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evident that higher bit rates may be required to maintain transparency. We propose a novel method that enhances low bit rate
encoded audio segments by applying multiband audio resynthesis methods in a postprocessing stage. Our algorithm employs
the highly flexible Generalized Gaussian mixture model which offers a more accurate representation of audio features than the
Gaussian mixture model. A novel residual conversion technique is applied which proves to significantly improve the enhancement
performance without excessive overhead. In addition, both cepstral and residual errors are dramatically decreased by a feature-
alignment scheme that employs a sorting transformation. Some improvements regarding the quantization step are also described
that enable us to further reduce the algorithm overhead. Signal enhancement examples are presented and the results show that the
overhead size incurred by the algorithm is a fraction of the uncompressed signal size. Our results show that the resulting audio
quality is comparable to that of a standard perceptual codec operating at approximately the same bit rate.
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1. INTRODUCTION

Audio compression formats such as MPEG 1 Layer III (MP3,
[1]) may create audible coding artifacts when they encode
audio at very low bit rates. Content compressed at higher
bit rates will have sufficient sound quality, but can become
prohibitively large to transmit or store. As compressed
audio moves into the dominant position among source
content that is played over high fidelity consumer and home
theater systems, there is an increased need for enhancing
low bit rate audio data without imposing excessive storage
or transmission requirements. In this work, we propose
a novel method that improves the quality of compressed
audio and builds on our previous work in audio resynthesis
[2]. In audio resynthesis, one channel of a multichannel
audio segment (target signal) can be recreated from another
channel (source signal) of the same audio segment using a
linear function determined by a small set of parameters.

Audio resynthesis can be easily applied to compressed
audio enhancement [3] by viewing a low bit rate compressed
segment as the source signal and its uncompressed version
as the target signal. We define two terms in order to further
describe our algorithm, namely, the transmitter and the
receiver. The transmitter has access to both the source and
target signals. The receiver has access to the source signal only
and needs to acquire a quality enhanced signal. As depicted
in Figure 1, the transmitter derives the small parameters set
(linear function) and sends it to the receiver. The derivation
of the small parameters set is based on a statistical conversion
between the source and target signals. The receiver, in turn,
applies this parameters set on the source signal to create the
enhanced signal. Naturally, the enhanced signal should be of
better audio quality than the source (i.e., compressed) signal.

This approach is similar to the MPEG-4 Scalable Loss-
less Coding (SLS) [4] methodology according to which a
compressed signal is enhanced by transmitting additional
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data to the receiver. The difference though between our
method and the MPEG-4 SLS method is that the latter uses
a residual coding approach. In residual coding, a residual
signal between the compressed and uncompressed signals
is generated and subsequently entropy-coded. In MPEG-
4 SLS, the residual signal lies in the integer modified
discrete cosine transform (IntMDCT) [5] domain and the
preferred transform codec for encoding IntMDCT data is
the advanced audio coding (AAC) [6] scheme. Our method
does not employ the residual coding approach but instead it
converts a compressed signal into its uncompressed version
through a statistical conversion function applied strictly on
the compressed signal. Therefore, no residual or difference
signal between the compressed and uncompressed signals is
generated.

A key characteristic of the MPEG-4 SLS standard is
the scalability property which enables the coding and
transmission of the enhancement data at variable bitrates,
thus allowing for variable audio quality improvement. This
scalability is achieved by creating additional encoding stages
for the residual signal. In each stage, a subset of the residual
signal is encoded through bit-plane coding schemes based
on the Bit-Plane Golomb Code (BPGC) [7]. The MPEG-4
SLS method and previous methods on scalable encoding [8–
10] generally follow a cascaded residual coding approach, in
which the residual signal of one encoding stage is the input to
another encoding stage. Since we do not employ this residual
coding approach, we have devised an alternative scalability
scheme that works in conjunction with our conversion-based
method and allows for variable bit rate during transmission
of the enhancement parameters.

In comparison, even though the MPEG-4 residual coding
technique with bit-plane coding is very efficient in terms of
transmission rate and audio quality delivered, it enhances
signals created by transform codecs only (and particularly
by the AAC) as it operates directly on a transform domain
(e.g., IntMDCT). Therefore, it cannot be readily applied
for enhancement of audio signals of arbitrary compression
formats. On the other hand, our conversion-based enhance-
ment method works as a general postprocessing stage of any
codec and can be applied directly on pulse code modulation
(PCM) data. This means that the type of codec that generated
the compressed signal is not important. In essence, the
audio enhancement algorithm presented in this work has
the advantage of interoperability across various compression
formats.

The most direct application of a scheme like this is the
case of internet audio transmission in which the transmitter
side has access to the uncompressed target signal—and
consequently to the compressed source signal—while the
receiver end has access only to the compressed source
signal which it wishes to enhance. The advantage of our
method in this scenario is that the transmitter exploits the
availability of the source signal at the receiver to reduce
the size of the transmitted parameters set. To clarify this
more, let us assume that the receiver has a 32 kbps MP3
file and wishes to acquire an enhanced file with quality
similar to the 64 kbps MP3 file. Normally, the receiver would
request the whole 64 kbps MP3 file and the fact that the
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Figure 1: The audio resynthesis scheme. The transmitter has
access to both source and target signals and derives the conversion
parameters which are sent to the receiver. The receiver resynthesizes
the target signal using the source signal and the conversion
parameters.

receiver already possesses the corresponding 32 kbps MP3
file would not affect the transmission size. We show later
that our algorithm can actually enhance a lower bit rate
MP3 signal to a signal with quality corresponding to a
higher MP3 bit rate by transmitting parameters of smaller
size than the size of the higher bit rate MP3 signal. As
mentioned previously, in contrast to the MPEG-4 method,
the compression format of the source signal can be arbitrary
allowing for the enhancement of signals created by any
internet audio compression format.

A second scenario, which does not necessarily involve
transmission over a medium, is to derive the statistical
conversion parameters using the compressed (source) and
uncompressed (target) versions of the signal and then discard
the uncompressed signal while storing the small conversion
parameters set and the source. In this scenario, our algorithm
operates similarly to a codec and the fact that the receiver
(i.e., where the source file and conversion parameters are
stored) already contains the source file does not provide any
advantages over regular compression schemes. Nevertheless,
as shown later, our algorithm’s performance is comparable
to the MP3 scheme at equal total bit rates and this is despite
the fact that we have not used a psychoacoustic model. This
fact alone suggests that our method’s performance can be
further improved. In addition, this scheme can operate on
any compression format of the source signal.

