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We investigate novel algorithms to improve the convergence and reduce the complexity of time-domain convolutive blind source
separation (BSS) algorithms. First, we propose MMax partial update time-domain convolutive BSS (MMax BSS) algorithm. We
demonstrate that the partial update scheme applied in the MMax LMS algorithm for single channel can be extended to multichan-
nel time-domain convolutive BSS with little deterioration in performance and possible computational complexity saving. Next,
we propose an exclusive maximum selective-tap time-domain convolutive BSS algorithm (XM BSS) that reduces the interchannel
coherence of the tap-input vectors and improves the conditioning of the autocorrelation matrix resulting in improved convergence
rate and reduced misalignment. Moreover, the computational complexity is reduced since only half of the tap inputs are selected
for updating. Simulation results have shown a significant improvement in convergence rate compared to existing techniques.
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1. INTRODUCTION

Blind source separation (BSS) [1, 2] is an established area of
work estimating source signals based on information about
observed mixed signals at the sensors, that is, the estimation
is performedwithout exploiting information about either the
source signals or the mixing system. Independent compo-
nent analysis (ICA) [3] is the main statistical tool for dealing
with the BSS problem with the assumption that the source
signals are mutually independent. In the instantaneous BSS
case, signals are mixed instantaneously and ICA algorithms
can be directly employed to separate the mixtures. However,
in a realistic environment, signals are always mixed in convo-
lutive manner because of propagation delay and reverbera-
tion effects. Therefore, much research deals with convolutive
blind source separation based on extending instantaneous
blind source separation or independent component analysis
to convolutive case.

The straightforward choice in time-domain convolutive
blind source separation is based on directly extending instan-
taneous BSS to the convolutive case [4, 5]. This natural ap-
proach achieves good separation results once the algorithm
converges. However, time-domain convolutive blind source
separation suffers from high computational complexity and
low convergence rate, especially for systems requiring long

FIR filters for the separation.
Frequency domain convolutive BSS [6, 7] was proposed

to deal with the expensive computational complexity prob-
lem of time-domain BSS. In frequency domain BSS, com-
plex-valued ICA for instantaneous BSS is employed in every
frequency bin independently. The advantage of this approach
is that any existing complex-valued instantaneous BSS algo-
rithm can be used and the computational complexity is re-
duced by exploiting the FFT for the computation of convo-
lution which is the basis of popularity of frequency domain
approaches. However, the permutation and scaling ambigu-
ity in the ICA algorithm, which is not a problem for instan-
taneous BSS, becomes a serious problem in frequency do-
main convolutive BSS. Since frequency domain convolutive
BSS is performed by instantaneous BSS at each frequency
bin separately, the order and the scale of the unmixed sig-
nals are random because of the inherent ambiguity of ICA
algorithms. When we transform the separated signals back
from frequency domain to time domain, the components at
a given frequency bin may not come from the same source
signal and may not have a consistent scale factor. Thus, we
need to align these components and adjust the scale in each
frequency bin so that a separated signal in time domain is
obtained from frequency components of the same source sig-
nal and with consistent amplitude. This is well known as the
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permutation and scaling problem of frequency domain con-
volutive BSS [8, 9]. These built-in problems in frequency do-
main approaches make it worthwhile to reconsider ways of
reducing the complexity of time-domain approaches and im-
proving their convergence rates.

In recent years, several partial update adaptive algorithms
were proposed tomodel single-channel systems with reduced
overall system complexity by updating only a subset of coef-
ficients. Within these partial update algorithms, the MMax
NLMS in [10] was reported to have the closest performance
to the full update case for any given number of coefficients
to be updated. In [11], the MMax selective-tap strategy was
extended to the two-channel case to exclusively select coeffi-
cients corresponding to the maximum inputs as a means to
reduce interchannel coherence in stereophonic acoustic echo
cancellation rather than as a way to reduce complexity. Simu-
lation results for this exclusive maximum adaptive algorithm
show that it can significantly improve the convergence rate
compared with existing stereophonic echo cancellation tech-
niques.

In this paper, we propose using these reduced complexity
approaches in time-domain BSS to address complexity and
low convergence problems. First, we propose MMax natu-
ral gradient-based partial update time-domain convolutive
BSS algorithm (MMax BSS). In this algorithm, only a subset
of coefficients in the separation system gets updated at ev-
ery iteration. We demonstrate that the partial update scheme
applied in the MMax LMS algorithm for a single channel
can be extended to the multichannel time-domain convolu-
tive BSS with little deterioration in performance and possible
computational complexity saving. By employing selective-
tap strategies used for stereophonic acoustic echo cancella-
tion [11], we propose exclusive maximum selective-tap time-
domain convolutive BSS algorithm (XM BSS). The exclusive
tap-selection update procedure reduces the interchannel co-
herence of the tap-input vectors and improves the condi-
tioning of the autocorrelation matrix so as to accelerate con-
vergence rate and reduce the misalignment. The computa-
tional complexity is reduced as well since only half of the
tap inputs are selected for updating (note that some over-
head is needed to select the set to be updated). Simulation
results have shown a significant improvement in convergence
rate compared with existing techniques. As far as we know,
the application of partial update and selective-tap update
schemes to time-domain BSS algorithm is in itself novel.

