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We propose a novel approach to improve adaptive decorrelation filtering- (ADF-) based speech source separation in diffuse noise.
The effects of noise on system adaptation and separation outputs are handled separately. First, fast noise compensation (NC) is
developed for adaptation of separation filters, forcing ADF to focus on source separation; next, output noises are suppressed by
speech enhancement. By tracking noise components in output cross-correlation functions, the bias effect of noise on the system
adaptation objective function is compensated, and by adaptively estimating output noise autocorrelations, the speech separation
output is enhanced. For fast noise compensation, a blockwise fast ADF (FADF) is implemented. Experiments were conducted
on real and simulated diffuse noises. Speech mixtures were generated by convolving TIMIT speech sources with acoustic path
impulse responses measured in a real room with reverberation time T60 = 0.3 second. The proposed techniques significantly
improved separation performance and phone recognition accuracy of ADF outputs.
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1. INTRODUCTION

Interference speech and diffuse noise present double folds
of challenges for hands-free automatic speech recognition
(ASR) and speech communication. For practical applications
of blind source separation (BSS), it is important to address
the effects of noise in speech separation: (1) noise may
degrade the conditions of BSS and hence hurt the separation
performances; (2) BSS aims at source separation and has
limited ability in suppressing diffuse noise. Although “bias
removal” has been identified as a general approach for
improving speech separation in noise [1], the performance
depends largely on specific separation algorithms. Some
noise compensation (NC) methods, for example [2], were
proposed for a natural gradient-based separation algorithm.
Other reported studies either focused primarily on theo-
retical issues, for example [3], or handled only conditions
like uncorrelated noises, for example [4], or simplified
mixing models, such as anechoic mixing [5]. The limitations
of BSS in noise suppression were reported previously.
Araki et al. [6, 7], established the mechanism similarities
between BSS and the adaptive null beamformer. Asano et
al. [8] grouped the two approaches into “spatial inverse”

processing and pointed out that they are only able to suppress
directional interferences but not omnidirectional ambient
noises. Therefore, when both interference speech and diffuse
noise are present, output noise suppression is needed in
addition to separation processing. On the other hand, speech
enhancement algorithms that are formulated for stationary
noises cannot be applied directly in this scenario, because
the adaptation of separation filters makes the output noise
statistics time varying. Such variation may happen frequently
when the mixing acoustic paths change, for example when a
speaker moves.

In our previous works [9, 10], the separation model of
adaptive decorrelation filtering (ADF) [11, 12] was signif-
icantly improved for noise-free speech mixtures in both
aspects of convergence rate and steady-state filter estimation
accuracy. A noise-compensated ADF [4] was proposed for
speech mixtures contaminated by white uncorrelated noises.
However, in real sound fields, diffuse noises are colored and
spatially correlated in low frequency which deteriorate ADF
performance more severely than uncorrelated noises [13]. It
appears that noise can be removed from speech inputs prior
to ADF separation. But such a noise prefiltering deteriorates
the condition for subsequent source separation, due to
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nonlinear distortions introduced by speech enhancement
[13].

In the current work, we propose to address the challenge
of speech separation and diffuse noise suppression by an
effective two-step strategy. First, a noise compensation (NC)
[14] algorithm is developed to improve speech separation
performances; effective blockwise implementations of com-
pensation processing and ADF filtering are derived in FFT.
As separation filters change over time, output noise statistics
of cross-correlations are tracked so that filter adaptation bias
can be removed. Second, output noise autocorrelations are
estimated and used to enhance the speech signals separated
in the first step [15], so as to improve speech quality. Speech
separation, enhancement, and phone recognition experi-
ments were conducted, and the results are presented to
show the performances of the proposed separation and en-
hancement techniques.

2. ADFMODEL IN NOISE

In the following, we use variables in bold lower case for vec-
tors, bold upper case for matrices, superscript T for transpo-
sition, I for the identity matrix, “∗” for convolution, and E{}
for expectation. The correlation matrix formed by vectors a
and b is defined as Rab = E{abT}, and the correlation vector
between a scalar a and a vector b as rab = E{ab}. N and K
denote filter and block lengths, respectively. Speech and noise
signal vectors contain N consecutive samples up to current
time t, and their counterparts with 2N − 1 samples up to
time t are marked with tilde.

