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1. INTRODUCTION

Automatic speaker recognition has been developed into
an important technology for various speech-based appli-
cations. Traditional recognition system usually comprises
two processes: feature extraction and speaker modeling.
Conventional speaker modeling methods such as Gaussian
mixture models (GMMs) [1] achieve very high performance
for speaker identification and verification tasks on high-
quality data when training and testing conditions are well
controlled. However, in many practical applications, such
systems generally cannot achieve satisfactory performance
for a large variety of speech signals corrupted by adverse con-
ditions such as environmental noise and channel distortions.

Traditional GMM-based speaker recognition system, as
we know, degrades significantly under adverse noisy condi-
tions, which is not applicable to most real-world problems.
Therefore, how to capture robust and discriminative feature
from acoustic data becomes important. Commonly used
speaker features include short-term cepstral coefficients [2,
3] such as linear predictive cepstral coefficients (LPCCs),
mel-frequency cepstral coefficients (MFCCs), and perceptual
linear predictive (PLP) coefficients. Recently, main efforts
are focused on reducing the effect of noises and distortions.

Feature compensation techniques [4-7] such as CMN and
RASTA have been developed for robust speech recognition.
Spectral subtraction [8, 9] and subspace-based filtering [10,
11] techniques assuming a priori knowledge of the noise
spectrum have been widely used because of their simplicity.

Currently, the computational auditory nerve models and
sparse coding attract much attention from both neuroscience
and speech signal processing communities. Lewicki [12]
demonstrated that efficient coding of natural sounds could
provide an explanation for both the form of auditory nerve
filtering properties and their organization as a population.
Smith and Lewicki [13, 14] proposed an algorithm for
learning efficient auditory codes using a theoretical model
for coding sound in terms of spikes. Sparse coding of sound
and speech [15-18] is also proved to be useful for auditory
modeling and speech separation, providing a potential way
for robust speech feature extraction.

As a powerful data modeling tool for pattern recognition,
multilinear algebra of the higher-order tensor has been
proposed as a potent mathematical framework to manipulate
the multiple factors underlying the observations. In order
to preserve the intrinsic structure of data, higher-order
tensor analysis method was applied to feature extraction.
De Lathauwer et al. [19] proposed the higher-order singular
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value decomposition for tensor decomposition, which is a
multilinear generalization of the matrix SVD. Vasilescu and
Terzopoulos [20] introduced a nonlinear, multifactor model
called Multilinear ICA to learn the statistically independent
components of multiple factors. Tao et al. [21] applied
general tensor discriminant analysis to the gait recognition
which reduced the under sample problem.

In this paper, we propose a new feature extraction
method for robust speaker recognition based on auditory
periphery model and tensor structure. A novel tensor
analysis approach called NTPCA is derived by maximizing
the covariance of data samples on tensor structure. The
benefits of our feature extraction method include the
following. (1) Preprocessing step motivated by the auditory
perception mechanism of human being provides a higher
frequency resolution at low frequencies and helps to obtain
robust spectrotemporal feature. (2) A supervised learning
procedure via NTPCA finds the projection matrices of
multirelated feature subspaces which preserve the individual,
spectrotemporal information in the tensor structure. Fur-
thermore, the variance maximum criteria ensures that noise
component can be removed as useless information in the
minor subspace. (3) Sparse constraint on NTPCA enhances
energy concentration of speech signal which will preserve the
useful feature during the noise reduction. The sparse tensor
feature extracted by NTPCA can be further processed into
a representation called auditory-based nonnegative tensor
cepstral coefficients (ANTCCs), which can be used as feature
for speaker recognition. Furthermore, Gaussian mixture
models [1] are employed to estimate the feature distributions
and speaker model.

The remainder of this paper is organized as follows.
In Section 2, an alternative projection learning algorithm
NTPCA is developed for feature extraction. Section 3
describes the auditory model and sparse tensor feature
extraction framework. Section 4 presents the experimental
results for speaker identification on three speech datasets
in the noise-free and noisy environments. Finally, Section 5
gives a summary of this paper.

2. NONNEGATIVE TENSOR PCA
2.1. Principle of multilinear algebra

In this section, we briefly introduce multilinear algebra and
details can be found in [19, 21, 22]. Multilinear algebra is the
algebra of higher-order tensors. A tensor is a higher-order
generalization of a matrix. Let X € RN>N2X---xNu denotes
a tensor. The order of X is M. An element of X is denoted
by Xum,.my> Where 1 < n; < Nyand 1 < i < M. The
mode-i vectors of X are N;-dimensional vectors obtained
from X by varying index n; and keeping other indices fixed.
We introduce the following definitions relevant to this paper.