BSS algorithms are generally preceded by a prewhiten-
ing stage that aims to reduce the correlation between the dif-
ferent input sources (as opposed to regular whitening where
correlation between different samples of the same source is
reduced). This decorrelation step leads to a subsequent sep-
aration matrix that is orthogonal and less ill-conditioned.
The proposed partial update BSS algorithm incorporates this
whitening concept into the separation process by adaptively
reducing the interchannel coherence of the tap-input vectors.

The rest of this paper is organized as follows. In Section 2,
we review blind source separation and its challenges in time
domain and frequency domain. In Section 3, we review the
single-channel MMax partial update adaptive algorithm for
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Figure 1: Structure of instantaneous blind source separation sys-
tem.

linear filters. In Section 4, we review exclusive maximum
selective-tap adaptive algorithm for stereophonic echo can-
cellation. We propose theMMax partial update time-domain
convolutive BSS algorithm in Section 5 and the exclusive
maximum update time-domain convolutive BSS algorithm
in Section 6. The tools for assessing the quality of the sepa-
ration are presented in Section 7 and simulation results for
the proposed algorithms for generated gamma signals and
speech signals are presented in Section 8. In Section 9, we
draw our conclusions from our work.

2. BLIND SOURCE SEPARATION

2.1. Instantaneous time-domain BSS

Blind source separation (BSS) is a very versatile tool for sig-
nal separation in a number of applications utilizing observed
mixtures and the independence assumption. For instanta-
neous mixtures, independent component analysis (ICA) can
be employed directly to separate the mixed signals.

The ICA-based algorithm for instantaneous blind source
separation requires the output signals to be as independent
as possible. Different algorithms can be obtained based on
how this independence is measured. The instantaneous time-
domain BSS structure is shown in Figure 1. In this paper,
we use the Kullback-Leibler divergence to measure indepen-
dence and obtain the BSS algorithm as follows:

x = As,

y =Wx,
(1)

where s = [s1, . . . , sN ]T is the vector of source signals,
x = [x1, . . . , xM]T is the vector of mixture signals, y =
[y1, . . . , yN ]T is the vector of separated signals, A and W are
instantaneous mixing and unmixing systems and can be de-
scribed as

A =

⎡
⎢⎢⎣
a11 · · · a1N

· · ·
aM1 · · · aMN

⎤
⎥⎥⎦ , W =

⎡
⎢⎢⎣
w11 · · · w1M

· · ·
wN1 · · · wNM

⎤
⎥⎥⎦ .

(2)

The Kullback-Leibler divergence of the output signal vector
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Figure 2: Structure of convolutive blind source separation system.

is

D
(
p(y) || q(y)) =

∫
p(y) log

p(y)∏N
i=1 pi

(
yi
)dy, (3)

where p(y) is the probability density of output signals, pi(yi)
is the probability density of output signal yi, q(y) is the joint
probability density of output signals:

D
(
p(y) || q(y))

=
∫
p(y) log p(y)−

N∑

i=1

(∫
p(y) log pi

(
yi
))

= −H(y) +
N∑

i=1
Hi
(
yi
)

= −H(x)− log
∣∣det(W)

∣∣−
N∑

i=1
E
[
log
(
pi
(
yi
))]

,

(4)

where H(·) is the entropy operation.
Using standard gradient

ΔD = ∂D

∂W
= − ∂

∂W
H(x)− ∂

∂W
log
(∣∣det(W)

∣∣)

− ∂

∂W

N∑

i=1
E
[
log
(
pi
(
yi
))]

= 0−W−T + E
[
ϕ(y)xT

]
,

(5)

where ϕ(y) = [∂p1(y1)/∂y1/p1(y1), . . . , ∂pN (yN )/∂yN/pN
(yN )] is a nonlinear function related to the probability den-
sity function of source signals, the coefficients W in the un-
mixing system are then updated as follows:

W(k + 1) =W(k) + ΔW,

ΔWstandard grad = −μ ∂D
∂W

= μ
(
W−T − E

[
ϕ(y)xT

])
.

(6)

However, BSS algorithms have traditionally used the natural
gradient [4] which is acknowledged as having better perfor-
mance. In this case, ΔW is given by

ΔWnatural grad = −μ ∂D
∂W

WTW = μ
[
I− E

(
ϕ(y)yT

)]
W.