The method in this paper is different compared to recent
enhancement methods such as spectral band replication
(SBR) [11] and other bandwidth expansion techniques. It
basically performs enhancement on all subbands (low and
high frequencies) that are degraded and not just on the high
frequencies. However, our algorithm could be modified to
work in a similar philosophy as SBR by applying statistical
conversion between the low- and high-frequency subbands
of the same signal in order to resynthesize strictly the high
subbands with less information. Normally, in this case the
low subbands of the signal are already of high-audio quality
and would not be replaced but instead they would be
used in conjunction with a conversion function to replace
only the high-frequency subbands. Furthermore, our current
enhancement method can be easily combined with struc-
tured audio compression methods [12] because statistical
conversion is applied between relatively long signal segments
which may exhibit repetition patterns. In such scheme, the
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conversion function would be replicated at the receiver. The
aforementioned capabilities of the enhancement algorithm
support our claim that there is great potential for further
improvement.

In every case, the purpose of the algorithm is to convert
a low quality compressed piece to a higher quality piece
with the least amount of conversion parameters. The derived
conversion parameters would either be transmitted or stored,
depending on the application. Optimally, the resynthesized
signal should be identical to the target signal while the source
signal size and the conversion parameters size added together
would be much smaller than the target signal size.

Early work on audio resynthesis [2] has been based
on widespread voice conversion algorithms [13–15] and
the terminology used here (i.e., source, target, conversion
parameters) is often found in voice conversion schemes.
The basic assumption made by these algorithms is that the
spectral parameters are of Gaussian nature and hence are
modeled by a Gaussian mixture. This greatly facilitates the
Maximum Likelihood (ML) parameters estimation since the
popular expectation-maximization (EM) algorithm [16] can
be applied. A new approach on modeling the cepstral coeffi-
cients was introduced in [17] by employing the Generalized
Gaussian mixture model. This model is very flexible and
incorporates a large number of distributions, including the
Gaussian. The advantage of using the generalized Gaussian
distribution [18] over the Gaussian is that the former is a
more general function, and as a result fewer mixtures might
be used for estimating the probability density function of the
actual data.

A novel technique related to residual processing [19–
21] is also implemented. In many cases of low bit rate
compressed sources, reconstruction in the cepstral domain
is not adequate for distortion-free enhanced audio. For this
reason, we employ a method for residual conversion by
applying statistical conversion on the residual vectors as well.
In [3, 17], we proved the importance of cepstral smoothing
and model overfitting. As we show later, we have improved
on this step by using a more efficient, sorting transformation
of the data that allows us to use fewer mixture components
and thus reduce the conversion overhead. It is based on our
previous work in multichannel audio [22] and it is modified
here to operate on compressed audio enhancement. This
technique, which is also extended on residual conversion,
leads to a more accurate data conversion and it significantly
improves the audio quality in the enhanced music piece. As
an additional advantage, the sorting transformation greatly
facilitates the quantization efficiency of the final conversion
parameters. Through the implementation of a new special
inverse transformation, the amount of information required
to invert the sorting transformation is reduced. In addi-
tion, a new mechanism for varying the transmission rate
of this information is developed, enabling scalable audio
enhancement. The appropriate use of the discrete cosine
transform (DCT) [23] and singular value decomposition
(SVD) [24] are also described. The whole algorithm is
applied and tested on the enhancement of 10 mono 32-
kbps and 10 mono 64-kbps MP3 files. At this point, we
mention that to our knowledge, we are the first group

that attempts to address audio enhancement by applying
statistical conversion methods.

The remainder of this paper is organized as follows.
In Section 2, we describe the core component of the
algorithm which is the statistical conversion of features.
In Section 3, the residual conversion method is described,
as an extension of the statistical conversion algorithm of
Section 2. In Section 4, we present the methods on reducing
the conversion parameters size and specifically the sorting
transformation method and its inverse. The specific imple-
mentation details are presented in Section 5. In Section 6, the
audio enhancement results are presented and evaluated in
order to demonstrate the improvement of the resynthesized
signal. In Section 7, concluding remarks on the algorithm are
made.

2. CEPSTRAL STATISTICAL CONVERSION

The approach followed is based on previous statistical
conversion algorithms related to speech synthesis [13–15].
Usually, these algorithms treat only the spectral features,
while as we discuss in this and following sections, our
algorithm converts both spectral features and residual data.
In our work, the short term spectral features used are
the LPC cepstral vectors [25]. The LPC analysis is carried
out in overlapping frames through a sliding window and
hence each frame is modeled as an AR filter excited by
a residual. We extract the LPC cepstral vectors of the
target (which is unknown at the receiving end) and source
signals. Our goal is to modify the cepstral and residual
vectors of the source signal so that they become close in
the least squares sense to the target cepstral and residual
vectors of the same music piece. This is accomplished by
deriving a mapping function that will convert each of the
source cepstral/residual vectors to the target cepstral/residual
vector of the same time frame (the source and target
signals are time-aligned). The function is assumed linear
and will be fully determined by a small set of parame-
ters.

In order to implement the conversion function, we
assume that the source cepstral vectors are realizations of a
random process characterized by a probability density func-
tion (pdf). The estimation of the pdf parameters is referred
to as system training (i.e., not including the extraction of
the conversion parameters). The audio segment used during
training (training set) is chosen so that it is capable of
modeling a large and diverse number of audio pieces. In this
paper, we call source and target signals the particular signals
on which we apply the conversion scheme and derive the
conversion function. The data used for the training set is
generic and has no association with the source and target
signals so that the system training does not depend on the
particular signal under enhancement and does not have to
be repeated each time a new source signal is processed. Once
derived, the training parameters (i.e., the pdf) are stored
permanently in both the transmitter and receiver sides since
they will be part of the conversion function.
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2.1. Generalized GMMand cepstral modeling

In the majority of current statistical conversion algorithms,
a common assumption is that the spectral features are of
Gaussian nature and hence the Gaussian mixture model is
employed. The Gaussian mixture model has been treated in
numerous other applications and an algorithm to estimate
its parameters, (EM) is readily available. A more general
model is adopted in this work that better models the (non-
Gaussian) cepstral vector properties, which includes the
Gaussian mixture as a subcase, and is called the generalized
Gaussian mixture. Its component pdf, the Generalized
Gaussian pdf, is more flexible and adapts to virtually any
unimodal distribution. Its analytical form for a random
variable z is

g(z;μ, σ ,α) = αβ

2σΓ(1/α)
exp

[
−
∣∣∣∣β (z − μ)

σ

∣∣∣∣
α
]

, (1)

where μ is the mean, σ is the variance, α is the shape
parameter, Γ(·) is the Gamma function, and β is a dependent
parameter

β =
[
Γ(3/α)
Γ(1/α)

]1/2

. (2)

If α = 2.0, we have the Gaussian pdf; and if α = 1.0, we
have the Laplace pdf. When α� 1, the distribution tends to
the uniform pdf and when α < 1, the distribution becomes
impulsive.

