systems, features are usu-
ally computed from the short-time power spectrum while
the short-term phase spectrum is not used. This is primar-
ily because early experiments on human speech perception
have indicated that the human ear is not sensitive to short-
time phase. But recent experiments described in [12, 13]
have indicated the usefulness of the short-time phase spec-
trum in human listening tests. In this context, the short-
time phase spectrum estimated via the group delay domain
has been used to parameterize speech in our earlier efforts

[14-17]. Cepstral features were derived from the modified
group delay function and were called the modified group
delay feature (MODGDEF) in these efforts [18]. In this pa-
per, we focus on the significance of the representation of
speech using joint features derived from the modified group
delay function and from the short-time power spectrum
like the MFCC. Previous work on combining the MOD-
GDF with MFCC also appears in [19]. The focus of this
paper is on combining features before the acoustic model
[20, 21], as well as after the acoustic model [22-26]. In this
context, we start with a discussion on group delay func-
tions and their significance in formant estimation of speech.
The modified group delay function and extraction of cep-
stral features are discussed next. The significance of com-
bining spectral magnitude and phase-based feature is il-
lustrated next, using spectral reconstructions. Both the in-
dividual and the joint features derived from the modified
group delay function and the short-time power spectrum
are used for the tasks of syllable [27], speaker [28-31],
and language recognition [32]. The paper concludes with
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a discussion on the significance of joint features in speech
processing.

2. SIGNIFICANCE OF FEATURE COMBINATIONS

The technique of combination is widely used in statistics.
The simplest method of combination involves averaging the
various estimates of the underlying information. This idea is
based on the hypothesis that if different estimates are sub-
ject to different sources of noise, then combining them will
cancel some of the errors when an averaging is done. Good
examples of combining features are the works of Christensen
[22] and Janin et al. [25] who have combined different fea-
tures before and after the acoustic model. Other significant
works on feature and likelihood combination can be found
in [33-36]. A combination system works on the principle
that if some characteristics of the speech signal that is de-
emphasized by a particular feature are emphasized by an-
other feature, then the combined feature stream captures
complementary information present in individual features.

2.1. Feature combination before the acoustic model

The combination of features before the acoustic model has
been used by Christensen [22], Okawa et al. [20], and Ellis
[21], where efforts have been made to capitalize on the dif-
ferences between various feature streams using all of them at
once. The joint feature stream is derived in such an approach
by concatenating all the individual feature streams into a sin-
gle feature stream.

2.2. Likelihood combination after the acoustic model

This approach uses the technique of combining the outputs
of the acoustic models. Complex techniques of combining
the posteriors [22-26, 33-36] have evolved. In this context,
it is also worthwhile to note that if the intent is to capitalize
on the complementary information in different features, the
posteriors of the same classifier for individual features can
be combined to achieve improved speech recognition perfor-
mance.

3. THE GROUP DELAY FUNCTION
AND ITS PROPERTIES

The resonances of the speech signal present themselves as the
peaks of the envelope of the short-time magnitude spectrum.
These resonances, often called formants, appear as transi-
tions in the short-time phase spectrum. The problem with
identifying these transitions is the masking of these transi-
tions due to the wrapping around of the phase spectrum at
multiples of 27. The group delay function, defined as the
negative derivative of phase, can be computed directly from
the speech signal and has been used to extract source and sys-
tem parameters [37] when the signal under consideration is a
minimum phase signal. This is primarily because the magni-
tude spectrum of a minimum phase signal [37] and its group
delay function resemble each other.

3.1. Thegroup delay function

Group delay is defined as the negative derivative of the Fou-
rier transform phase

d(8(w))

T(@) =——1 "=

1)

where the phase spectrum (6(w)) of a signal is defined as a
continuous function of w. The Fourier transform phase and
the Fourier transform magnitude are related as in [38]. The
group delay function can also be computed from the signal
as in [14] using

_ Xr(@)Yr(w) + Yi(0)X;(w) (3)
| X(w)|?

where the subscripts R and I denote the real and imagi-
nary parts of the Fourier transform. X(w) and Y(w) are
the Fourier transforms of x(n) and nx(n), respectively. The
group delay function 7(w) can also be viewed as the Fourier
transform of the weighted cepstrum [37].

3.2. Relationship between spectral magnitude
and phase

The relation between spectral magnitude and phase has been
discussed extensively in [38]. In [38], it has been shown that
the unwrapped phase function for a minimum phase signal
is given by

[

0(w) = 0,(w) +27M(w) = — > c(n)sin(nw),  (4)

n=1

where c(n) are the cepstral coefficients. Differentiating (4)
with respect to w, we have

9]

T(w) = -0 (w) = Z nc(n) cos(nw), (5)

n=1

where 7(w) is the group delay function. The log-magnitude
spectrum for a minimum phase signal v(n) [38] is given by

c(0)

In|V(w)| = 5

+ i c(n) cos(nw). (6)
n=1

The relation between spectral magnitude and phase for a
minimum phase signal [38], through cepstral coefficients, is
given by (4) and (6). For a maximum phase signal equation
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(4) holds, while the unwrapped phase is given by