(7)

2.2. Convolutive BSS algorithm

The convolutive BSS model is illustrated in Figure 2. N
source signals {si(k)}, 1 ≤ i ≤ N , pass through an unknown
N-input, M-output linear time-invariant mixing system to
yield theM mixed signals {xj(k)}. All source signals si(k) are
assumed to be statistically independent.

Defining the vectors s(k) = [s1(k) · · · sN (k)]T and
x(k) = [x1(k) · · · xM(k)]T , the mixing system can be rep-
resented as
⎡
⎢⎣
x1(k)
·

xM(k)

⎤
⎥⎦ =

⎡
⎢⎣
h11(l) · · · h1N (l)
· · ·

hM1(l) · · · hMN (l)

⎤
⎥⎦∗

⎡
⎢⎣
s1(k)
·

sN (k)

⎤
⎥⎦ , (8)

where ∗ is convolution operation.
The jth sensor signal can be obtained by

xj(k) =
N∑

i=1

L−1∑

l=0
hji(l)si(k − l), (9)

where hji(l) is the impulse response from source i to sensor
j, L defines the order of the FIR filters used to model this
impulse response.

The task of the convolutive BSS algorithm is to obtain
an unmixing system such that the outputs of this system
y(k) = [y1(k) · · · yN (k)]T become mutually independent as
the estimates of the N source signals. The separation system
typically consists of a set of FIR filterswij(k) of lengthQ each.
The unmixing system can also be represented as

⎡
⎢⎣
y1(k)
·

yN (k)

⎤
⎥⎦ =

⎡
⎢⎣
w11(l) · · · w1M(l)
· · ·

wN1(l) · · · wNM(l)

⎤
⎥⎦∗

⎡
⎢⎣
x1(k)
·

xM(k)

⎤
⎥⎦ . (10)

The ith output of the unmixing system is given as

yi(k) =
M∑

j=1

Q−1∑

l=0
wij(l)xj(k − l). (11)

By extending the instantaneous BSS algorithm to the con-
volutive case, we get the time-domain convolutive BSS algo-
rithm as

ΔW = −μ ∂D
∂W

WTW = μ
[
I− E

(
ϕ(y)yT

)]
W, (12)

whereW the unmixing matrix with FIR filters as its compo-
nents.

This approach is the natural extension and achieves
good separation results once the algorithm converges. How-
ever, time-domain convolutive blind source separation suf-
fers from high computational complexity and low conver-
gence rate, especially for systems with long FIR filters.

Convolutive BSS can also be performed in frequency do-
main by using short-time Fourier transform. This method
is very popular for convolutive mixtures and is based on
transforming the convolutive blind source separation prob-
lem into instantaneous BSS problem at every frequency bin.
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Figure 3: Illustration of frequency domain convolutive BSS with
frequency permutation.

The advantage of frequency domain convolutive BSS lies
in three factors. First the computational complexity is re-
duced since the convolution operations are transferred into
multiplication operations by short-time FFT. Second, the
separation process can be performed in parallel at all fre-
quency bins. Finally any complex-valued instantaneous ICA
algorithm can be employed to deal with the separation at
each frequency bin. However, the permutation and scaling
ambiguity in ICA algorithm, which is not a problem for in-
stantaneous BSS, becomes a serious problem in frequency
domain convolutive BSS.

This problem can be illustrated by Figure 3. Frequency
domain convolutive BSS is performed by instantaneous BSS
at each frequency bin separately. As a result, the order and the
scale of the unmixed signals are random because of the inher-
ent indeterminacy of ICA algorithms. When we transform
the separated signals back from frequency domain to time
domain, the components at different frequency bins may not
come from the same source signal and may not have consis-
tent scale. Thus, we need to align the permutation and adjust
the scale in each frequency bin so that a separated signal in
time domain is obtained from frequency components of the
same source signal and with consistent amplitude. This is not
a simple problem.

3. PARTIAL UPDATE ADAPTIVE ALGORITHM

The basic idea of partial update adaptive filtering is to allow
for the use of filters with a number of coefficients L large
enough to model the unknown system while reducing the
overall complexity by updating onlyM coefficients at a time.
This results in considerable savings for M � L. Invariably,
there are penalties for this partial update, the most obvious
of which is reduced convergence rate. The question then be-
comes which coefficients should we update and how do we
minimize the impact of the partial update on the overall fil-
ter performance. In this section, we review the MMax partial
update adaptive algorithm for linear filters [10] since it forms
the basis of our proposed MMax time-domain convolutive
BSS algorithm.

Consider a standard adaptive filter set-up where x(n) is
the input, y(n) is the output, and d(n) is the desired output,
all at instant n. The output error e(n) is given by

e(n) = d(n)− y(n) = d(n)−wT(n)x(n), (13)

where w(n) is the L × 1 column vector of the filter co-
efficients and x(n) is the L × 1 column vector x(n) =

[x(n), . . . , x(n− i), . . . , x(n− L + 1)] of the current and past
inputs to the filter, both at instant n. The ith element of
w(n) is wi(n) and it multiplies the ith delayed input x(n),
i = 0, . . . ,L− 1.