We consider the training cepstral vectors (and the
testing source vectors) to be generated by a mixture with
component pdf as described in (1). The mixture formulation
of the generalized Gaussian case (with diagonal covariance
matrices) is

G(x) =
K∑
k=1

p
(
Ck
) q∏
j=1

g
(
x( j);μ

( j)
k , σ

( j)
k ,α

( j)
k

)
, (3)

whereCk denotes the cluster (component) k,K is the number
of clusters, and p(Ck) denotes the prior probability of cluster
k. The cepstral vector is q dimensional where q is the cepstral
order and the jth coefficient or coordinate is denoted by x( j).
The vector coefficients are considered to be independent and
thus the joint pdf is the product of the q coefficient pdf ’s.
This diagonal formulation is favorable since it decreases the
computational complexity during implementation.

2.2. Mixture parameter estimation and clustering

The inclusion of a third independent parameter compared to
the Gaussian case (the shape parameter α), incurs additional
complexity when it comes to maximum likelihood (ML)
estimation of the pdf parameters. This problem becomes
more evident in a mixture pdf, where the number of
parameters to be estimated increases, and consequently
the computational complexity and the time needed for
convergence increase as well.

In this work, we follow a different approach than the one
used in the conventional mixture estimation methods, by

clustering the vectors and focusing on each cluster separately.
This divides the parameters estimation task into K simpler
tasks. In order to perform this decomposition, we employ
fuzzy clustering techniques through the c-means algorithm
[26], and cluster the training vectors into K groups. The c-
means is known to avoid local minima better than the k-
means and it also provides a “fuzziness” option that regulates
the occurrence of outliers.

The next step is to perform ML estimation on each
cluster. The estimation is now straightforward because the
mean for each component is known (it is the cluster center).
We also compute p(Ck) as the number of vectors that belong
to cluster k divided by the total number of vectors. The

ML estimator for the shape parameter α
( j)
k of cluster k and

coordinate j is given by [27]
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where nk is the number of vectors that belong to class Ck and
ψ(·) is a function given by

ψ(τ) = −0.5777 +
∫ 1

0

(
1− tτ−1)(1− t)−1dt. (5)

The expression in (4) is solved by iterative methods. The

variance parameter σ
( j)
k of the kth cluster and jth coordinate

is then estimated as follows [27]:

σ
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Note that the zeroth cepstral coefficients (energy coef-
ficients) are neglected because they introduce strong bias
during parameter estimation. The frame energy information
(relative to the other frames) is given by the LPC gain factors
which are transmitted as side information.

2.3. Conversion function and conversion
parameters set

The conversion function F(·) acts on the source vector
sequence [x1,. . .,xn] and produces a vector sequence close
in the least squares sense to the target sequence [y1,. . .,yn].
Since we have selected a diagonal implementation, this
function will act on the individual vector components and
minimize the error

E =
n∑
t=1

q∑
j=1

∣∣y( j)
t − F

(
x

( j)
t

)∣∣2
, (7)
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as in [13]. To address this problem, we consider F as
piecewise linear, that is,

F
(
x

( j)
t

) = K∑
k=1

P
(
Ck|xt

)[
v

( j)
k +

u
( j)
k

σ
( j)
k

(
x

( j)
t − μ

( j)
k

)]
(8)

for t = 1, . . . ,n and j = 1, . . . , q. The conditional probability
that a given vector belongs to cluster k, P(Ck|xt), is given by

P
(
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(
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)∏q
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( j)
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(
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) . (9)

The unknown parameters set [v,u] can be found by
minimizing (7) which reduces to solving a typical set of
q independent least-square equations [13], and hence the
linear conversion function F is fully determined. Notice
that in the nondiagonal case and when F is in vector

form [13], the unknown parameter corresponding to u
( j)
k is

actually a nondiagonal square matrix with q2 elements. In
the diagonal case, this matrix is diagonal with q elements

u
( j)
k on the diagonal. Therefore the diagonal formulation is

also preferred over the full covariance method because of the
significantly smaller size of the unknown parameters.

We call the set [v,u] the conversion parameters set. These
are the only parameters that have to be transmitted for audio
enhancement since they are dependent on the particular
source and target signals. The remaining parameters of
(8) are part of the mixture model and—as mentioned
previously—they are already stored at the receiver.

3. RESIDUALMODELING AND CONVERSION

In practice, accurate cepstral reconstruction is not sufficient
for acoustically undistorted enhancement of MP3 com-
pressed segments. Especially in the case of a very low bit
rate source (e.g., 32 kbps MP3), many audible artifacts are
present in the source signals compared to the target signals.
Instruments that are inaudible in the source signal will
usually appear in the enhanced signal as distortions since the
LPC coefficients alone fail to represent them. In such cases,
the signal differences lie mainly in the residuals and therefore
some residual processing is essential for better enhancement
results.

We adopt the assumption that the residual vectors are
correlated with their corresponding cepstral vectors [28]
and thus share similar statistical properties. Therefore, we
can apply the statistical conversion method described in
the previous sections to the residual vectors also. The
probabilistic model used here is the same used for cepstral
conversion (i.e., it is derived from the training cepstral
vectors). However, the dimensionality of the residual vectors
is much higher than that of the training cepstral vectors,
and therefore we have to divide them into subvectors of
dimensionality equal to or lower than that of the training
cepstral vectors. For instance, in the case of 30 training
cepstral and 52 residual coordinates (i.e., coefficients), we
would divide the residual vectors into two subvector sets of
30 and 22 coordinates each and apply statistical conversion

in each subvector set separately. The 30 coordinates set
would use the complete training cepstral model while the
22 coordinates set would use a truncated cepstral training
model (i.e., without the last 8 training cepstral coordinates).
The validity of this technique is proven in the results section.

Clearly, we do not expect a residual reconstruction with
accuracy as high as that of cepstral reconstruction because
the residuals are, in essence, noise signals. We have not
derived a training set or a probabilistic model specifically for
the residual vectors since the extremely high residual vector
dimensionality would make this impractical. Furthermore,
we would have to design a global mixture pdf that could
efficiently model any set of testing residual vectors even
though these are highly diverse and contain the fine details of
the signal. However, in our experiments, we found that using
the mixture pdf derived from the training cepstral vectors
results in converted residuals that are much closer to the
target residuals (than the source residuals). In addition, the
residual reconstruction accuracy attained is high enough to
provide distortion-free audio signals. Nevertheless, the next
section describes a novel technique to improve even more
both cepstral and residual conversion performance.

4. CONVERSIONOVERHEAD REDUCTION

Accurate cepstral and residual conversion is a challenging
task. A new technique, based on [22], is introduced here that
can significantly increase cepstral and residual conversion
accuracy, while reducing the conversion parameters size. We
sort the source and target vector coefficients (cepstral or
residual) along each coordinate in ascending order as shown
in Figure 2. The motivation behind the sorting transfor-
mation is found in the form of the conversion function.
The conversion function is a (piecewise) linear estimator
that estimates the target features from the source features.
Its optimal performance is achieved when the true relation
between the source and target features is linear along each
coordinate. Clearly, if the source and target features formed
straight lines along each coordinate, the dependence among
the two would be linear and the conversion function would
need only one mixture group (a simple linear estimator),
leading to zero reconstruction errors.