[eY]

f(w) = 0,(w) +21AMw) = Z c(n) sin(nw) (7)

n=1

and the group delay function 7(w) is given by

00

T(w) = -0 (w) = - Z nc(n) cos(nw). (8)

n=1

Hence the relation between spectral magnitude and phase for
a maximum phase signal [38], through cepstral coefficients,
is given by (4) and (7). For mixed phase signals, the relation
between spectral magnitude and phase is given by two sets of
cepstral coefficients {c;(n)} and {c2(n)}, as

c1(0)

+ i c1(n) cos(nw), 9)

n=1

In | X(w)| =

where In [X(w)]| is the log-magnitude spectrum for a mixed
phase signal and {c;(n)} is the set of cepstral coefficients
computed from the minimum phase equivalent signal de-
rived from the spectral magnitude. Similarly, the unwrapped
phase is given by

00

O0c(w) +2nMw) = = > c2(n) sin(nw), (10)

n=1

where 0, (w) + 2mA(w) is the unwrapped phase spectrum for
a mixed phase signal and {c,(n)} is the set of cepstral coeffi-
cients computed from the minimum phase equivalent signal
derived from the spectral phase. Therefore, the relation be-
tween spectral magnitude and phase for a mixed phase signal
[38], through cepstral coefficients, is given by (9) and (10).

3.3. Issuesin group delay processing of speech

The group delay functions and their properties have been
discussed in [37, 39]. The two main properties of the group
delay functions [39] of relevance to this work are

(i) additive property;
(ii) high-resolution property.

3.3.1. Additive property

The group delay function exhibits an additive property. Let
H (/) = F(e7?) - Hr(e?), (11)

where 7 (e/*) and #¢;(e/*) are the responses of the two res-
onators whose product gives the overall system response. In
the group delay domain, equation (11) translates to

(/) = T (/) + T2 (€7), (12)

where, 7j1 (/%) and 7,(e/*) correspond to the group delay
functions of J;(e/*) and F,(e/®), respectively. From (11)

and (12), we see that multiplication in the spectral domain
becomes an addition in the group delay domain.

3.3.2.  High-resolution property

The group delay function has a higher resolving power when
compared to both the magnitude and the LP spectrum. This
property is a manifestation of the spectral additive property
of the group delay function. The high-resolution property of
the group delay function over both the magnitude and the
linear prediction spectrum has been illustrated in [39].

3.4. Significance of pitch periodicity effects

When the short-time Fourier transform power spectrum is
used to extract the formants, the focus is on capturing the
spectral envelope of the spectrum and not the fine structure.
Similarly, the fine structure has to be deemphasized when ex-
tracting the vocal tract characteristics from the group delay
function. But the group delay function becomes very spiky
in nature due to pitch periodicity effects. To illustrate this,
a three-formant system is simulated whose pole-zero plot is
shown in Figure 1(a). The formant locations are at 500 Hz,
1570 Hz, and 2240 Hz. The corresponding impulse response
of the system is shown in Figure 1(b) and its group delay
function is shown in Figure 1(c). The group delay function
is able to resolve all the three formants. The system shown
in Figure 1(a) is now excited with 5 impulses and the sys-
tem response is shown in Figure 1(d). The group delay func-
tion of the signal in Figure 1(d) is shown in Figure 1(e). It is
evident from Figure 1(e) that the group delay function be-
comes spiky and distorted due to pitch periodicity effects.
The spikes introduced into the group delay function due to
zeros close to the unit circle and also due to the pitch period-
icity effects form a significant part of the fine structure and
cannot be removed by normal smoothing techniques. Hence
the group delay function has to be modified to suppress the
effects of these spikes. These considerations form the basis
for modifying the group delay function.

4. THE MODIFIED GROUP DELAY FUNCTION

As mentioned in the earlier sections, for the group delay
function to be a meaningful representation, it is necessary
that the roots of the transfer function are not too close to
the unit circle in the z plane. Normally, in the context of
speech, the poles of the transfer function are well within the
unit circle. The zeros of the slowly varying envelope of speech
correspond to that of nasals. The zeros in speech are either
within or outside the unit circle since the zeros also have
nonzero bandwidth. In this section, we modify the compu-
tation of the group delay function to suppress these effects.
A similar approach was taken in an earlier paper by one of
the authors [40] for spectrum estimation. Let us reconsider
the group delay function derived directly from the speech
signal. It is important to note that the denominator term
[X(w)]? in (3) becomes very small at zeros that are located
close to the unit circle. This makes the group delay function
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FiGure 1: Significance of pitch periodicity effects on the group delay
functions (a) the z-plane with three complex poles and their com-
plex conjugate pairs inside the unit circle, (b) the impulse response
of the system shown in (a), (¢) the group delay spectrum of the sig-
nal shown in (b), (d) the response of the system shown in (a) to 5
impulses, and (e) the group delay spectrum of the signal shown in

(d).

very spiky in nature and also alters the dynamic range of the
group delay spectrum. The spiky nature of the group delay
spectrum can be overcome by replacing the term |X(w)| in
the denominator of the group delay function as in (3) with
its cepstrally smoothed version, S(w).! Two new parameters
y and « are further introduced to reduce the amplitude of
these spikes and to restore the dynamic range of the group

! A lower-order cepstral window lifter,, whose length can vary from 4 to 9
is used.

delay spectrum. The new modified group delay function is
defined as

i) = (120 ) (It ), (13)
where
(w) = <XR(w)YR(‘;)()a;F)21;I(w)XI(w))’ (14)

where S(w) is the smoothed version of | X(w)|. The parame-
ters o and y introduced vary from 0 to 1 where (0 < & < 1.0)
and (0 < y < 1.0).