The noisy speech mixing and ADF separation systems
are shown in Figure 1, where gi j = [gi j(0), . . . , gi j(N − 1)]T ,
i, j = 1, 2, i /= j, are separation filters. We formulate the I/O
relations of ADF as [4]

vn = G(ỹ + ñ), (1)

where ỹ = [ỹT1 (t), ỹT2 (t)]T and ñ = [ñT
1 (t), ñT

2 (t)]T are vec-
tors of the clean speech mixture and the noise, respectively,
with ỹi = [yi(t), . . . , yi(t − 2N + 2)]T , ñi = [ni(t), . . . ,ni(t −
2N + 2)]T , i = 1, 2. The filter matrix

G =
⎡

⎣

[

IN 0N×(N−1)

]

−G12

−G21

[

IN 0N×(N−1)

]

⎤

⎦ (2)

is 2N×(4N−2), where Gi j is an N×(2N−1) Toeplitz matrix
and its kth row is [01×(k−1), gTi j , 01×(N−k)], k = 1, . . . ,N . For
the noisy ADF output vn, its speech-only output is denoted
by v = [vT1 (t), vT2 (t)]T and the noise output component by

η = [ηT1 (t),ηT2 (t)]T . Then, the effect of noise in the system
output correlation matrix is described by Rvnvn = Rvv + Rηη.
The I/O relations in correlation vectors of speech are

rviv j = ryiy j −G jiryi ỹi − Ry jy jgi j + G jiRỹiy jgi j ,

rvivi = ryiyi −Gi jryi ỹ j − Ryiy jgi j + Gi jRỹ jy jgi j .
(3)
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Figure 1: Speech mixing and ADF separation system in noise.
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Figure 2: NC-ADF separation and adaptive enhancement system.

The noise correlation I/O relations have the same form:

rηiη j
= rnin j −G jirniñi − Rn jn jgi j + G jiRñin jgi j , (4)

rηiηi = rnini −Gi jrniñ j − Rnin jgi j + Gi jRñ jn jgi j . (5)

In the absence of noise, the basic ADF adaptation algo-
rithm is given in [11] as

gi j(t + 1) = gi j(t) + μ(t)vi(t)v j(t). (6)

It has been shown in [4] that by taking the decorrelation
objective functions as

Ji j = 1
2
rTviv j rviv j , (7)

and approximating rviv j by instantaneous correlations vi(t)
v j(t), the same adaptation equation can be obtained. For the
step-size μ(t), [12] proposed an input-normalized technique
based on a convergence analysis, which was combined in
[9] with variable step-size (VSS) techniques to accelerate
convergence and reduce ADF estimation error.

The proposed system for improving ADF in noise works
in two steps, as shown in Figure 2. In the NC step, the noise
effects on the adaptation procedure (6), including the step-
size computation, are reduced to improve speech separation.
In the adaptive enhancement step, the ADF speech outputs
are enhanced by noise reduction. The details of the tech-
niques for these two processing steps are covered in Sections
3 and 4, respectively.
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3. NOISE COMPENSATION FOR ADF

Since the objective function in the form of (7) becomes
Jni j = (1/2)rTvni vnj rvni vnj , the presence of noise deteriorates the

adaptation performance of (6) which contains bias caused by
output noise cross-correlations. As shown in (4), the noise
component in output cross-correlation varies as filters gi j
adapt. The time-varying noise effect can be reduced by using
an estimate of speech cross-correlation rviv j = rvni vn j − rηiη j

,
that is,

J ′i j =
1
2

(

rvni vnj − rηiη j

)T(
rvni vnj − rηiη j

)

. (8)

Based on (8), the noise-compensated ADF (NC-ADF) is ob-
tained as

gi j(t + 1) = gi j(t) + μ(t)
(

vni(t)vnj (t)− αr̂ηiη j
(t)
)

, (9)

where r̂ηiη j
(t) is the estimate of output noise cross-corre-

lation, and 0 < α ≤ 1 the discount factor to prevent over-
compensation. In the following, α = 0.9 is used.