By sorting the source and target features along each
coordinate we can achieve a relation between the source
and target features that is very close to linear, as shown
in Figure 2(b) for the first coordinate. The relation without
sorting between the source and target features along the
first coordinate is plotted in Figure 2(a) and it is clear that
the number of mixture classes required to model is large.
Therefore, this sorting technique allows us to reduce the
number of mixture classes because the estimation is easier
and consequently the number of conversion parameters
is also reduced. In Section 6, we show that this method
significantly reduces the conversion errors when compared
to our previous method [3] in which no sorting is applied
and the number of mixture groups is large.

In order for the receiver to be able to use the resyn-
thesized cepstral or residual coefficients and create the final
signal, the original order of the resynthesized coefficients has
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Figure 2: Residual target coefficients against residual source coefficients for the first coordinate before sorting (a) and after sorting (b). The
data on the right can be easily manipulated by a piecewise linear estimator.

to be known.The reason for this is that once the receiver
resynthesizes the cepstral and residual data, they would be
sorted in ascending order since the source and target features
were also sorted during the derivation of the conversion
function at the transmitter. The source signal is available at
the receiver side, and thus the original order of the source
cepstral and residual coefficients is known. Our focus is on
deducing the original order of the target features and using
that info to reorder the resynthesized features at the receiver
end. We call this information the sorting information and it is
transmitted along the conversion parameters. These two sets
combined form the transmitted parameters.

The straightforward solution would be to transmit the
original order of the target cepstral and residual data as
side information along with the conversion parameters. At
the receiver, the coefficients would be resynthesized one by
one and a side index would determine where to place the
particular cepstral/residual coefficient. This scheme would
require transmission of n·log2n bits of information where
n + 1 is the number of elements being sorted (assuming n
is a power of two). This sorting information together with
the conversion parameters set is still smaller when compared
to the conversion parameters set acquired from conversion
without sorting and with more mixture classes. Nevertheless,
there is an even more efficient way—in terms of bits
transmission—to transmit the desired sorting information.
Instead of directly transmitting the sorting indices of the
target features to the receiver, we can derive a sequence
of minimum insertions and shifts that will take us from
the source sorting indices to the target sorting indices.
The reasoning behind this is that the source and target
features have not identical but similar original position
configurations, and thus the target original positions could

be inferred from the source original positions with fewer
than n·log2n bits of information.

As an example of this similarity, in Table 1 we give the
original positions of the first 10 sorted residual coefficients
(across the first coordinate) of a randomly chosen source-
target dual set. This information is sufficient to recover the
original order of the source and target data. What we are
actually missing is the target column (and this is what we
would normally transmit) since the source column is known
to the receiver. An algorithm that allows us to transmit less
information to the receiver without explicitly sending every
index of the target column is the following.

(1) The transmitter checks if the source and target indices
of the particular row are the same. If yes, then a zero is
transmitted. If no, then proceed to the next step.

(2) The transmitter looks in the target index of the
current row and finds the position (row) of that index in the
source column. The distance between the current row and
the new row is transmitted. The value in the new row of the
source column is inserted in the current row of the source
column and all values in that row and higher are shifted by
one position towards the end of the column.

(3) Repeat steps 1 and 2 until all rows of the target
column have been traversed and the source column has been
converted to the target column.

After the algorithm is completed, the source column
has been converted to the target column and the only
information that has to be transmitted is the second column
of Table 2. Note that in this example some source indices
cannot be illustrated because they are further down the
source column (but still near row 10). This lossless operation
will enable us to send fewer bits at the receiver, especially after
we perform lossless coding such as run-length, Huffman, and
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Table 1: Original positions of sorted source and target features for
a random set.

Source indices Target indices

126 126

74 74

43 43

19 19

93 99

90 93

100 45

99 55

54 90

67 100

Information that is available at the transmitter. The receiver has access only
to the left column. The values in each row are the original positions of the
sorted source and target features.

Table 2: Original positions of sorted target features for a random
set and actual transmission.

Target indices Actual transmission

126 0

74 0

43 0

19 0

99 3

93 0

45 7

55 5

90 0

100 0

Original target positions and the information that is actually transmitted.
Values after row 10 are not shown but the actual number of rows is 256.

Lempel Ziv. More results on the sorting information size are
given in Section 6.

It is expected that the linear system comprising of (7),
(8), and (9) is ill-conditioned, especially since the system
matrix is large. A well-known approach to deal with ill-
conditioned systems is based on the pseudoinverse instead
of the exact inverse matrix, which can be computed based
on SVD. We apply this approach for calculating the inverse
of the correlation matrices that are encountered during
the conversion parameters derivation [13]. The conversion
parameters that are created using SVD are more robust to
quantization errors, even though they do not always yield an
exact solution for the linear system.

As the final step of our method, we transform the
derived conversion parameters set using the DCT and the
transformed parameters are then finally quantized. This
step has demonstrated a noticeable decrease in cepstral and
residual reconstruction errors and has allowed us to quantize
the conversion parameters with 14 bits or less without
audible artifacts.

5. IMPLEMENTATION

The algorithm described previously was implemented and
tested on 10 mono audio pieces of 6.4 seconds duration each.
These audio pieces comprise of four generic music pieces
and six single instrument pieces from the EBU-SQAM [29]
testing database. The generic music pieces are one Rock piece
with a male singing voice, one Jazz piece, one Electronic
piece with very high energy at high frequencies, and one
Classical music symphony piece. The six SQAM pieces are
taken from a flute, a violin, a piano, a double bass, drums,
and a harp instrument. In all 10 cases, we attempt to enhance
a 6.4-second source segment which is MP3 encoded (with
LAME) at a 32 kbps constant bit rate or a 64 kbps constant
bit rate. The testing target segments are the corresponding
uncompressed (WAV) versions of the same audio segments.
The source and target pieces in all examples are time-aligned
and since the algorithm is applied in a post-processing stage,
the MP3 sources are also converted to a WAV format (PCM
data).

5.1. Critical band analysis

The first stage of the algorithm implementation is to apply a
subband analysis on the source and target signals as well as on
the training set. A popular method for subband analysis uses
wavelet filters which achieve perfect reconstruction [30] but
other perfect reconstruction filterbanks can be used instead.
A suitable wavelet candidate is the Daubechies [31] wavelet
filter of order 40, which achieves a very efficient subband
separation.