The basic NLMS algorithm is known for its extreme sim-
plicity provided for coefficient update as given by

w(n + 1) = w(n) + μe(n)
x(n)∥∥x(n)

∥∥2 , (14)

where μ is the step size determining the speed of convergence
and the steady state error.

In the single-channel MMax NLMS algorithm [10], for
an adaptive filter of length L, the set of M coefficients to be
updated is selected as the one that provides the maximum
reduction in error. It is shown in [10] that this criterion re-
duces to the set of coefficients multiplying inputs x(n− i)
with the largest magnitude using the standard NLMS update
equation. This selective-tap updating can be expressed as

w(n + 1) = w(n) + μQ(n)e(n)
x(n)∥∥x(n)

∥∥2 , (15)

where Q(n) is the tap-selection matrix as

Q(n) = diag
{
q(n)

}
,

qi(n) =
⎧⎨
⎩
1,

∣∣x(n− i− 1)
∣∣ ∈ {M maxima of

∣∣x(n)
∣∣}

0, otherwise.

(16)

An analysis of the mean square error convergence is provided
in [10] based on matrix formulation of data-dependent par-
tial updates. Based on the analysis, it was shown that the
MMax algorithm provides the closest performance to the full
update case for any given number of coefficients to be up-
dated. This was also confirmed in [12].

4. EXCLUSIVEMAXIMUM SELECTIVE-TAP
ADAPTIVE ALGORITHM

Recently, an exclusive maximum (XM) partial update algo-
rithm was proposed in [11] to deal with stereophonic echo
cancellation. The XM algorithm was motivated by MMax
partial update scheme [10] as both select a subset of coef-
ficients for updating in every adaptative iteration. However,
in the XM partial update, the goal is not to reduce com-
putational complexity. Rather the exclusive maximum tap-
selection strategy was proposed to reduce interchannel co-
herence in a two-channel stereo system and improve the con-
ditioning of the input vector autocorrelation matrix. We now
review the algorithm in [11] here since it forms the basis of
our proposed XM time-domain convolutive BSS algorithm.

In stereophonic acoustic environment, the stereophonic
signals x1(n) and x2(n) are transmitted to louder speakers in
the receiving room and coupled to the microphones in this
room by the room impulse responses. In stereophonic acous-
tic echo cancellation, these coupled acoustic echoes have to
be cancelled. Let the receiving room impulse responses for
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x1(n) and x2(n) be h1(n) and h2(n), respectively. Two adap-

tive filters ĥ1(n) and ĥ2(n) of length L in stereophonic acous-
tic echo canceller are updated to estimate h1(n) and h2(n).
The desired signal for the adaptive filters is

d(n) =
2∑

j=1
hTj (n)x j(n), (17)

where h j(n) = [hj,0(n),hj,1(n), . . . ,hj,L−1(n)]T and x j(n) =
[xj(n), xj(n− 1), . . . , xj(n− L + 1)]T .

Thus, the error signal is

e(n) = d(n)−
2∑

j=1
ĥTj (n)x j(n). (18)

Adaptive algorithms such as LMS, NLMS, RLS, and affine
projection (AP) can be used to update these two adaptive fil-

ters ĥ1(n) and ĥ2(n). The exclusive maximum tap-selection
scheme is outlined in the following.

(1) At each iteration, calculate the interchannel tap-input
magnitude difference vector as p = |x1| − |x2|.

(2) Sort p in descending order as
�
p = [

�
p1, . . . ,

�
pL]

T ,
�
p1 >�

p2 > · · · >
�
pL.

(3) Order x1 and x2 according to the sorting of
�
p as

�
x1 = [

�
x1(n),

�
x1(n − 1), . . . ,

�
x1(n − L + 1)]T and

�
x2 =

[
�
x2(n),

�
x2(n− 1), . . . ,

�
x2(n− L + 1)]T .

(4) The first channel coefficients corresponding to the M
largest elements of p get updated and the second chan-
nel coefficients corresponding to M smallest elements
of p get updated.

It was shown in [11] that this update mechanism apply-
ing to LMS, NLMS, RLS, and affine projection (AP) algo-
rithms results in significantly better convergence rate than
their existing corresponding algorithms.

5. PROPOSEDMMAX PARTIAL UPDATE TIME-
DOMAIN CONVOLUTIVE BSS ALGORITHM

From the description of MMax partial update in Section 3,
we know that the principle of MMax partial update algo-
rithm for single channel is to update the subset of coefficients
which has the most impact onΔw. Our proposedMMax par-
tial update convolutive BSS algorithm is based on the same
principle.