Definition 1 (mode-d matricizing). Let the ordered sets R =
{ri,...,r.} and € = {¢y,...,cx} be a partition of the tensors
N = {1,...,M}, where M = L + K. The matricizing tensor
can then be specified by

Xmxe) € RIXK with [ = nNi) K = nNi- 1)
ieR ied

The mode-d matricizing of an Mth-order tensor X €
RNtxN2x---xNy i g matrix Xy € RIXK) where L = N, and
K = TI;,4Ni. The mode-d matricizing of X is denoted as
maty(X) or Xy.

Definition 2 (tensor contraction). The contraction of a
tensor is obtained by equating two indices and summing over
all values of the repeated indices. Contraction reduces the
tensor order by 2. When the contraction is conducted on all
indices except the ith index on the tensor product of X and Y
in RNXN2x-XNur | the contraction result can be denoted as

[X®Y; (i) ()]
[(XeY;(1:i-1,i+1:M)(1:i—1,i+1:M)]

N, Ni-1 Nin Ny
= z e z Z e Z Xn1><---><n,,1><n,-+1><---><nM
n=1 ni-1=1ni1=1 ny=1

X Yn1><---><n,v,1><n,+1x---><nM

= mat;(X)mat/ (Y)

= XiYiT>
2

and [X ® Y; () ()] € RN,

Definition 3 (mode-d matrix product). The mode-d matrix
product defines multiplication of a tensor with a matrix in
mode d. Let X € RN *Nu gnd A € R/*Ne, Then, the N; X
<+« X Ng_1 X J X Ng41 X - - - X Ny tensor is defined by

(XXdA)le---><Nd,1><]><Nd+1---><NM
= D (XNyxeeoxNae <N ANy 3)
Na

= [X® A;(d)(2)].

In this paper, we simplify the notation as

M
XX1A1X2A2X--- XAM:XnXiAi, (4)
i=1
XXGAL X s X Aim X Ajp X XAy
M
=X [| xxAr = XXA; (5
k=1,k#i

2.2. Principal component analysis with nonnegative
and sparse constraint

The basic idea of PCA is to project the data along the
directions of maximal variances so that the reconstruction
error can be minimized. Let xi,...,x, € R? form a zero
mean collection of data points, arranged as the columns
of the matrix X € R?" and let uy,...,ur € R? be the
principal vectors, arranged as the columns of the matrix U €
R¥k, In [23], a new principal component analysis method
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with nonnegative and sparse constraint is proposed, which is
called NSPCA:

mgx%HUTXH; - %HI ~UTU|[; - p1TU1 st U =0,
(6)

where ||A||% is the square Frobenius norm, the second term
relaxes the orthogonal constraint of traditional PCA, the
third term is the sparse constraint, « > 0 is a balanc-
ing parameter between reconstruction and orthogonality,
B = 0 controls the amount of additional sparseness
required.

2.3. Nonnegative tensor principal
component analysis

In order to extend NSPCA in the tensor structure, we change
the form of (6) since ||AH12; = tr(AAT) and Definition 3 and
obtain following equation:

max%tr(UTX(UTX)T) - %HI —UTUl[: - p1TUL

U=0
— 1 T n xT
—I{]lii())(ztr(U <§ XiX; )U)

i=1

- %HI - UTU|; - p1Tu1

= I{]]S())(%Z[(XiXIUT) ® (Xix UT); (1)(1)]
=0 25

- %HI - Utz - p17 UL
(7)

Let X; denote the ith training sample with zero mean which
is a tensor, and Uy is the kth projection matrix calculated
by the alternating projection procedure. Here, X; (0 < i <
n) are r-order tensors that lie in RN>N2X"Nr gnd U, €
RN<Ne (k = 1,2,...,7). Based on an analogy with (7), we
define nonnegative tensor principal component analysis by
replacing X; with X;. So we can obtain the optimization
problem as follows:

1 n r T
oM ZZ[(XN Ui

i=1 k=1

®(xi1‘[xku,?>;(1:r><1:r>} (8)

k=1

o r 2 r
= 2 2= VUl = B2, 17U
k=1 k=1

In order to obtain the numerical solution of the problem
defined in (8), we use the alternating projection method,
which is an iterative procedure. Therefore, (8) is decomposed

into r different optimization subproblems as follows:

1S (x[Teor)