For the source and target signals, several different wavelet
tree structures were tested (e.g., equidistant subbands) but
the most successful structure proved to be one that emulates
the critical bands of the human hearing system as in [32]. It
assigns increased frequency resolution to the range 20 Hz–
5.5 kHz in which human hearing is most sensitive. In
addition, the large number of subbands selected allows us, as
we show later, to take advantage of the interband redundancy
and also to process accurately the subbands that are the most
significant (i.e., the ones that are more degraded or carry
the perceptually important parts of the signal). The actual
wavelet filterbank is shown in Figure 3 and is applied to
both source (compressed) and target (uncompressed) signals
leading to 17 source and target subbands. Note that each
time a signal is wavelet-filtered, the resulting two signals are
decimated by a factor of two (i.e., critically sampled). The
training set is also separated in subbands but for reasons
explained in the next subsection, the subband tree is different
than that of the source and target signals.

5.2. The training set

An important part of the algorithm is to derive a generalized
Gaussian mixture pdf that does not have to adjust to
the particular testing music piece. This probabilistic model
should be global in the sense that it will include the statistical
properties of all possible audio pieces and both transmitting
and receiving ends will have access to it (e.g., prestored in
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Figure 3: Wavelet tree structure used for subband analysis of the source and target signals. Numbers in brackets indicate the frequency
region in kHz in each subband. Numbers on leafs indicate the subband index from 1 to 17.

both sides). This does not mean that the mixture pdf will
accurately model any of the particular testing music pieces
but rather capture the main (subband-specific) statistical
properties of the testing source cepstral vectors. In essence,
we ensure that the conversion function acquires appropriate
mixture model parameters (i.e., cluster means and variances)
so that the conversion parameters derivation is not ill-
conditioned.

Several candidate training sets were processed to produce
a mixture pdf among which were the multichannel training
set of [2] (1 minute of an orchestra recording), a white
noise training set, a Brownian noise training set, and a pink
noise training set. Pink noise proved to be the most suitable
training set and led to smaller cepstral reconstruction
errors (up to 5% less in all subbands compared to the
other sets) during enhancement of the 4 generic music
pieces. The power spectrum of pink noise is proportional
to 1/ f , where f is the frequency. An approximation to
pink noise can be created by starting from the discrete
Fourier transform (DFT) magnitude (taken as proportional
to 1/ f 1/2), adding uniformly distributed random phase and
applying the inverse DFT (real part).

In order to reduce the training model size and allow
for the data diversity needed in the case of many mixture
components ML estimation, we divide the training data set
into 4 large equidistant subbands (instead of 17 subbands)
covering the frequency range 20 Hz–22 kHz. Each training
subband consists of 12 000 cepstral vectors of cepstral order
30. ML parameters estimation, as described in Section 2, is
performed on each training subband separately. The training
procedure is shown in the flow diagram of Figure 4.

Training
set

4 subbands analysis

LPC cepstral analysis
order 30

Cepstral
set below 5.5 kHz

Cepstral
set 5.5–11 kHz

Cepstral
set 11–16.5 kHz

Cepstral
set 16.5–22 kHz

Parameters
estimation

Parameters
estimation

Parameters
estimation

Parameters
estimation

Mixture
parameters

below 5.5 kHz

Mixture
parameters
5.5–11 kHz

Mixture
parameters

11–16.5 kHz

Mixture
parameters

16.5–22 kHz

Figure 4: The training scheme for the pink noise set. The training
set is separated into 4 equidistant subbands and for each one the
LPC cepstral vectors are extracted. Mixture parameters estimation
is performed on each cepstral set and the mixture parameters of
each training subband are derived.

In Figure 5, the validity of the estimation algorithm, as
described in Section 2, is illustrated. Even though a general-
ized Gaussian mixture model of 40 groups is recommended
(as determined by the MDL [33] and AIC [34, 35] criteria),
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Figure 5: Fitting of mixture pdf (4 groups) to the normalized
histogram of the first cepstral coefficients of the band 20 Hz–
5.5 kHz of the pink noise training set.

we decrease this number to 4 for all 4 training subbands. The
fitting of the mixture pdf to the histogram is still accurate.

5.3. Signal enhancement

The signal enhancement procedure that takes place at
the transmitter side for a source (compressed) and target
(uncompressed) signal is shown in Figure 6. The source and
target signals are separated into 17 subbands as mentioned
before. The resulting subband signals are LPC analyzed and
the LPC cepstral, and residual vectors are extracted. The
cepstral order for subbands 1–13 is 8 while for subbands 13–
17 it is 15, accounting for the larger frequency bandwidth
of the high subbands. Generally, not all subband signals
and not all vectors within each subband require cepstral or
residual conversion as explained later and this is the role
of the subband and vector selection that occurs right after
the LPC analysis. The selected source and target vectors
(cepstral or residual) of the selected subband are then sent
for statistical conversion. However, the statistical conversion
process requires the mixture model parameters and each
selected subband acquires these model parameters from one
of the 4 larger training subbands that it is part of. This
is shown in Figure 6 as the role of the training subband
switch. Statistical conversion can now be performed for
the selected subband i and the corresponding conversion
parameters and sorting information are derived as described
in Sections 2 and 3. These are finally transmitted to the
receiver as the transmitted parameters. During cepstral
conversion, the cepstral order of the training model is
truncated appropriately for each source/target subband to
adjust to the lower cepstral order of the particular source and
target cepstral vectors (8 or 15). The reason for this is that the
source cepstral vectors are assumed to be generated by the
mixture pdf derived during training and the dimensionality
of the training and particular source cepstral vectors should
be the same.

At the receiver side, the compressed source signal is
separated into 17 subbands and LPC analyzed in the same

Source
signal

Target
signal

17 subbands
analysis

LPC cepstral and residual
analysis

Subband selection and vector selection for
cepstral/residual conversion

Source vectors
subband i

Statistical
conversion Target vectors

subband i

Conversion
parameters

Sorting
information

Training subband switch

Below 5.5 kHz 5.5–11 kHz 11–16.5 kHz 16.5–22 kHz

Mixture model parameters

Figure 6: The transmitted parameters extraction procedure that
takes place at the transmitter side. The source and target signals are
both separated into 17 subbands and the LPC cepstral and residual
vectors are extracted. The subband selector selects which subbands
and which vectors within each subband require cepstral/residual
conversion. At the final stage, each of the 17 analysis subbands will
be classified to one of the four frequency intervals used during
training. Under this classification, the conversion parameters are
extracted for the source and target signals, using one of the four
trained pdfs.

way as at the transmitter side. The transmitted parameters
are applied oneach source subband signal that was selected
for statistical conversion during the parameters extraction
procedure of Figure 6. Specifically, the conversion parame-
ters are used to convert each of the selected sorted source
subband vectors (cepstral or residual) to the resynthesized
ones and the sorting information is used to rearrange them to
their correct order. After the resynthesized subband vectors
are created, we perform LPC synthesis on each resynthesized
subband to produce the time domain subband signals. These
signals along with the source subband signals that were
not converted are combined through wavelets (i.e., inverse
of the 17 subbands separation) and the final time domain
resynthesized signal is created.