In the MMax LMS algorithm [10], given Δw(n) =
e(n)x(n), the e(n) is common to all elements of Δw(n), then
the larger the |x(n− i)|, the larger its impact on error. Thus,
in MMax LMS algorithm, the coefficients corresponding to
M largest values in |x(n)| are updated.

However, in time-domain convolutive BSS, ΔW is as fol-
lows:

ΔW = −μ ∂D
∂W

WTW = μ
[
I− E

(
ϕ(y)yT

)]
W. (19)

Every element of W is an FIR filter and there is no common
value for all elements of ΔW. Based on MMax partial update

(1) InitializeW =
[
W11 W12

W21 W22

]
.

(2) Iteration k

x1 =
{
x1(k), x1(k − 1), . . . , x1(k − L + 1)

}
;

x2 =
{
x2(k), x2(k − 1), . . . , x2(k − L + 1)

}
;

y1 = w11 × xT1 +w12 × xT2 ;

y2 = w21 × xT1 +w22 × xT2 ;

u1 = tanh
(
y1
)
;

u2 = tanh
(
y2
)
;

ΔW =
{[

1 0
0 1

]
−
[
u1
u2

]
×
[
y1 y2

]}
×W;

ΔWnew =
[
Q11 × Δw11 Q12 × Δw12

Q21 × Δw21 Q22 × Δw22

]
;

Qi j = diag
{
qTi j
}
, i, j = 1, 2;

qi j(m) =
⎧⎨
⎩
1 ΔWi j(m) ∈ {M maxima of Δwi j

}

0 otherwise;

W =W + μ× ΔWnew;

k = k + 1.

(3) Go to step 2 to start a new iteration.

Algorithm 1: MMax partial update convolutive BSS algorithm.

principle, the coefficients with the M largest values of ΔWi j

are the ones to be updated. We show this algorithm using a
2-by-2 system as an example in Algorithm 1.

From the algorithm description, the challenge compared
to the MMax LMS algorithm [10] is that we need to sort
the elements in ΔWi j in every iteration, as opposed to sim-
ply identifying the location of one new sample in an already
ordered set. However, we only need to update the selected
subset of coefficients, which results in some savings.

6. PROPOSED EXCLUSIVEMAXIMUM SELECTIVE-TAP
TIME-DOMAIN CONVOLUTIVE BSS ALGORITHM

As we already know from Section 4, exclusive maximum tap
selection can reduce interchannel correlation and improve
the conditioning of the input autocorrelation matrix. In this
section, we examine the effect of tap selection on interchan-
nel coherence reduction and extend this idea to our multi-
channel blind source separation case.

6.1. Interchannel decorrelation by tap selection

The squared coherence function of x1, x2 is defined as

Cx1x2 ( f ) =
∣∣Px1x2 ( f )

∣∣2

Px1x1 ( f )Px2x2 ( f )
, (20)

where Px1x2 ( f ) is the cross-power spectrum between the two
mixtures x1, x2 and f is the normalized frequency [11].
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Figure 4: Squared coherence for x1 and x2 with full tap inputs se-
lected.

A two-input two-output system is considered in this sec-
tion. The mixing system used in the simulation is as follows:

H =
[
h11 h12
h21 h22

]
,

h11 =
[
1 0.8 −0.2 0.78 0.4 −0.2 0.1

]
,

h22 =
[
0.8 0.6 0.1 −0.1 0.3 −0.2 0.1

]
,

h12 = γh11 + (1− γ)b,

h21 = γh22 + (1− γ)b,

(21)

where b is an independent white Gaussian noise with zero
mean.

In the simulation, we set γ = 0.9 to reflect the high inter-
channel correlation found in practice between the observed
mixtures in a convolutive environment. The two-tap input
signals s1 and s2 are generated as zero mean, unit variance
gamma signals. The mixtures x1 and x2 are obtained from
the following equations:

x1 = s1 ∗ h11 + s2 ∗ h12,

x2 = s1 ∗ h21 + s2 ∗ h22,
(22)

where ∗ is convolution operation.
The squared coherence for the x1 and x2 with full taps se-

lected is shown in Figure 4. In Figure 5, the squared coher-
ence for inputs with taps selected according to the MMax
selection criterion as described in Section 4 is shown. We
can see that the correlation is reduced, but not significantly.
Figure 6 shows the squared coherence for signals with exclu-
sive tap selected, that is, the selection of the same tap index
in both channels is not permitted. We can see that the corre-
lation is reduced significantly. This confirms that exclusive
tap-selection strategy does indeed reduce interchannel co-
herence and as such improves the conditioning of the input
autocorrelation matrix even in the mixing environment of
blind source separation case.
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Figure 5: Squared coherence for x1 and x2 with 50% MMax tap
inputs selected.
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Figure 6: Squared coherence for x1 and x2 with exclusive maximum
tap inputs selected.