Figure 2(a) shows a z plane plot of a system with three
resonances at 530 Hz, 1840 Hz, and 2480 Hz. In Figures 2(b)
and 2(c), respectively, are shown the impulse response and
the group delay function of such a system. The response of
the same system excited with 5 impulses and the correspond-
ing group delay function are shown in Figures 2(d) and 2(e),
respectively. The modified group delay function (lifter,, =
6, « = 0.4, andy = 0.9) for the signal in Figure 2(d) is
shown in Figure 2(f). It is clear from Figures 2(e) and 2(f)
that while the group delay function fails to capture the for-
mant structure of the signal in Figure 2(d), the modified
group delay function is able to do so.

5. PARAMETERIZING THE MODIFIED GROUP
DELAY FUNCTION

Since the modified group delay function exhibits a squared
magnitude behavior at the location of the roots, we refer to
the modified group delay function as the modified group de-
lay spectra henceforth. Homomorphic processing is the most
commonly used approach to convert spectrum derived from
the speech signal to meaningful features. This is primarily
because this approach yields features that are linearly decor-
related which allows the use of diagonal covariances in mod-
eling the speech vector distribution. In this context, the dis-
crete cosine transform (DCT LILIII) [41] is the most com-
monly used transformation that can be used to convert the
modified group delay spectra to cepstral features. Hence the
group delay function is converted to cepstra using the dis-
crete cosine transform (DCT II) as

k=Ny

c(n) = Z Tm(k)COS<

k=0

n(2k+1)n>’ (15)

Ny

where Ny is the DFT order and 7,,(k) is the modified group
delay spectrum. The discrete cosine transform (DCT) can
also be used in the reconstruction of the modified group de-
lay spectra from the modified group delay cepstra (MOD-
GDF). Velocity and acceleration parameters for the new
group delay function are defined in the cepstral domain, in
a manner similar to that of the velocity and acceleration pa-
rameters for MFCC.
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FiGURrE 2: Comparison of the group delay and the modified group
delay function to handle pitch periodicity effects. (a) The z-plane
plot of a system with three complex poles and their complex conju-
gate pairs, (b) the impulse response of the system shown in (a), (c)
the group delay function of the signal shown in (b), (d) the response
of the system shown in (a) to 5 impulses, (e) the group delay func-
tion of the signal shown in (d), and (f) the modified group delay
function of the signal shown in (d).

6. SIGNIFICANCE OF SPECTRAL RECONSTRUCTIONS
IN COMBINING MAGNITUDE AND
PHASE-BASED FEATURES

In this section, we reconstruct the formant structures or the
respective short-time spectra from the MODGDE, MFCC,

and the joint features. The MODGDF is derived from the
modified group delay spectra as

il n(2k + 1)
cp(n) = Z Tm(k) cos (T), (16)
k=0

where Ny is the DFT order. It is emphasized here that there
are no filter banks used in the computation of the MODGDE.
The MFCC are derived from the short time power spectra as

k=N
nlk—1/2)n
cm(n) = z X cos (7), (17)
k=1 Nip
where n = 1,2,3,..., M represents the number of cepstral

coefficients and k = 1,2,3,...,Ny; the number of filters
used. Xj represents the log-energy output of the kth filter.
The joint features (MODGDF + MFCC) are derived by ap-
pending the MODGDF vectors calculated as in (16) with the
MEFCC vectors calculated as in (17). The number of cepstral
coefficients used in both the MODGDF and the MFCC is
the same. To reconstruct the formant structures or the short-
time spectra from the cepstra, an inverse DCT of the original
DFT order has to be performed on the cepstra. The recon-
structed modified group delay spectra as derived from the
MODGDF is given by

" n(2k + 1)
wk = 3 cp(n)cos<Tf>, (18)

where Ny is the DFT order, while the reconstructed short-
time power spectra derived from the MFCC is given by

n=Nyp

n(2k + 1)
X = ,go cm(n) cos (%), (19)
where n = 1,2,3,..., M represents the original number

of cepstral coefficients and k = 1,2,3,..., Ny, the original
number of filters used. X represents the reconstructed log-
energy output of the kth filter. The smooth frequency re-
sponse of the original DFT order is computed by interpo-
lating the filter bank reconstructed energies. The short-time
spectra for the joint features are reconstructed as a three-
step process. First, the short-time modified group delay spec-
tra of the original DFT order are reconstructed from the
n-dimensional MODGDF as in (18). Then the short-time
power spectra of the original DFT order are reconstructed
from the n-dimensional MFCC using (19) and an interpola-
tion of the resulting filter bank energies. Finally, the short-
time power spectra reconstructed from the MFCC and the
short-time modified group delay spectra reconstructed from
the MODGDF are averaged to derive the short-time compos-
ite spectra of the original DFT order. Note that the dimen-
sionality of the MODGDF and the MFCC is the same.