5.3.1. Phase redundancy

In the low subbands particularly, it has been observed that
the signs of the source and target vectors are mostly the
same. To take advantage of this observation, we take the
absolute value of the target vectors before the derivation of
the conversion function. The absolute value of the target
vectors can be estimated more accurately compared to the
raw target data. To recover the lost sign of the resynthesized
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vectors at the receiver, a 1-bit sequence is included along with
the sorting information. For every source-target coefficient
pair, a 0 is sent if the signs are equal, otherwise a 1 is
sent. For subbands below 5.5 kHz, the proportion of 1’s in
each sign sequence is between 1% and 10% while in the
higher subbands it tends towards the expected 50% value.
This means that in the high frequencies there is little phase
redundancy.

5.3.2. Intraband redundancy

Further redundancies can be found in the time domain
for each subband signal pair that goes through cepstral or
residual conversion. The differences between the samples
of the source and target subband signals do not carry the
same significance in terms of resulting audio quality and
in some cases the source and target subband samples of a
particular time frame are almost identical. For instance, the
first subband of Figure 3 for a 32-kbps bit rate MP3 signal is
usually not severely degraded and many source-target sample
pairs can be neglected during conversion. Another example
is the silence regions that occur in a speech signal.

For the subbands that preserve their energy in the source
signal (and thus are not severely degraded), we adopt a
threshold rule based solely on the source signal information.
According to this rule, the source subband samples that have
absolute value below a certain threshold are neglected from
conversion. The rationale behind this is that source subband
samples with relatively smaller amplitude either correspond
to less audible parts of the subband target signal or they
have been suppressed as the particular codec that carried the
compression of the source classified them to be perceptually
insignificant. The advantage of this method is that the
receiver knows which samples have been discarded, as long
as the threshold for each processed subband is transmitted,
which is side information of negligible size. The disadvantage
of this method is that other samples that are perceptually
irrelevant are not detected. This is a more general problem
of our algorithm since, as mentioned before, it does not use
a psychoacoustic model.

The samples that pass the threshold test will now form
new source and target subband signals on which cepstral
and residual extraction is applied for the derivation of the
particular conversion function. Nevertheless, the residual
vectors incur significant conversion overhead compared to
cepstral conversion and thus a second, less strict, threshold
rule can now be applied on the residual vectors only to
further reduce the residual conversion overhead. The most
significant source-target residual vector pairs are selected by
locating the pairs that yield a high quadratic vector distance
between them. Consequently, little side information has to
be transmitted to the receiver which indicates which residual
vectors in each subband are selected for conversion.

In the case that a source-target sample pair is determined
to be insignificant, the source sample of that pair is used
directly for signal resynthesis at the receiver, bypassing the
conversion process. However, note that in the case where
a source subband has lost most of its energy, and it is
perceptually important, all of its samples pass through

cepstral and residual conversion and no threshold rules are
applied. The LPC target gains for the selected subbands are
transmitted as side information since they are crucial in
recovering the lost energy of the source subbands.

5.3.3. Interband redundancy

Naturally, not all subbands are expected to be severely
degraded by the compression process and not all of them
are perceptually important. A 32-kbps MP3 signal will
usually sustain moderate distortion in the frequency range
20 Hz–5.5 kHz and some of the corresponding subbands
can be completely neglected from residual or even cepstral
conversion. On the other hand, the higher subbands are
the most distorted, mainly because they are less perceptible
to the human ear. The 7 highest subbands, as seen from
Figure 3, are large and therefore require longer cepstral
and residual vectors during LPC analysis compared to the
first 10 subbands. These subbands, if selected for cepstral
and residual conversion, will add considerable transmission
overhead. A simple method to determine which high-
frequency subbands of the source signal to process is to
compare them with the subband energies of a signal that
has been compressed with the same codec as the source
file but at a higher bit rate such that its audio quality is
roughly comparable to the expected quality of the enhanced
signal. This should give us an insight into which subbands
are perceptually important with the use of the codec’s own
psychoacoustic model.

The selected high subbands require only an approximate
reconstruction such that the overall envelope of the desired
subband signal is preserved. The human ear is more sensitive
to the low subbands but even for these we determined that
the cepstral and residual conversion, as described in the
previous sections, is extremely accurate at the cost of high
overhead size. For this reason, we apply a more subband-
adaptive technique by increasing the degree of sorting
similarity between the source vectors X and target vectors
Y according to the perceptual significance of the subband
they belong to. The straightforward way to achieve this is to
add the source vectors to the target vectors multiple times
creating a modified target set Y ′ which, combined with the
phase redundancy observation, is shown below:

Y ′ = |Y | + cX. (10)

After sorting the modified target set Y ′, the original
positions of its coefficients will be more similar to the
original positions of the sorted source set X depending on
how many times the source set was added to the target
set (i.e., the constant c). We call constant c the multiplier.
This modification is easily reversible at the receiver because
the source set is always available and the multiplier can
be transmitted as side information. The resulting sorting
information size, as derived in Section 4, will be now less
than n·log2n bits and can be adjusted through the multiplier
depending on the degree of enhancement desired, enabling
scalable overhead transmission. As a rule of thumb, we
increase the multiplier as we move to higher subbands so
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that we progressively decrease the reconstruction accuracy
and the sorting information size.

6. RESULTS

The results of audio enhancement for the music signals are
analyzed and evaluated in this section. The effectiveness of
our method is shown through objective and subjective eval-
uation techniques. Cepstral and residual conversion accuracy
is measured by taking the Euclidean quadratic distances and
determining how close the reconstructed cepstral/residual
vectors to the corresponding target cepstral/residual vectors
are. Note that each of the source subband signals is time-
aligned with the target subbands signals and the same holds
for the resynthesized subband signals. Thus there is a one-to-
one correspondence among the cepstral or residual vectors of
the source, target, and resynthesized subband sets.

Throughout the analysis, the LPC frame length is 37.5
milliseconds and the LPC frame slide is 35 milliseconds for
all 17 subbands, thus effectively eliminating the redundancy
that is attributed to the overlapping frames. The number
of the generalized Gaussian mixture classes is set to 4
for all music signals because the sorting transformation
allows us to use few classes, as mentioned in Section 4. For
the same reason, the conversion parameters are uniformly
quantized with only 12 bits. Since all audio signals pass
through a similar but extensive analysis, as described by
our algorithm, we present the specific cepstral and residual
conversion details for the Rock piece only and only for the
case of 32 kbps MP3 enhancement. These results are similar
for the remaining audio pieces. Objective and subjective
quality test results are presented in Section 6.2 along with the
corresponding transmission sizes.