6.2. Proposed XMupdate algorithm for
time-domain convolutive BSS

As a result of improved conditioning of input autocorrela-
tion matrix, we expect improved convergence rate in time-
domain convolutive BSS when using this update algorithm
for a two-by-two blind source separation system.

Based on the exclusive maximum tap-selection scheme
proposed in [11], we propose the exclusive maximum time-
domain convolutive BSS algorithm (XM BSS) as follows.

Define p as the interchannel tap input magnitude differ-
ence vector at time n as

p = ∣∣x1
∣∣− ∣∣x2

∣∣. (23)
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Sort p in descending order as

�
p = [�p1, . . . ,

�
pL
]T
,

�
p1 >

�
p2 > · · · >

�
pL. (24)

Order x1 and x2 according to the sorting of
�
p such that

�
x1(n− i) and

�
x2(n− i) correspond to

�
pi = |�x1(n− i)| −

|�x2(n− i)|.
Taps corresponding to the M = 0.5L largest elements of

the input magnitude difference vector p in the first channel
and the M smallest elements of p in the second channel are
selected for the updating of the output signal y1; Taps cor-
responding to the M = 0.5L largest elements of the input
magnitude difference vector p in the second channel and the
M smallest elements of p in the first channel are selected for
the updating of the output signal y2. The detailed algorithm
is shown in Algorithm 2.

6.3. Computational complexity of
the proposed algorithm

The complexity is defined as the total number of multipli-
cations and comparisons per sample period for each chan-
nel. In XM convolutive BSS algorithm, we need to sort the
interchannel tap input magnitude difference vector. For an
unmixing system with filter length L, we require at most
2+2 log2 L comparisons per sample period by the SORTLINE
procedure [13]. However, the number of multiplications re-
quired for computing convolution per sample period is re-
duced from 4L to 2L for a two-by-two BSS system. Thus, the
overall computational complexity is still reduced provided
L > 2, which is always satisfied for convolutive BSS case.

7. SEPARATION PERFORMANCE EVALUATION

In this section, we describe separation performance evalua-
tion measurement used in our simulations.

7.1. Performance evaluation by
signal-to-interference ratio

The performance of blind source separation systems can be
evaluated by the signal-to-interference ratio (SIR) which is
defined as the power ratio between the target component and
the interference components [14].

In basic instantaneous BSS model, the mixing system is
represented with A, the unmixing system is represented with
W, the global system can be presented as P = A ∗ H. Each
element in ith row and jth column of P is a scalar pi j . The
SIR of output i is obtained as

SIRi = 10 log10
E
{
piisi

}

E
{∑

j �=i pi j s j
}dB (25)

for instantaneous BSS case.
In the convolutive BSSmodel, the mixing system is repre-

sented withH, the unmixing system withW. We can express
the global system as P =W∗H and each element in P is a
vector pi j .

(1) InitializeW =
[
w11 w12

w21 w22

]
.

(2) Iteration k

x1 =
{
x1(k), x1(k − 1), . . . , x1(k − L + 1)

}
;

x2 =
{
x2(k), x2(k − 1), . . . , x2(k − L + 1)

}
;

p = ∣∣x1
∣∣− ∣∣x2

∣∣;
x11 = Q11 × x1; x21 = Q21 × x1;

x12 = Q12 × x2; x22 = Q22 × x2;

Q11 = diag
{
qT11
}
;

q11(m) =
⎧⎨
⎩
1 p(m) ∈ {M maxima of p

}

0 otherwise;

Q12 = diag
{
qT12
}
;

q12(m) =
⎧⎨
⎩
1 p(m) ∈ {M minimum of p

}

0 otherwise;

Q21 = diag
{
qT21
}
;

q21(m) =
⎧⎨
⎩
1 p(m) ∈ {M minimum of p

}

0 otherwise;

Q22 = diag
{
qT22
}
;

q22(m) =
⎧⎨
⎩
1 p(m) ∈ {M maxima of p

}

0 otherwise;

y1 = w11 × xT11 +w12 × xT12;

y2 = w21 × xT21 +w22 × xT22;

u1 = tanh
(
y1
)
;

u2 = tanh
(
y2
)
;

ΔW =
{[

1 0
0 1

]
−
[
u1
u2

]
×
[
y1 y2

]}
×W;

W =W + μ× ΔW;

k = k + 1.

(3) Go to 2 to start another iteration.

(4) Calculate separated signals as

y1 = w11 × xT1 +w12 × xT2 ;

y2 = w21 × xT1 +w22 × xT2 .

Algorithm 2: XM convolutive BSS algorithm.