In the current work, for the computation of step-sizes,
the VSS technique of [9] is extended to include a com-
pensation of output noise powers. The effect of unequal
source energies on filter estimation errors is that the lower
the relative strength of the jth source, the higher the esti-
mation error will be for the filter gi j [9]. To reduce the ADF
estimation error caused by unbalanced source energies, step-
sizes can be scaled by relative short-term powers of ADF
outputs as

μi j(t) =
μ(t)·σ̂2

vj (t)

σ̂2
av(t)

, (10)

where the normalizing gain factor μ(t) was given by [12]

μ(t) = γ
(

N
(

σ2
yn1

(t) + σ2
yn2

(t)
)) , (11)

with σ2
yni(t) the short-term power of the ith input, and γ

(0 < γ < 1) the constant gain factor that controls convergence
speed. The estimated average speech output power σ̂2

av(t) is

σ̂2
av(t) =

(

σ̂2
v1

(t) + σ̂2
v2

(t)
)

2
. (12)

The noise compensation to output power is made by sub-
tracting noise power from the power of noisy ADF output,
that is,

σ̂2
vj = r̂v j v j (0) = r̂vn j vn j (0)− r̂ηjηj (0), (13)

and the output noise power is obtained from (5) as

r̂ηjηj (0) = r̂njnj (0)− 2gTjir̂njni + gTjîRninig ji. (14)

4. FAST IMPLEMENTATIONOF NOISE
COMPENSATION AND ADF

4.1. Fast update of compensation terms

Direct computations of noise cross-correlation vectors in
NC-ADF adaptation (9) are not feasible for real-time appli-
cations since the terms in (4) require matrix-vector multipli-
cations for every time sample. For fixed speaker locations, the

changes of ADF filters are in general small within short time
intervals (e.g., around 30 milliseconds). The slow change of
ADF parameters and the short-term stationarity of input
noise make it possible to update compensation terms in a
blockwise fashion, reducing the update rate by a factor of
K (block-length). To speed up NC-ADF, we first reduce the
update rate for compensation terms and then utilize the
Toeplitz structures of both the system and the correlation
matrices to derive an FFT-based estimation of (4).

The estimate of output bias (4) can be rewritten as

r̂ηiη j
= r̂nin j − ai j − bi j + ci j , (15)

with ai j = G jir̂niñi , bi j = ̂Rn jn jgi j , ci j = G jidi j , and di j =
̂Rñin jgi j . Computations of ai j and ci j share the same struc-
ture. The components of vector ai j , that is, ai j(k), k =
0, . . . ,N − 1, can be expressed as the last N samples, in
reversed order, of the convolution gji(n)∗ξai j(n), that is,

ai j(k) = gji(n)∗ξai j(n)|n=2N−2−k , (16)

where ξai j(n) = r̂niñi(2N −2−n) is the (2N −1)-point reverse
of r̂niñi . Similarly, components of ci j are obtained by ci j(k) =
gji(n)∗ξci j(n)|n=2N−2−k, with ξci j(n) = di j(2N − 2 − n). The
vectors bi j and di j also have a similar structure, where
bi j(k) = gi j(n)∗ξbi j(n)|n=k+N−1 with ξbi j(n) = r̂nj ñ j (n−N + 1),

and di j(k) = gi j(n)∗ξdi j(n)|n=k+N−1 with ξdi j(n) = r̂niñ j (N −
1 − n). Based on such convolutive expressions, the N-point
sequences ai j(k), bi j(k), and ci j(k) can be computed by NF-
point FFTs (NF > 2N − 1). For modularity, the (2N − 1)-
point sequence di j(k) can be decomposed into two N-point
subsequences and computed with two NF-point FFT-IFFT
modules. In this way, all the sequences above only need to
be zero-padded to length NF , because only N-point results
are required in each module. The rest points with aliasing
are irrelevant and are discarded.

From (13)–(15), the noise-free ADF output powers used
in the VSS computation are estimated by

σ̂2
vj ≈ vTnj

vnj /N − r̂njnj (0) + 2gTjir̂njni − gTjib ji. (17)

4.2. Fast ADF and NC-FADF

The samplewise procedures of filtering (1) and adaptation
(6) of ADF are also modified for a blockwise implementation
to enable fast noise compensation. The fast computation of
(1) can use the standard overlap-add fast convolution [16]
under the approximation that filters are constant within each
block.