6.1. Spectral reconstruction for a synthetic vowel

Typically, a vowel spectrum is characterized by the first
three formants. Assuming a source system model of speech



EURASIP Journal on Audio, Speech, and Music Processing

production, the transfer function of such a system is given
by:

vk bz ™k

H@ =S aer

(20)

The transfer function of the same system for the production
of vowel assuming an all pole model is given by

;
Pl gakz*k’
l
H(z) = ————— (22)
1+ Z akz 3

H(z) = (21)

Let the vowel be characterized by the frequencies F1, F2, F3.
Hence the poles of the system are located at

p = re*iv, (23)

By substituting (23) in (21), the system function for produc-
tion of the ith formant now becomes

1
H; = . 24
i(2) 1 —-2rcosw;Tz ! +r2z2 (24)
But from resonance theory
r= e—nB,'T. (25)

By substituting (25) in (24), the system function in (24) now
becomes

1
1 —2e7 78T cos w; Tz + e~ 2mBiTz=2"

H,‘(Z) = (26)

In the above array of equations, w; corresponds to the ith
formant frequency, B; to the bandwidth of the ith formant
frequency, and T to the sampling period. Using (26), we
generate a synthetic vowel with the following values: F1 =
500Hz, F2 = 1500Hz, F3 = 3500Hz, B; = 10% of F;,
and T = 0.0001 second corresponding to a sampling rate of
10 KHz. Note that F1, F2, and F3 are the formant frequen-
cies in Hz. We then extract the MODGDEFE, MFCC, and joint
features (MODGDF + MFCC) from the synthesized vowel.
To reconstruct the formants, we use the algorithm described
above. The reconstructed formant structures derived from
the MODGDE, MFCC, joint features (MODGDF + MFCC),
and also RASTA filtered MFCC are shown in Figures 3(a),
3(b), 3(c), and 3(d), respectively. The illustrations are shown
as spectrogram like plots?> where the data along the Y-axis
correspond to the DFT bins and the x-axis corresponds to
the frame number. It is interesting to note that while the
formants are reconstructed accurately by both the MOD-
GDF and the MFCC as in Figures 3(a) and 3(b), respectively,
joint features (MODGDF + MFCC) combine the formant

2 The differences between the subplots are better visualized in color than in
gray scale.
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FIGURE 3: Spectrogram-like plots to illustrate formant reconstruc-
tions for a synthetic vowel. (a) The short-time modified group de-
lay spectra reconstructed from MODGDE, (b) the short-time power
spectra reconstructed from MFCC, (c) the short-time composite
spectra reconstructed from joint features (MODGDF+MFCC), and
(d) the short-time power spectra reconstructed from RASTA filtered
MFCC.

information in the individual features as in Figure 3(c). It is
expected that RASTA filtered MFCC shown in Figure 3(d)
does not capture the formant structure for the synthetic sig-
nal. RASTA filtered MFCC reconstructions are illustrated
here only to show that while the MODGDF works well on
clean speech, RASTA MFCC fails, which is quite expected.
Although one may hypothesize that individual features cap-
ture formant information well and the need for joint features
is really not there, it would be significant to note that joint
features combine information gathered from individual fea-
tures as in Figure 3(c). Similar spectrogram-like plots to il-
lustrate formant reconstructions for a synthetic speech signal
with varying formant trajectories are shown in Figure 4. It is
interesting to note that in Figure 4(a), all the 3 formants are
visible. In Figure 4(b), while the first 2 formants are visible,
the third formant is not clearly visible. In Figure 4(c), while
the first 2 formants are clear, the third formant is further em-
phasized. Hence it is clear that joint features are able to com-
bine the information that is available in both the MODGDF
and MFCC.
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FIGURE 4: Spectrogram-like plots to illustrate formant reconstruc-
tions for a synthetic speech signal with varying formant trajec-
tory. (a) The short-time modified group delay spectra reconstructed
from the MODGDE, (b) the short-time power spectra reconstructed
from MFCC, and (c) the short-time composite spectra recon-
structed from joint features (MODGDF + MFCC).

7. DATABASES USED IN THE STUDY

There are four databases used in the study. The databases
used are the database for Indian languages (DBIL) for syllable
recognition [27], TIMIT [28] and NTIMIT [29] for speaker
identification, and OGI_MLTS [32] for language identifica-
tion.

7.1. The database for Indian languages (DBIL)

(i) DBIL Tamil database: this corpus consists of 20 news
bulletins of the Tamil language transmitted by Door-
darshan India, each of 15 minutes duration compris-
ing 10 male and 10 female speakers. The total number
of distinct syllables is 2184.

(ii) DBIL Telugu database: this corpus consists of 20 news
bulletins of the Telugu language transmitted by Door-
darshan India, each of 15 minutes duration compris-
ing 10 male and 10 female speakers. The total number
of distinct syllables is 1896.