The SIR of output i is obtained as

SIRi = 10 log10
E
{
pii ∗ si

}

E
{∑

j �=i pi j ∗ s j
}dB (26)

for convolutive BSS case, where ∗ is the convolution opera-
tion and E{} is the expectation operation.
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7.2. Performance evaluation by PESQ

When the target signal in our simulations is a speech signal,
we will also use PESQ (perceptual evaluation of speech qual-
ity) as a measure confirming the quality of the separated sig-
nal. The PESQ standard [15] is described in the ITU-T P862
as a perceptual evaluation tool of speech quality. The key fea-
ture of the PESQ standard is that it uses a perceptual model
analogous to the assessment by the human auditory system.
The output of the PESQ is a measure of the subjective assess-
ment quality of the degraded signal and is rated as a value
between −0.5 and 4.5 which is known as the mean opinion
score (MOS). The larger the score, the better the speech qual-
ity.

8. SIMULATIONS

8.1. Experiment setup

In the following simulations, our source signals s1 and s2 are
generated as gamma signals or speech signals. The gamma
signals are generated with zero mean, unit variance. The
speech signals used in our simulations include 3 female
speeches and 3 male speeches with sample rate 8000Hz to
form 9 combinations. A simple mixing system is used in our
simulations to demonstrate and compare separation perfor-
mance.

The mixing system is given by

H =
[
1.0 1.0 −0.75; −0.2 0.4 0.7

0.2 1.0 0.0; 0.5 −0.3 0.2

]
. (27)

The mixture signals are obtained by convolving the source
signals with the mixing system. The filter length in the sepa-
ration system is set at 64.

In the following, we will compare the separation perfor-
mance of the regular convolutive BSS algorithm, MMax par-
tial update BSS algorithm, and XM selective-tap BSS algo-
rithm.

8.2. MMax partial update time-domain BSS
algorithm for convolutivemixture

In this simulation, we test the performance of MMax par-
tial update time-domain BSS algorithm for convolutive mix-
tures. In the following diagram, “reg” means regular time-
domain BSS algorithm; “par56” means MMax partial update
time domain BSS algorithm with M = 56; “par48” means
MMax partial update time-domain BSS algorithm withM =
48; “par32” means MMax partial update time-domain BSS
algorithm with M = 32, where M is the number of coeffi-
cients updated at each iteration in a given channel.

In the first experiment, we use generated gamma signals
as the original signals and use (9) to get the mixture signals.
The performance of regular time-domain convolutive BSS
algorithm and MMax partial update convolutive BSS algo-
rithm evaluated by the SIR measure defined in (26) is shown
in Figures 7 and 8.
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Figure 7: Separation performance of time-domain regular convo-
lutive BSS and MMax partial update BSS for gamma signal mea-
sured by SIR for the first output.
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Figure 8: Separation performance of time-domain regular convo-
lutive BSS and MMax partial update BSS for gamma signal mea-
sured by SIR for the second output.

From these diagrams, we can see that as expected, the
MMax partial update convolutive BSS algorithm converges
slightly slower than the regular BSS algorithm while only a
subset of coefficients gets updated. However, it converges to
similar SIR values.

In the second experiment, we use speech signals as the
original signals and use the same mixing system to get the
mixture signals. In Figures 9 and 10, we show the perfor-
mance of regular time-domain convolutive BSS algorithm
and MMax partial update BSS convolutive algorithm for one
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Figure 9: Separation performance of time-domain regular convo-
lutive BSS andMMax partial update BSS for speech signal measured
by SIR for the first output.
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Figure 10: Separation performance of time-domain regular convo-
lutive BSS andMMax partial update BSS for speech signal measured
by SIR for the second output.

combination of speech signals, the separation performance is
evaluated by SIR. The performance for other combinations
of speech signals is similar to that shown in Figures 9 and 10.

Since we used speech signals in the second experiment,
we also use PESQ to evaluate the separation performance.
In the following, we evaluate the similarity between the mix-
tures, the separated signals from regular andMMax BSS algo-
rithms with the original source signals by PESQ score. Table 1
shows the average PESQ evaluation results for different com-
binations of female and male speech signals, where (S1,S2)

present the original source signals; (mix1,mix2) present the
mixture signals; (regular out1, regular out2) present sepa-
rated signals from regular BSS algorithm; (partial M = 56
out1, partial M = 56 out2) present separated signals from
MMax BSS algorithm with M = 56; (partial M = 48 out1,
partial M = 48 out2) present separated signals from MMax
BSS algorithm with M = 48; (partial M = 32 out1, partial
M = 32 out2) present separated signals from MMax BSS al-
gorithm withM = 32.

FromTable 1, we can see that the separation performance
evaluated by PESQ is consistent with the SIR results. The sep-
aration algorithmsmake the separated signals more biased to
one source signal and away from the other source signal. The
separation performance evaluated by PESQ and SIR is also
consistent with our informal listening tests.