By using a constant step-size in each block, a block-
adaptive procedure for filter update can be obtained. For
noise-free ADF, consider the mth block covering samples
from tm to tm + K − 1, and let gm

i j = g i j(tm) be the filters
of the current block. After obtaining ADF outputs of the mth
block by a fast convolution filtering, the step-size μm can be
estimated to update filters in the entire current block. By
summing up both sides of (6) for t = tm, . . . , tm + K − 1,
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the new filters for the next block, gm+1
i j = gi j(tm + K), can be

estimated as

gm+1
i j = gmi j + μmK r̂mviv j . (18)

The cross-correlation estimate

r̂mviv j = r̂viv j
(

tm
) = 1

K

K−1
∑

k=0

vi
(

tm + k
)

v j
(

tm + k
)

(19)

can be computed by an FFT-based fast implementation [16].
Similarly, the blockwise NC-FADF is obtained from (9)

as

gm+1
i j = gmi j + μm

i j K
(

r̂mvni vn j − αr̂mηiη j

)

, (20)

where r̂mvni vn j is defined by replacing vi and vj with their

noisy counterparts in (19), r̂mηiη j
is from (15), and the block

step-size μmi j is computed by (10). The normalization gain
factor μm in (11) uses ADF input powers that are estimated
from the samples of both current and previous blocks. To
prevent overcompensation in NC-FADF, σ̂2

vj in (17) is set to
zero when negative values occur. The denominator in (10) is
also added a small positive number to avoid divide-by-zeros.
Triangular windows w(n) = (N − n)/N , n = 0, . . . ,N −
1, are applied to both correlation estimate r̂mηiη j

and ADF

adaptation vectors to prevent instability.
The overlap-add method requires N ≤ K ≤ 2N . When

K = N and the FFT length NF = 2N , the computation of 2N-
point FFTs is distributed to the block of length N , resulting
in a complexity of O(logN) per time-sample for NC-FADF,
in contrast to O(N2) for a direct estimation of NC terms that
are required by matrix-vector multiplications.

5. ADAPTIVE ENHANCEMENTOF SEPARATED SPEECH

5.1. Tracking of ADF output noise autocorrelations

Although NC-FADF improves the speech separation perfor-
mance in noise, the separation outputs vni are still contami-
nated by noise. Thus, a speech enhancement postprocessing
should be integrated with ADF to reduce noise in each
output. To do so, we need to track the time-varying output
noise statistics as filters evolve from block to block by a
fast computation of (5). Similar to the derivations of (15),
we obtain autocorrelation of ADF output noise for the mth
block:

r̂mηiηi = r̂nini − am
ii − bmii + cmii , (21)

where amii = Gm
i j r̂niñ j , bmii = ̂Rnin jg

m
i j , cmii = Gm

i jd
m
ii , and

dmii = ̂Rñ jn jg
m
i j . Since input noise is stationary, its auto-

and cross-correlations can be measured a priori during a
speech inactive period. The fast mappings from input noise
correlations to output noise autocorrelation, depending
only on current system parameters gmi j ’s and Gm

ji ’s, are

implemented as fast convolutions of the following signal
sequences:

amii (k) = gmi j (n)∗ξaii(n)|n=2N−2−k,

cmii (k) = gmi j (n)∗ξcii(n)|n=2N−2−k,

bmii (k) = gmi j (n)∗ξbii(n)|n=k+N−1,

dmii (k) = gmi j (n)∗ξdii (n)|n=k+N−1,

(22)

where ξaii(n) = r̂niñ j (2N − 2 − n), ξcii(n) = dmi j (2N − 2 − n),

ξbii(n) = r̂niñ j (N − 1− n), and ξdii (n) = r̂nj ñ j (N − 1− n).

5.2. Enhancement of separated speech

Utilizing the adaptively estimated noise statistics r̂mηiηi , many
algorithms can be considered for postenhancement of ADF
outputs. The time domain constrained (TDC) type of the
generalized subspace (GSub) method [17] is tested due to its
ability to handle colored noise. The TDC-GSub processing
is applied to every block of ADF outputs, where for the
mth block it requires the noise autocorrelation matrix Rm

ηiηi
,

which can be constructed by forming a symmetric Teoplitz
matrix from the output autocorrelation vector in (21).
Specifically, r̂mηiηi constitutes the first column and the first row
of Rm

ηiηi
. Another piece of information that the TDC-GSub

algorithm takes is the autocorrelation matrix of the noisy
ADF output, Rvnivni , which is estimated from ADF outputs of
the current block. The TDC-GSub processing is performed
on each nonoverlapping subframe of length L = 40 and the
major steps are the same as in [17].