7.2. The TIMIT database

The DARPA TIMIT Acoustic-Phonetic Continuous Speech
Corpus was a joint effort among the Massachusetts Institute
of Technology (MIT), Stanford Research Institute (SRI), and

Texas Instruments (TI). TIMIT contains a total of 6300 sen-
tences, 10 sentences spoken by each of 630 speakers from 8
major dialect regions of the United States.

7.3. The NTIMIT database

The NTIMIT corpus was developed by the NYNEX Sci-
ence and Technology Speech Communication Group to pro-
vide a telephone bandwidth adjunct to the popular TIMIT
Acoustic-Phonetic Continuous Speech Corpus. NTIMIT was
collected by transmitting all the 6300 original TIMIT utter-
ances through various channels in the NYNEX telephone
network and redigitizing them. The actual telephone chan-
nels used were varied in a controlled manner, in order to
sample various line conditions. The NTIMIT utterances were
time-aligned with the original TIMIT utterances so that the
TIMIT time-aligned transcriptions can be used with the
NTIMIT corpus as well.

7.4. The OGI_MLTS database

The OGI multilanguage telephone speech corpus consists of
telephone speech from 11 languages. The initial collection,
included 900 calls, 90 calls each in 10 languages and was col-
lected by Muthusamy et al. [32]. The languages are English,
Farsi, French, German, Japanese, Korean, Mandarin, Span-
ish, Tamil, and Vietnamese. It is from this initial set that the
training (50), development (20), and test (20) sets were es-
tablished. The National Institute of Standards and Technol-
ogy (NIST) uses the same 50-20-20 set that was established.
The corpus is used by NIST for the evaluation of automatic
language identification.

8. FEATURE EXTRACTION AND COMBINATION

In this section, we discuss the methods for feature extraction,
tuning, and combination of various features before and after
the acoustic model. The features used in this work are the
MECC, the spectral root compressed MFCC (SRMFC), the
energy root compressed MFCC (ERMFC), the normalized
spectral root compressed MFCC (NSRMFCQ), the linear fre-
quency cepstral coefficients (LFCC), the spectral root com-
pressed LFCC (SRLFC), and the MODGDE

8.1. Computation and tuning of spectral
magnitude-based features

The speech signal is first pre-emphasized and transformed to
the frequency domain using a fast Fourier transform (FFT).
The frame size used is 20ms and the frame shift used is
10ms. A hamming window is applied on each frame of
speech prior to the computation of the FFT. The frequency
scale is then warped using the bilinear transformation pro-
posed by Acero [42]. The frequency scale is then multiplied
by a bank of filters Ny whose center frequencies are uni-
formly distributed in the interval [Miny, Maxy]| along the
warped frequency axis. The filter shape used at the front end
is trapezoidal and its width varies from one center frequency
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to another. The shape of the filter is controlled by a constant
which varies from 0 to 1, where 0 corresponds to triangu-
lar and 1 corresponds to rectangular. The filter bank energies
are then computed by integrating the energy in each filter.
A discrete cosine transform (DCT) is then used to convert
the filter bank log energies to cepstral coefficients. Cepstral
mean subtraction is always applied when working with noisy
telephone speech. The front end parameters are tuned care-
fully as in [43] for computing the MFCC so that the best
performance is achieved. The LFCC are computed in a sim-
ilar fashion except that the frequency warping is not done as
in the computation of the MFCC. The velocity, acceleration,
and the energy parameters are added for both the MFCC
and LFCC in a conventional manner. The spectral root com-
pressed MFCC are computed as described in [44] and the en-
ergy root compressed MFCC as in [35]. The computation of
the spectral root compressed MFCC is the same as the com-
putation of the MFCC except that instead of taking a log of
the FFT spectrum, we raise the FFT spectrum to a power y
where the value of y ranges from 0 to 2. In the computation
of the energy root compressed MFCC, instead of raising the
FFT spectrum to the root value, the Mel frequency filter bank
energies are compressed using the root value. In the energy
root compressed case, the value of the root used for com-
pression can range from 0 to 1. The normalized spectral root
compressed MFCC is computed by normalizing the short-
time power spectrum with its cepstrally smoothed version,
followed by root compression as in the case of the spectral
root compressed MFCC. It is emphasized here that all the
free parameters involved in the computation of all these fea-
tures including the root value and the cepstral window length
used in spectral smoothing have been tuned carefully so that
they give the best performance and are not handicapped in
any way when they are compared with the MODGDE. The
values of the spectral root and the energy root used in the
experiments are 2/3 and 0.08, respectively. The velocity, ac-
celeration and the energy parameters are augmented to both
forms of the root compressed MFCC in a conventional man-
ner. Note that all free parameters in all the aforementioned
features have been tuned using line search on a validation
data set selected from the particular database.