From the above simulation results, we can see that sim-
ilar to MMax NLMS algorithm for single-channel linear fil-
ters, there is a slight deterioration in performance of the pro-
posed MMax partial update time-domain convolutive BSS
algorithm as the number of updated coefficients is reduced.
However, the performance at 50% coefficients updated is still
quite acceptable.

8.3. Time-domain exclusivemaximum selective-tap
BSS for convolutivemixture

In this simulation, we test the performance of XM selective
tap time-domain BSS algorithm for convolutive mixtures.

In the first experiment, we use generated gamma signals
as the original signals and use (9) to get the mixture signals.
The performance of regular time-domain convolutive BSS
algorithm and XM selective-tap convolutive BSS algorithm
evaluated by SIR is shown in Figures 11 and 12.

From Figures 11 and 12, we can see that XM BSS algo-
rithm has much better convergence rate compared with reg-
ular BSS algorithm for generated gamma signals.

In the second experiment, we use speech signals as the
original signals and use the same mixing system to get the
mixture signals. In Figures 13 and 14, we show the perfor-
mance of regular time-domain convolutive BSS algorithm
and XM selective tap BSS convolutive algorithm for one com-
bination of speech signals, the separation performance is
evaluated by SIR. The performance for other combinations
of speech signals is similar with that shown in Figures 13 and
14.

From the plots, we can see that the XM BSS algorithm
has much better convergence rate compared with the reg-
ular BSS algorithm for both generated gamma signals and
speech signals.

Since we used speech signals in the second experiment,
we also use PESQ to evaluate the separation performance. In
the following, we evaluate the similarity between the mix-
tures, the separated signals from regular and XM BSS algo-
rithms with the original source signals by PESQ score. Table 2
shows the average PESQ evaluation results for different com-
binations of female and male speech signals, where (S1, S2)
present the original source signals; (mix1, mix2) present the
mixture signals; (regular BSS out1, out2) present separated
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Table 1: Average PESQ scores for mixtures and separated signals from regular BSS algorithm and MMax BSS algorithm.

PESQ
Mixture Regular PartialM = 56 PartialM = 48 PartialM = 32

mix1 mix2 out1 out2 out1 out2 out1 out2 out1 out2

S1 2.119 0.981 2.379 0.612 2.365 0.611 2.352 0.602 2.340 0.599

S2 1.364 2.374 1.076 2.771 1.105 2.702 1.148 2.659 1.029 2.624
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Figure 11: Separation performance of time-domain regular convo-
lutive BSS and XM selective tap BSS for gamma signal measured by
SIR for the first output.
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Figure 12: Separation performance of time-domain regular convo-
lutive BSS and XM selective tap BSS for gamma signal measured by
SIR for the second output.
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Figure 13: Separation performance of time-domain regular convo-
lutive BSS and XM selective tap BSS for speech signal measured by
SIR for the first output.
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Figure 14: Separation performance of time-domain regular convo-
lutive BSS and XM selective tap BSS for speech signal measured by
SIR for the second output.
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Table 2: Average PESQ scores for mixtures and separated signals
from regular BSS algorithm and XM BSS algorithm.

PESQ
Mixture Regular BSS Xmax BSS

mix1 mix2 out1 out2 out1 out2

S1 1.871 0.948 2.037 0.591 2.643 0.463

S2 1.583 2.255 1.215 2.547 1.055 2.560

signals from regular BSS algorithm; (XM BSS out1, out2)
present separated signals from XM BSS. The performance
evaluation by PESQ is consistent with that measured by SIR.
The separation performance evaluated by PESQ and SIR is
also consistent with our informal listening tests.

Based on the above simulation, we can see that XM BSS
algorithm significantly improves the convergence rate com-
pared with regular time-domain convolutive BSS algorithm.

9. CONCLUSION

In this paper, we investigate time-domain convolutive BSS
algorithm and propose two novel algorithms to address the
slow convergence rate and high computational complexity
problem in time-domain BSS. In the proposed MMax par-
tial update time domain convolutive BSS algorithm (MMax
BSS), only a subset of coefficients in the separation system
gets updated at every iteration. We show that the partial up-
date scheme applied in the MMax LMS algorithm for single
channel can be extended to multichannel natural gradient-
based time-domain convolutive BSS with little deterioration
in performance and possible computation complexity sav-
ing. In the proposed exclusive maximum selective-tap time-
domain convolutive BSS algorithm (XM BSS), the exclusive
tap-selection update procedure reduces the interchannel co-
herence of the tap-input vectors and improves the condition-
ing of the autocorrelation matrix so as to accelerate conver-
gence rate and reduce the misalignment. Moreover, the com-
putational complexity is reduced as well since only half of
tap inputs are selected for updating. Simulation results have
shown a significant improvement in convergence rate com-
pared with existing techniques. The extension of the pro-
posed XM BSS algorithm to more than two channels is still
an open problem.
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