Step 1. Do eigendecomposition ΣiU = UΛ for matrix Σi =
(Rm

ηiηi
)−1Rvnivni −I, with Λ = diag[λ1, . . . , λM , 0, . . . , 0], and M

is the number of positive eigenvalues.

Step 2. Compute the optimal estimator H = U−Tdiag[α1,
. . . ,αM , 0, . . . , 0]UT , where the eigendomain filtering gains
are obtained by αk = λk/(λk + β), k = 1, . . . ,M, and β is
determined from

β =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

5 SNRdB ≤ −5,

1 SNRdB ≥ 20,
4.2− (SNRdB

)

6.25
otherwise,

(23)

with SNRdB = 10 log10(
∑M

k=1λ
k/L).

Step 3. Enhance the ith ADF output by v̂mi = Hvmni .

The computations of matrix inversion, multiplication,
and eigendecomposition become acceptable when a small
value is used for L (2.5 milliseconds). In addition, a measure
is taken to speed up TDC-GSub by utilizing the short-term
stationary property of separated speech signals vni ’s. Within
20 milliseconds, the variations of Rvnivni ’s are relatively small,
obviating the need for updating their eigendecompositions
in every subframes. In practice, the computation rate for
both steps 1 and 2 are thus reduced to every 12.5 millisec-
onds, without introducing significant degradations.
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Table 1: Counts of real multiplications.

Computation Complexity estimates Gain

Direct Fast

ADF filtering 2N
(8NF log2NF)

K

N

(8log2(2N))

ADF adapt 2N
(8NF log2NF)

K

N

(8log2(2N))

r̂ηiη j ’s 10N2 (40NF log2NF)
K

N2

(8log2(2N))

r̂ηiηi ’s 10N2 (40NF log2NF)
K

N2

(8log2(2N))

SS
8KF log2KF

K
, (KF ≥ K)

TDC-GSub O(L2)

6. COMPLEXITY ANALYSIS

The complexities of the major computation steps in terms of
the average number of real multiplications per time-sample
are listed in Table 1. Trivial computation overheads are
ignored. The gain of the fast over the direct implementations
are evaluated for N = K and NF = 2N . The counts for FFT
are based on the regular radix-2 method. It is possible to
further reduce the complexities of computations. In Table 1,
only a coarse complexity estimate is made for TDC-GSub,
based on direct implementations of matrix operations. Faster
computation techniques for TDC-GSub and complexity
analyses are out of the scope of this paper.

7. EXPERIMENTS

7.1. Experimental data and setup

Speech mixtures were generated from a convolution of clean
speech sources in TIMIT database with real acoustic impulse
responses measured in a room of reverberation time T[60] =
0.3 second [18]. The speakers were approximately 2 m away
from two microphones that were mounted 21 cm apart on a
circular array of radius 15 cm, and the distance between the
two speakers was 2.6 m. The target speech was sampled at
16 kHz and had 40 sentences from 4 speakers (faks0, felc0,
mdab0, mreb0). The competing speech contained randomly
selected TIMIT sentences. Both simulated and real diffuse
noise conditions were tested. The simulated noise is speech-
shaped and was generated by the following procedure:

n1(t) = 0.65
2
∑

k=1

a(1)
k n1(t − k) + 0.35n2(t) + ε1(t),

n2(t) = 0.6
3
∑

k=1

a(2)
k n2(t − k) + 0.4n1(t) + ε2(t),

(24)

where εi(t)’s are white Gaussian excitations and a(i)
k ’s are

linear prediction coefficients (LPC) estimated from clean
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Figure 3: Cross-power spectra of two types of diffuse noises:
simulated speech-shaped noise and real lab noise.

TIMIT data. Real diffuse noises were recorded in a computer
lab with a pair of omnidirectional microphones placed in the
center of the lab, where the microphones were the same dis-
tance apart as that of the array microphone pair. Ventilation
and air-conditioning systems and 8 desktop workstations
were working simultaneously, generating diffuse noises that
fit the stationary assumption. As a default setting, a 2-second
speech inactive segment immediately preceding the speech
was used to estimate input noise statistics. Figure 3 illustrates
the cross-power spectra for both types of noises.