8.2. Computation and tuning of free parameters
for the MODGDF

There are three free parameters lifter,,, «, and y involved in
the computation of the MODGDF as discussed in Section 4.
From the results of initial experiments on the databases de-
scribed in Section 7, we fix the length of the lifter,, to 8 al-
though the performance remains nearly the same for lengths
from 4 to 9. Any value greater than 9 brings down the per-
formance. Having fixed the length of the lifter,,, we then
fix the values of « and y. In order to estimate the values of
a and y, an extensive optimization was carried out for the
SPINE database [45] for phoneme recognition. To ensure
that the optimized parameters were not specific to a partic-
ular database, we collected the sets of parameters that gave
best performance on the SPINE database and tested them on

TaBLE 1: Series of experiments conducted on various databases with
the MODGDE.

Experiments conducted on the various databases
N, =10,12,13,16
y = {0.1 — 1.0} in increments of 0.1
a = {0.1 — 1.0} in increments of 0.1
lifter,, = 4,6,9,10,12

TaBLE 2: Best front end for the MODGDF across all databases.

y o lifter,, N,
0.9 0.4 8 13

other databases like the DBIL database (for syllable recogni-
tion), TIMIT, NTIMIT (for speaker identification), and the
OGI_MLTS database (for language identification). The val-
ues of the parameters that gave the best performance across
all databases and across all tasks were finally chosen for the
experiments. The optimization technique uses successive line
searches. For each iteration, « is held constant and y is var-
ied from 0 to 1 in increments of 0.1 (line search) and the
recognition rate is noted for the three tasks on the aforemen-
tioned databases. The value of y that maximizes the recogni-
tion rate is fixed as the optimal value. A similar line search
is performed on « (varying it from 0 to 1 in increments of
0.1) keeping y fixed. Finally, the set of values of « and y that
give the lowest error rate across the three tasks is retained.
The series of experiments conducted to estimate the opti-
mal values for lifter,,, &, and y using line search are summa-
rized in Table 1. Based on the results of such line searches,
the best front end for the MODGDF across all tasks is listed
in Table 2.

8.3. Extraction of joint features before
the acoustic model

The following method is used to derive joint features by com-
bining features before the acoustic model.

(i) Compute 13-dimensional MODGDF and the MFCC
streams appended with velocity, acceleration, and en-
ergy parameters.

(ii) Use feature stream combination to append the 42-
dimensional MODGDF stream to the 42-dimensional
MFCC stream to derive an 84-dimensional joint fea-
ture stream.

Henceforth, we use the subscript bm for joint features thus
derived.

8.4. Likelihood combination after the acoustic model

The following method is used to do a likelihood combination
after the acoustic model.

(i) Compute 13-dimensional MODGDF and the MFCC
streams appended with velocity, acceleration, and en-
ergy parameters.
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(ii) Build a Gaussian mixture model (GMM) (for pho-
neme, speaker, and language recognition tasks) or a
hidden Markov model (HMM) (for the continuous
speech recognition task).

(iii) Compute the output probability of the acoustic model
for different features.

(iv) The combined output log likelihood due to different
feature streams is given by

M
logPy = > g log Py (27)

i=1

and a;; is the weight assigned to the ith feature
stream, and M is the number of feature streams used.
First, a rank is assigned to the log likelihood due to
each individual feature stream based on its value. The
higher log likelihood value gets a higher rank. The
weights a; r are now computed as the reciprocal of the
rank assigned.

(v) Make a decision based on maximization of the com-
bined output log likelihood.

Henceforth, we use the subscript am for likelihood combi-
nation. Table 3 summarizes the results of performance eval-
uation using both feature and likelihood combination tech-
niques.

9. PERFORMANCE EVALUATION

In this section, we first discuss the significance of dimension-
ality of the feature vector and the size of training data. The
results of performance evaluation of the MODGDF, MFCC,
LFCC, NSRMFC, SRMFEC, SRLFC, and joint features derived
by combining these features for syllable, speaker, and lan-
guage recognition are then presented. To enable a fair com-
parison, the results of combining any two features derived
from the short-time spectral magnitude and also the MOD-
GDF are listed. Although we experimented with all possible
combinations of all features, both at feature level and using
likelihood combination, we present the results of combin-
ing MODGDF with MFCC and MFCC with the LFCC. This
is because combining any two features derived from spec-
tral magnitude gave very small or no improvements, while
a combination of the MODGDF with any feature derived
from the spectral magnitude gave significant improvements
in recognition performance. It is also noticed that new fea-
tures like the NSRMFC, SRMFC, ERMFC, and SRLFC give
a small improvement in recognition performance compared
to the MFCC when used in isolation, but do not give any im-
provement when combined with each other.

9.1. Significance of dimensionality of the feature
vectors and training data

In the experimental results described in the following sec-
tions, we compute a 13-dimensional vector for each feature
stream appended with energy, delta, and acceleration coef-
ficients. For feature combination before the acoustic mod-
el, the features are concatenated to compute a joint feature

stream. Experimental results indicate that simply increas-
ing the dimensionality of each individual feature stream to
match the dimensionality of the joint feature stream does not
improve recognition performance for any of the three tasks
mentioned above. We have also experimented with increased
amounts of training data for such individual high dimen-
sional feature streams to validate these results. For syllable
recognition, training data was increased in increments of one
news bulletin from the DBIL database. For the speaker and
language identification tasks, the training data was increased
in increments of two sentences from the TIMIT, NTIMIT,
and the OGI_MLTS databases. The results from these ex-
periments indicate that combining the MODGDF (derived
from the short-time spectral phase) with features computed
from the short-time spectral magnitude like MFCC gives
an improvement in recognition performance even though
the overall feature dimension is increased. It is hypothesized
from these results that the MODGDF has some complemen-
tary information when compared to features derived from
the short-time spectral magnitude.