6.1. Cepstral and residual conversion results

The cepstral and residual conversion results along each 182
vector subband for the Rock music piece are shown in Tables
3 and 4. The subbands that have been selected for cepstral or
residual conversion are also shown. Notice that subbands 11–
13 are fully processed because they have significant energy
loss. Each entry of the tables is the average quadratic distance
between either the source and target cepstral/residual vectors
or between the resynthesized and target cepstral/residual
vectors. The third column shows the number of vectors
selected for conversion in the particular subband while the
fourth column shows the multiplier as described by (10). The
fifth column shows the average number of bits/coefficient
for transmission of the sorting information when the full
algorithm is applied. The sorting information has passed
through additional lossless compression (e.g., run-length
coding), as described in Section 4. The sixth column shows
the average quadratic distance between the cepstral or
residual vectors of the source and target subband signals.
The seventh column shows the average quadratic distance
between the cepstral or residuals vectors of the resynthesized
and target subband signals when the full algorithm is applied
(i.e., conversion with sorting and DCT) while the eighth
and ninth columns show the same distance when sorting

is not applied and when DCT and sorting are not applied,
respectively.

Note that in the two scenarios without sorting, no sorting
information is derived along with the conversion parameters
(and the multiplier is 0) and therefore the total size of
the transmitted parameters is smaller than that of the full
algorithm scenario. Thus, in order to have roughly equal size
of transmitted parameters for all three scenarios, we modify
the two scenarios in which no sorting is applied by increasing
the mixture classes from 4 to 20 while keeping the same
number of quantization bits for the conversion parameters.
This should mean a more accurate linear estimator but, as the
results of Tables 3 and 4 show, our 4 classes mixture estimator
is more accurate.

It is clear from both tables (seventh column) that when
statistical conversion is applied along with sorting and the
DCT, the reconstructed vectors are much closer to the target
vectors (than the source vectors are). If no sorting is used,
the cepstral errors increase more than 50% as the eighth
column of Tables 3 and 4 shows, while if in addition no
DCT is used these errors grow even higher as the last
column of Tables 3 and 4 shows. This proves the necessity
of the sorting transformation and the DCT for achieving
low reconstruction errors. It is especially noticeable in the
residual results where the errors are multiple orders of
magnitude higher than the ones of the case in which sorting
and DCT are applied. As expected, when the full algorithm is
applied and the multiplier increases across the subbands, the
average number of bits of the sorting information decreases.

6.2. Transmission overhead and quality
evaluation tests

The size of the transmitted parameters for the 10 enhanced
music signals in the case of 32-kbps MP3 enhancement is
shown in Table 5. This size, if added to the source size, is close
to the size of the corresponding constant bit rate 64-kbps
MP3 file. Therefore, the audio quality of the enhanced file
is expected to be at least comparable to the quality of the 64-
kbps MP3 scheme. Similar transmission sizes are produced
in the case of 64-kbps MP3 enhancement and, in that
scenario, the enhanced signal should be at least comparable
to the 96 kbps MP3 signal. We show this by performing two
perceptual quality evaluation tests.

The first one is the ITU-R BS.1387 perceptual evaluation
of audio quality (PEAQ) test, basic model [36]. This objective
quality test measures the perceptual difference between the
original signal (uncompressed in our case) and the processed
one. It simulates the responses of human listeners to a
real listening test by modeling the auditory system. The
output is the objective difference grade (ODG) value which
ranges from −4 (“very annoying”) to 0 (“imperceptible”).
The PEAQ test results have been shown to be highly
correlated with the subjective difference grades (SDGs) from
a subjective listening test [37]. Tables 6 and 7 show the ODG
scores for all 10 music examples for the cases of 32-kbps
and 64-kbps MP3 enhancement, respectively. In the case of
32-kbps MP3 enhancement, it is clear that the quality of
the enhanced file is much higher than that of the 32-kbps
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Table 3: Cepstral conversion results for the rock music signal.

Subband
index

Cepstral
order

Selected
vectors per

subband
Multiplier

Sorting
information size

(bits/coeff.)

Distance
between source

and target

Distance
between

resynthesized
and target

Distance
between

resynthesized
and target

without sorting

Distance
between

resynthesized
and target

without sorting,
without DCT

2 8 168 8 2.61 0.0182 0.0053 0.0137 0.0158

3 8 162 8 2.61 0.0259 0.0079 0.0194 0.0240

4 8 163 8 2.61 0.0222 0.0063 0.0153 0.0168

5 8 153 8 2.61 0.1255 0.0126 0.0455 0.0536

6 8 163 8 2.61 0.0733 0.0118 0.0333 0.0419

7 8 170 8 2.61 0.0252 0.0073 0.0190 0.0214

8 8 166 8 2.61 0.0439 0.0086 0.0253 0.0278

9 8 70 8 2.61 0.2489 0.0179 0.1955 1.1005

10 8 66 8 2.61 0.2208 0.0189 0.1367 1.3197

11 8 182 16 2.53 0.7676 0.0274 0.0973 0.1177

12 8 182 16 2.53 0.2695 0.0091 0.0433 0.0464

13 8 182 16 2.53 1.3958 0.0110 0.0905 0.0931

15 15 182 30 2.39 0.1161 0.0096 0.0391 0.0581

16 15 182 30 2.39 0.6692 0.0220 0.1137 0.1433

17 15 182 30 2.39 0.3000 0.0149 0.0458 0.0666

Table 4: Residual conversion results for the rock music signal.

Subband
index

Vector
length

Selected
vectors per

subband
Multiplier

Sorting
information size

(bits/coeff.)

Distance
between source

and target

Distance
between

resynthesized
and target

Distance
between

resynthesized
and target

without sorting

Distance
between

resynthesized
and target

without sorting,
without DCT

9 52 70 4 2.78 1.8670 0.0540 0.4346 0.6155

10 52 66 4 2.78 1.9462 0.0523 0.4696 1.1201

11 103 182 60 1.04 1.9266 0.2238 0.7906 1.1925

12 103 182 60 1.04 0.7779 0.2032 0.4832 0.6792

13 103 182 100 1.04 1.2707 0.2414 0.8083 1.1748

Cepstral and residual conversion results in terms of the average quadratic distance between time-aligned vectors over each subband. The fourth column shows
the multiplier along each subband and the fifth column shows the resulting number of bits/coefficient of the sorting information. The sixth column shows
the initial distances between source and target vectors. The seventh column shows the distance between the resynthesized and target vectors when the full
algorithm is applied. The two last columns show the results when the algorithm is not applied correctly.

Table 5: Size of transmitted parameters for 32-kbps MP3 enhancement.