The basic setup for ADF was N = 400 and γ = 0.01 and
the separation filters were initialized with zeros, representing
a totally blind condition (if certain prior knowledge of
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Table 2: Gain in TIR (dB) (simulated speech-shaped noise).

Original Pre-emphsized Baseline FADF NC-FADF

SNR SNR(y1, y2) vn1 , vn2 vn1 , vn2 vn1 , vn2

3 dB 0.2,−1.3 1.7, 2.1 1.7, 2.0 6.3, 7.5

9 dB 6.2, 4.7 3.0, 3.9 2.8, 3.6 8.5, 9.2

15 dB 12.2, 10.7 4.7, 5.6 4.4, 5.2 10.0, 9.9

21 dB 18.2, 16.7 6.3, 6.8 5.9, 6.3 10.7, 10.1

27 dB 24.2, 22.7 7.5, 7.6 6.9, 6.9 11.0, 10.2

Table 3: Output SNR (dB) (simulated speech-shaped noise).

Original Pre-emphsized Baseline FADF NC-FADF

SNR SNR(y1, y2) vn1 , vn2 vn1 , vn2 vn1 , vn2

3 dB 0.2,−1.3 −0.3,−1.5 −0.1,−1.3 −0.8,−2.9

9 dB 6.2, 4.7 5.3, 3.4 5.5, 3.7 4.9, 2.9

15 dB 12.2, 10.7 10.8, 8.6 11.0, 8.9 10.6, 8.7

21 dB 18.2, 16.7 16.3, 14.0 16.5, 14.3 16.5, 14.6

27 dB 24.2, 22.7 22.0, 19.7 22.2, 19.9 22.3, 20.5

the acoustic paths can be incorporated into the initial
separation filters, then ADF separation performance can
be improved, especially in severe noise). In all cases, a
pre-emphasis (1 − z−1) was applied to speech mixtures to
remove the 6-dB/octave tilt of speech long-term spectrum
and to reduce eigenvalue dispersion for faster convergence
[10]. Pre-emphasis enhances perceptually important speech
components, and it also alters input noise properties as
well as the relative strengths of noise and speech measured
in signal-to-noise ratio (SNR): SNR = 10 log10(PS/PN ),
where PS is the power of the clean speech mixture signal,
and PN is the power of the noise component. In fact, the
simulated speech-shaped noise spectrum was flattened by
pre-emphasis, resulting in a loss of SNR of approximately
3 dB. On the other hand, the recorded diffuse noise retained
a significant amount of coloration and spatial correlation
after pre-emphasis that increased SNR by 12 dB through
suppressing strongly correlated low-frequency noise compo-
nents (see Figure 3). In subsequent discussions, SNR and
target-to-interference ratio (TIR) refer to those evaluated on
pre-emphasized input and output components, where TIR
is defined as 10 log10(PT/PI), with PT the power of target
speech and PI the power of interference speech component.
For FADF and NC-FADF, the block length was K = 400
and the FFT length was NF = 1024. Since VSS without NC
would corrupt adaptation at high levels of noise, it was not
applied to ADF (6) and FADF. In the appendix, more details
are provided for the definitions of SNR and TIR.

7.2. Speech separation performance

The separation performances were evaluated by system gains
in TIR, defined as TIRoutput − TIRinput. In Tables 2 and 4,
the TIR gains of NC-FADF outperform those of the baseline
for both types of noises, at the cost of a slightly decreased

SNR, as shown in Tables 3 and 5. Since FADF is a fast and
approximate implementation of the baseline ADF, it suffered
a slight degradation from the baseline and showed occasional
instability in the iterative estimations of separation filters.
The TIR gain values in Tables 2 and 4 are computed from the
noise-free components in the noisy outputs vn1 and vn2 . It is
interesting to observe that under severe noise conditions, for
example SNR=− 12 dB (original), the baseline ADF actually
increased SNR. This is consistent with the analysis in [13]
that in correlated noises, the baseline ADF tends to divert
from speech separation to noise cancellation. Tables 3 and
5 show that the NC algorithm can force ADF to focus on
speech separation, rather than noise cancellation.

7.3. Speech enhancement and phone recognition

Experiments were conducted to compare the cases of using
NC-FADF or FADF, with and without adaptive speech en-
hancements. Since SNR was altered by pre-emphasis differ-
ently for simulated and real diffuse noises, the range of initial
SNRs were chosen differently for these two cases so that the
input target speech had the same SNRs after pre-emphasis.
After adaptive online speech enhancement, a de-emphasis
1/(1− 0.98z−1) was applied to the enhanced speech.