9.2. Syllable-based speech recognition

In this section, we discuss the baseline system and experi-
mental results for recognition of syllables on the DBIL Tamil
and Telugu databases [27]. The baseline recognition system
uses hidden Markov models trained apriori for 320 sylla-
bles for Tamil and 265 syllables for Telugu extracted from
the broadcast news corpora from the DBIL database [27]
of two Indian languages, Tamil and Telugu. The number
of syllables used for training is selected based on their fre-
quency of occurrence in the respective corpora. Any syl-
lable that occurs more than 50 times in the corpus is se-
lected as a candidate for which HMMs are built. All the
HMMs built are 5-state and 3-mixture models. A separate
model is built for silence. During the test phase, the test sen-
tence is segmented at boundaries of syllabic units using mini-
mum phase group delay functions derived from the root cep-
strum as in [39]. These segments are now checked in iso-
lated style against all HMMs built apriori. The HMM that
gives the maximum likelihood value is declared as the cor-
rect match. The segments hence recognized are concatenated
in the same order as they were segmented to realize the rec-
ognized sentence. For DBIL data of Telugu language, the
MODGDF (MGD) recognition performance was at 36.6%,
MFCC (MFC) at 39.6%, ({MGD + MFC}py,) at 50.6%, and
({MGD + MFC}.n) at 44.6% for this task. The best increase
due to feature combination was 11%. For DBIL data of Tamil
language, the MODGDF (MGD) recognition performance
was at 35.1%, MFCC (MFC) at 37.1%, ({MGD + MFC}pm)
at 48.9%, and ({MGD + MFC},,,) at 41.7% for this task. The
best increase due to feature combination was 11% as indi-
cated in Table 3. The results for combining the MODGDEF
with the LFCC are also tabulated in Table 3 and show very
small improvements. It is worthwhile to note that syllable
recognition performance is improved significantly by com-
bining features before the acoustic model when compared to
combining the likelihoods.
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TABLE 3: Results of performance evaluation for three speech processing tasks: syllable, speaker, and language recognition for
MODGDF(MGD), MFCC(MFC), LECC(LFC), spectral root compressed MFCC(SRMFC), normalized spectral root compressed
MFCC(NSRMEC), energy root compressed MFCC(ERMEFC), spectral root compressed LFCC(SRLFC), MODGDF and MFCC combined be-
fore the acoustic model({MGD + MFC} ), likelihood combination of MODGDF and MFCC after the acoustic model({MGD + MFC} .y ),
MFCC and LFCC combined before the acoustic model({MFC + LFC}y,y, ), and likelihood combination of MFCC and LFCC after the acoustic

model({MFC + LFC}.p,).
Task Feature Database Train data Test data Classifier Recog. (%) Inc. in Recog. (%)
MGD 36.6% —
MEC 39.6% —
LFC 32.6% —
SRMEFC 35.6% —
Syllable NSRMFC DBIL 10 news bulletins 2 news bulletins IE:ISI,\:IaI:gs 36% -
recognition ERMEFC (TELUGU) 15 mt. duration 9400 syllables 3 mixtures 38% —
SRLEC 34.2% —
{MGD + MFC}pm 50.6% 11%
{MGD + MFC} 44.6% 5%
{MFC + LFC} pm 41.6% 2%
{MFC + LFC} ,, 40.6% 1%
MGD 35.1% —
MEFC 37.1% —
LFC 31.2% —
SRMEFC 34.1% —
Syllable NSRMFC DBIL 10 news bulletins 2 news bulletins I;i\t/[alés 34.5% -
recognition ERMEFC (TELUGU) 15 mt. duration 9400 syllables 3 mixtures 36.5% —
SRLFC 32.4% —
{MGD + MFC} 48.9% 11%
{MGD + MFC} 41.7% 4.6%
{MFC + LFC} pp, 39.1% 2%
{MFC + LFC} ;n 38% 0.9%
MGD 98% —
MEFC 98% —
LFC 96.25% —
SRMFC 97.25% —
.Spealfer . NSRMEC TIMIT 6 sentences/speaker 4 sentences/speaker GMM o7% o
identification ERMFC 64 mixtures 98% _
SRLFC 97% —
{MGD + MFC}y, 99% 1%
{MGD + MFC} 99% 1%
{MFC + LFC} p, 98% 0%
{MFC + LFC} n 98% 0%
MGD 41% —
MEFC 40% —
LFC 30.25% —
SRMFC 34.25% —
.Speakﬂ . NSRMEC NTIMIT 6 sentences/speaker 4 sentences/speaker GMM 3% o
identification ERMFC 64 mixtures 34.75% _
SRLFC 31.75% —
{MGD + MFC} pp, 47% 6%
{MGD + MFC} 4y 45% 4%
{MFC + LFC} pyy 40% 0%
{MFC + LEC} 4 40% 0%
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TasLE 3: Continued.