Rock Symphony Electronic Jazz Flute Violin Bass Piano Harp Drums

Source signal size (kB) 26 26 26 26 26 26 26 26 26 26

Target signal size (kB) 550 550 550 550 550 550 550 550 550 550

64-kbps MP3 size (kB) 52 52 52 52 52 52 52 52 52 52

Cepstral conversion parameters size (kB) 1.7 1.5 1.5 1.5 1.5 1.9 1.3 1.5 1.5 1.5

Cepstral sorting info size (kB) 6.5 7.1 5.6 7.7 7.1 8.7 6.8 7.5 5.6 7.7

Residual conversion parameters size (kB) 5.0 5.0 5.0 5.0 5.0 2.5 5.0 5.0 5.0 5.0

Residual sorting info size (kB) 16.6 16.7 17.7 16.6 17.3 17.4 17.9 16.8 18.7 16.1

Miscellaneous parameters size (kB) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Total transmitted parameters size (kB) 30.8 31.3 31.8 31.8 31.9 31.5 32.0 31.8 31.8 31.3

Size of transmitted parameters and size of source and target signals. The total size of the transmitted parameters is much smaller than the target signal size
and together with the source signal size it is close to the size of the 64-kbps MP3 version of the signal.
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Table 6: PEAQ test scores for 32-kbps MP3 enhancement.

Rock Symphony Electronic Jazz Flute Violin Bass Piano Harp Drums

32 kbps MP3 −3.5 −3.6 −3.4 −3.6 −3.6 −3.6 −3.4 −2.3 −2.4 −3.4

64 kbps MP3 −1.3 −1.8 −1.2 −1.5 −2.1 −1.5 −1.9 −1.2 −1.8 −1.6

Enhanced −1.2 −1.6 −1.4 −1.7 −2.0 −1.6 −2.0 −1.4 −1.8 −1.4

ODG scores for the 32-kbps MP3 enhancement scenario. The range is from −4 (“very annoying”) to 0 (“imperceptible”). The reference is always the
uncompressed file.

Table 7: PEAQ test scores for 64-kbps MP3 enhancement.

Rock Symphony Electronic Jazz Flute Violin Bass Piano Harp Drums

64 kbps MP3 −1.3 −1.8 −1.2 −1.5 −2.1 −1.5 −1.9 −1.2 −1.8 −1.6

96 kbps MP3 −0.2 −0.2 −0.2 −0.2 −0.5 −0.3 −0.5 −0.5 −0.6 −0.2

Enhanced −0.4 −0.3 −0.4 −0.4 −0.8 −0.5 −0.7 −0.6 −0.5 −0.4

ODG scores for the 64-kbps MP3 enhancement scenario. The range is from −4 (“very annoying”) to 0 (“imperceptible”). The reference is always the
uncompressed file.

MP3 source and it is similar to the audio quality of the 64-
kbps MP3 scheme. Similarly, for the case of 64-kbps MP3
enhancement the enhanced file’s quality is much better than
that of the 64-kbps MP3 signal and it is comparable to that
of the 96-kbps MP3 signal.

The PEAQ test has not been thoroughly validated at low
bit rates (e.g., 32 kbps) and in order to complement the
PEAQ results, we also conducted a subjective listening test
based on the ITU-R BS.1116 recommendation [38] using
10 listeners. We simulated the scenario of 32-kbps MP3
enhancement only since the relative audio impairment in this
case is audible enough to nonexpert listeners. In addition,
our preliminary tests showed that without the use of expert
listeners, it is quite difficult to distinguish among low bit
rate audio samples and especially grade them in a consistent
scale. Thus we decided to use a simplified version of this
test as in [39]. The listener is presented with the reference
(uncompressed) signal and with two processed signals A and
B. One of these two signals is processed by our algorithm
while the other one by a benchmark codec. The benchmark
codec produces either a 32-kbps MP3 file or a 64-kbps MP3
file (using the LAME encoder). Thus for each of the 10
music cases the listener is presented with two pairs of files
and in each pair the benchmark codec signal is the 64-kbps
or 32-kbps MP3 file (the two pairs are in random order).
The listener is asked to select the file, A or B, which sounds
closer to the reference. The listeners can also answer that the
two files sound the same if they cannot detect a difference
between them. Each subject listened through headphones
and could repeat each individual sequence as desired. They
could also switch in the middle of one sequence to the other,
instantly picking up the other sequence at the same point in
the playback. A few training samples were also provided to
familiarize the listeners with the coding artifacts.

The results of this test are shown in Table 8. The
enhanced file is of higher audio quality than the 32-kbps
MP3 source file since, in direct comparison, all listeners
preferred the enhanced file. The results also suggest that our
algorithm produces similar quality audio to the 64-kbps MP3

Table 8: Subjective listening test scores.

Preference ratio of enhanced file over 64-kbps file

95% confidence interval

Rock 0.40 ± 0.27

Electronic 0.50 ± 0.25

Symphony 0.47 ± 0.26

Jazz 0.46 ± 0.27

Flute 0.53 ± 0.25

Violin 0.44 ± 0.23

Bass 0.46 ± 0.27

Piano 0.47 ± 0.24

Harp 0.54 ± 0.27

Drums 0.56 ± 0.23

Preference ratios (normalized to a maximum value of 1) of the enhanced
file over the 64-kbps MP3 file along with the 95% confidence intervals, for
the case of 32-kbps MP3 enhancement. The enhanced file is always preferred
over the 32 kbps MP3 file for all signals.

scheme since there was no significant preference between the
enhanced signal and the 64-kbps MP3 signal. Note, however,
that in a scenario related to enhancing a file remotely (e.g.,
over the internet as described in Section 1), the required
amount of information to create a signal with quality similar
to the 64-kbps MP3 scheme is around 30 kB. On the other
hand, as seen in Table 5, the amount of information required
to transmit the whole 64-kbps MP3 file is 52 kB. This means
that in such cases our algorithm would be more efficient than
sending the 64-kbps file instead.

7. CONCLUSIONS

We have presented a new method on quality enhancement of
compressed audio based on statistical features conversion. A
basic challenge of this scheme was to enhance an audio piece
while producing small overhead size. As the music examples
showed, the algorithm presented has similar performance to
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the MP3 scheme under comparison. Moreover, in a scenario
in which the enhanced file is created by requesting the
transmitted parameters remotely, it is clear that the amount
of information required for enhancement is smaller com-
pared to that of the MP3 scheme. Unlike the enhancement
approach of MPEG-4, our algorithm does not require an
embedded codec and thus can enhance signals created by any
compression scheme.

Future work could further optimize the algorithm
performance by including psychoacoustic information. A
promising alternative is to apply features extraction in the
frequency domain or a perceptual domain in a way similar
to MFCC [25] and perceptual LPC (PLP) [40] schemes.
Our method can also be modified to work as in the SBR
philosophy by applying statistical conversion between the
low- and high-frequency subbands of a signal in order to
resynthesize the high subbands only. A direct comparison
with SBR codecs such as MP3 Pro would then be feasible.
In addition, the statistical framework of our algorithm can
provide us with the option of enhancing a signal without any
prior information of the uncompressed signal. Preliminary
results indicate cases in which, instead of the specific target
uncompressed signal, we can use a predefined set of similar
signals to derive the conversion parameters. This unique
feature of the algorithm will be demonstrated in future
publications as the synthesis problem.
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