The overall enhancement of target speech against the
effects of both interfering jammer and noise are shown by the
target-to-interference-and-noise ratio (TINR) in Figures 4
and 5, where TINRs are defined in the appendix for the input,
the separation output, and the separation output with noise
reduction. It is seen that NC-FADF outperformed FADF
in both types of noises under almost all SNR conditions.
At high SNRs, the TINR improvements come mainly from
the separation processing of NC-FADF or FADF, as speech
jammer is the dominant problem. The larger TINR gains
obtained by NC-FADF over FADF were also attributed to its
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Table 4: Gain in TIR (dB) (real diffuse noise).

Original Pre-emphsized Baseline FADF NC-FADF

SNR SNR(y1, y2) vn1 , vn2 vn1 , vn2 vn1 , vn2

−12 dB 0.2, 0.3 3.1, 3.9 3.1, 3.6 7.0, 8.2

−6 dB 6.2, 6.3 4.2, 5.6 1.5, 5.4 9.2, 9.3

0 dB 12.2, 12.3 6.3, 7.7 6.2, 6.9 10.4, 9.9

6 dB 18.2, 18.3 7.7, 7.9 7.2, 7.3 10.9, 10.1

12 dB 24.2, 24.3 8.1, 8.1 7.5, 7.4 11.0, 10.2

Table 5: Output SNR (dB) (real diffuse noise).

SNR SNR(y1, y2) vn1 , vn2 vn1 , vn2 vn1 , vn2

−12 dB 0.2, 0.3 3.8, 2.4 4.2, 3.2 1.6,−1.0

−6 dB 6.2, 6.3 6.1, 5.9 6.5, 4.9 6.7, 4.5

0 dB 12.2, 12.3 12.3, 11.4 12.8, 11.6 12.4, 10.2

6 dB 18.2, 18.3 17.9, 16.4 18.0, 16.5 18.2, 16.0

12 dB 24.2, 24.3 23.4, 21.7 23.6, 21.9 24.1, 22.0
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Figure 4: Target-to-interference-and-noise ratio (simulated noise).

use of the variable step-size adaptation defined in (10) and
(12)–(14), while without noise compensation the VSS was
unavailable to FADF. This advantage of using variable step
size over fixed step size in ADF adaptation is consistent with
the findings in [9]. At low SNRs, the TINR improvement
is mainly contributed by the suppression of the noise
components, and in the real diffuse noise, the separation
processing had a stronger effect on TINR improvement than
in the simulated noise. When the SNR is very low, where the
energy of speech mixture is dominated by the noise, the TIR
improvement (between target and jammer speech) by NC-
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Figure 5: Target-to-interference-and-noise ratio (real diffuse noi-
se).

FADF contributed less to the overall TINR gains, and here
the enhancement processing by TDC-GSub improved TINR
greatly in both types of noises.

Phone recognitions were performed by using HTK
toolkit [19] for the noisy mixture, the noisy separated
speech, and the enhanced separated speech of the target.
The speech signals were represented by sequences of feature
vectors obtained from 50% overlapped short-time analysis
window of 20 milliseconds. Each feature vector consisted
of 13 cepstral coefficients and their first- and second-order
time derivatives. Both training and test data from TIMIT
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database were processed with spectral mean subtraction.
Hidden Markov modeling (HMM) was used for 39 context
independent phone units, defined by the phone grouping
scheme of [20]. Each phone unit had 3 emission states,
with state observation probabilities modeled by size-8 Gaus-
sian mixture densities. Phone bigram was used as “lan-
guage model.”

The phone accuracy results in simulated and real diffuse
noise cases are shown in Figures 6 and 7, respectively.
The upper limit of phone accuracy was 46.5%, which was
obtained from the target speech separated from the clean
speech mixtures by ADF. It is observed that when SNR
is low or moderate, the adaptive enhancement techniques
significantly improved the phone recognition accuracy of
the separation outputs. Similar to the TINR results, at high
SNRs, the improvement to phone accuracy comes mainly
from speech separation, where NC-FADF is significantly
better than FADF. Comparative experimental results were
also generated for the proposed approach of applying TDC-
GSub as a postprocessor after FADF (FADF enhanced by
TDC-GSub postprocessing) and the apparent alternative of
using TDC-GSub as a preprocessor prior to FADF (FADF
after TDC-GSub Preprocessing). It is seen that the former
performed better than the latter, especially in real diffuse
noise. In general, the combination of NC-FADF with TDC-
GSub postprocesing achieved the highest accuracy perfor-
mance.