Task Feature Database Train data Test data Classifier Recog. (%) ;n;colg (%)
MGD 53% —
MEC 50% —
LFC 47% —
SRMFC 50.4% —
Pangl.lage ' liilmic OGI_MLTS 45 sentences 20 sentences GMM 28'222 :
identification 11-language task 40 males and 5 females 18 males and 2 females 64 mixtures )
SRLFC 48% —
{MGD + MFC}pn 58% 5%
{MGD + MFC} 57% 4%
{MFC + LFC}pn 51% 1%
{MFC + LEC} 50.5% 0.5%

9.3. Speaker identification

In this section, we discuss the baseline system and ex-
perimental results for speaker identification on the TIMIT
database (clean speech) and the NTIMIT database (noisy
telephone speech). A series of GMMs modeling the voices
of speakers for whom training data is available and a clas-
sifier that evaluates the likelihoods of the unknown speak-
ers voice data against these models make up the likelihood
maximization-based baseline system used in this section.
Single state, 64 mixture Gaussian mixture models (GMM:s)
are trained for each of the 630 speakers in the database.
The number of sentences used for training each speaker’s
model is 6, while 4 sentences are used to test a particu-
lar speaker during the testing phase. Hence a total of 400
tests are conducted to identify 100 speakers and the num-
ber of tests goes up to 2520 for identifying 630 speakers. For
the TIMIT (clean speech) data [28], the MODGDF (MGD)
recognition performance was at 98%, MFCC (MFC) at 98%,
({MGD + MFC}pm) at 99%, and ({MGD + MFC} am) at 99%
for this task. The best increase due to feature combination
was 1%. While for the NTIMIT (noisy telephone speech)
data [29], the MODGDF (MGD) recognition performance
was at 41%, MFCC (MFC) at 40%, ({MGD + MFC}yp,,) at
47%, and ({MGD + MFC}.,) at 45% for this task. The best
increase due to feature combination was 6% as indicated in
Table 3. The results for combining the MODGDF with the
LFCC are also tabulated in Table 3 and show minor improve-
ments.

9.4. Language identification

In this section, we discuss the baseline system and experi-
mental results for language identification on the OGI_MLTS
database (11-language task for noisy telephone speech). The
baseline system used for this task is very similar to the sys-
tem used for the automatic speaker identification task as in
Section 9.3, except that each language is now modeled by a
GMM. From the 90 phrases available for each language, 45
are used for training and 20 are used for testing. The du-
ration of the test utterance is 45 seconds. The results of the
MODGDF and the MFCC on the OGI_MLTS [32] corpora

using the GMM scheme are listed in Table 3. For the 11-
language task on the OGI_MLTS data, the MODGDF (MGD)
recognition performance was at 53%, MFCC (MFC) at 50%,
({MGD + MFC}pp,) at 58%, and ({MGD + MFC} .y, ) at 57%
for this task. The best increase due to feature combination
was 5%. The results for combining the MODGDF with the
LFCC are also tabulated in Table 3, and indicate that combin-
ing two spectral magnitude-based features does not give sig-
nificant improvements for the language identification task.
It was also noticed from the confusion matrix created from
our recognition experiments that Japanese and Korean had
a high degree of confusion between themselves, and that
the MODGDF was able to identify Korean better, while the
MEFCC performed better in recognizing Japanese.

10. CONCLUSION

This paper discusses the significance of joint features derived
by combining the short-time magnitude and phase spectra
in speech recognition. Indeed, the MODGDF and its signif-
icance in speech processing have been investigated in ear-
lier efforts. The idea of combining cepstral features derived
from the short-time magnitude spectra and from the mod-
ified group delay function both at feature level and at like-
lihood level is proposed in this paper. It is illustrated that
joint cepstral features derived from the modified group de-
lay function and MFCC essentially capture complete spec-
tral information in the speech signal. The advantage of us-
ing joint features for noisy data and related robustness is-
sues are discussed. The joint features are used for three
speech processing tasks, namely, syllable, speaker, and lan-
guage recognition. The results of the performance evaluation
indicate that joint features improve recognition performance
up to 11% for feature combination before the acoustic model
and up to 5% for likelihood combination after the acoustic
model. The results of the performance evaluation presented
in this work indicate that the MODGDF complements the
features derived from the short-time power spectra like the
MFCC. Recognition results indicate that combining features
at the feature level gave significant improvements for syllable
recognition and speaker identification when compared to the
method of likelihood combination. Although the results of



12

EURASIP Journal on Audio, Speech, and Music Processing

the performance evaluation indicate the complementarity of
the MODGDF to the MFCC, it is not clear how a measure of
complementarity can be defined. The use of feature pruning
techniques like the sequential floating forward search with
appropriate distance measures to reduce the dimensionality
of the joint feature stream is another issue that needs to be
addressed.
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