7.4. Sensitivity to noise estimation

In real applications, there are scenarios where the speech
inactive periods are short, which would reduce the reliability
of noise statistic estimation. It is therefore of interest to
evaluate the feasibility of the proposed NC-FADF algorithm
when the input noise statistics are estimated from short data
segments. For this purpose, an experiment was performed
to vary the speech inactive period from 0.5 second through
2.5 seconds, and the noise statistics computed from the
different periods were used by NC-FADF followed by TDC-
GSub to perform speech separation and enhancement. The
test results confirmed that for the two types of noises
investigated in the current work, there is no significant
difference in the overall system performance over this range
of speech-inactive intervals. Figure 8 illustrates the phone
recognition performance versus the speech inactive interval
lengths in real diffuse noise. It is seen that except for a
performance drop when the speech inactive length was 0.5
second, phone accuracy remained essentially the same for
all other speech inactive lengths. In simulated noise, the
accuracy performance remained essentially the same for all
of the speech inactive lengths, including the 0.5 second case.
In general, in an online system a voice activity detection
module is needed to identify speech inactive periods, and for
fast-varying nonstationary input noises, robust algorithms
are needed to estimate time-varying noise properties with
adaptive memory lengths. Although this issue is practically
important, it is out of the scope of the current work.
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Figure 6: Phone accuracies (simulated noise).
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8. CONCLUSIONS AND FUTUREWORK

In this paper, we have presented methods of noise com-
pensation and adaptive speech enhancement to improve the
performances of ADF speech separation in diffuse noise.
Fast implementations for ADF and noise compensation have
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Figure 8: Effects of speech inactive interval length on noise
estimation for phone recognition: NC-FADF with TDC-GSub in
real diffuse noise.

been made that warrant real-time online applications. FADF
has achieved performance comparable to that of ADF with
a much faster speed. NC-FADF significantly improved the
separation performance for speech mixtures in diffuse noise,
and the integration of NC-FADF with speech enhancement
significantly improved phone recognition accuracies in
separated speech. Future investigations may include other
enhancement algorithms and noise-reduction implementa-
tions for a more streamlined integration with the NC-FADF
procedure.

APPENDIX

DEFINITIONS OF SNR, TIR, AND TINR

Since the ADF filtering model (1) is linear, the superposition
principle holds, that is, its output components of target,
interference, and noise can be computed separately from
its respective input components. Unlike the linear model
of ADF, the speech enhancement module is nonlinear and
its output components cannot be separately estimated from
its individual input components. Therefore, the separate
computation of output TIR and SNR are not feasible for
the speech enhancement module. Instead, TINRs can be
estimated by taking the signal energies other than the original
target as the sum of noise and interference signals. The
computations of SNR, TIR, and TINR are defined below
with respect to channel 1 (the definitions are similar for
channel 2):

SNRy1 = 10 log10

(Py1

Pn1

)

,

SNRv1 = 10 log10

(Pv1

Pη1

)

,

TIRy1 = 10 log10

(Pys1

Pys2

)

,

TIRv1 = 10 log10

(Pvs1
Pvs2

)

,

TINRy1 = 10 log10

( Pys1

P(ys2 +n1)

)

,

TINRv1 = 10 log10

( Pvs1
P(vs2 +η1)

)

,

TINRv̂1 = 10 log10

( Pvs1
P(v̂1−vs1 )

)

.

(A.1)

At ADF input, Py1 and Pn1 are the powers of the clean
mixture and the noise components, respectively; Pys1 and
Pys2 are the powers of the target and the interference speech
signals, respectively; ys2 + n1 = yn1 − ys1 is the sum of
interference speech and noise. At ADF output, Pv1 and Pη1 ,
Pvs1 and Pvs2 , and vs2 + η1 = vn1 − vs1 are the counterparts of
the above components at ADF input. The component v̂1 is
the output speech after enhancement processing.
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