Ui=0 (I=1,.,n0 2 {7 1

® (XiﬁkakT>(1:r)(1:r)]

k=1

r r
o 2
— ZZHI - UgUk||F _BZ 1"Ux1
k=1 k=1
= max li.[(X-YIUTXlUT)
G20 (=125 : :
® (XU < Ul ); (1 :r)(1er)]
o 2
— ZHI - UITUIHF _ﬁlTUll
,
o

.
2
SO -UfulR-p S 17U
k=1k#1 k=lk#1

1 T i — T
= - § XiX

U:zon(ll%)l(,u.,r)ztr(Ul (,’1[matl( l lUl )
x mat] (X;X; U,T)]) Ul>

(04
- L= ullz - pr7un

a r 2 r
3 > M -UlUll-p > 17Uk
k=1,k#1

k=Lk#1
9)
In order to simplify (9) we define
n
A= Z [matl(X,-?l U,T)matlT (X% UZT) ],
i=1
o : (10)
o 2
a--% 3 -vfuli-p 3 v
k=1,k#1 k=1,k#1
Therefore, (9) becomes
1 2« 2
—|UFB|[ = = ||l - ULul| - prTuil + ¢,
Lmax ST - Sl - U Uil - pT
(11)

where A; = B;B/. But as described in [23], the above
optimization problem is a concave quadratic programming,
which is an NP-hard problem. Therefore, it is unrealistic to
find the global solution of (11), and we have to settle with
a local maximum. Here we give a function of uj, as the
optimization objective

o
fupg) = —Zuqu + czulzpq + C1jpg + const, (12)
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Input: Training tensor X; € RN>M>=Nr (] < j < ), the dimensionality of the output tensors
Y; e RNTXNG XN B, maximum number of training iterations T, error threshold .

Output: The projection matrix U; = 0 (I = 1,...,7), the output tensors Y.

Initialization: Set Ul(o) >0 (I =1,...,r) randomly, iteration index ¢ = 1.
Step 1. Repeat until convergence {
Step 2. Forl=1tor {
Step 3. Calculate A;t_]);
Step 4. Iterate over every entries of U,(t) until convergence

— Set the value of u;,, to the global nonnegative maximizer of

(12) by evaluating it over all nonnegative roots of

(14) and zero;

}
Step 5. Check convergence: the training stage of NTPCA convergence
ift > T or update errore < ¢
}

Step 6. Y} = le_[;ZIXlUl

ArLcoriTHM 1: Alternating projection optimization procedure for NTPCA.
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FIGURE 1: Feature extraction and recognition framework.

where const is the independent term of u;,, and

d k d
Z Alsillpi — & * Z Z Uipjlijiliq — P

i=l,i#q i=Lizpj=l,j#q

d k
2 2
Algg t & — o Z Up; — &> Z Uig>
i=1,i#q i=1,i#p

C1

(13)

(%)

where aj;; is the element of A;. Setting the derivative with
respect to w4 to zero, we obtain a cubic equation

of

aulpq

3
= —auj,, + cauipg + 1 = 0. (14)

We calculate the nonnegative roots of (14) and zero as
the nonnegative global maximum of f(u,,). Algorithm 1
lists the alternating projection optimization procedure for
Nonnegative Tensor PCA.

3. AUDITORY FEATURE EXTRACTION BASED ON
TENSOR STRUCTURE

The human auditory system can accomplish the speaker
recognition easily and be insensitive to the background noise.

In our feature extraction framework, the first step is to obtain
the frequency selectivity information by imitating the process
performed in the auditory periphery and pathway. And
then we represent the robust speech feature as the extracted
auditory information mapped into multiple interrelated
feature subspace via NTPCA. A diagram of feature extraction
and speaker recognition framework is shown in Figure 1.

3.1. Feature extraction based on auditory model

We extract the features by imitating the process occurred
in the auditory periphery and pathway, such as outer ear,
middle ear, basilar membrane, inner hair cell, auditory
nerves, and cochlear nucleus.

Because the outer ear and the middle ear together
generate a bandpass function, we implement traditional pre-
emphasis to model the combined outer and middle ear
functions xpre(t) = x(t) — 0.97x(t — 1), where x(t) is the
discrete-time speech signal, t = 1,2,..., and X, () is the
filtered output signal. Its purpose is to raise the energy for
those frequency components located in the high-frequency
domain in order that those formants can be extracted in the
high-frequency domain.
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FiGure 2: Clean speech sentence and illustrations of cochlear power
feature. Note the asymmetric frequency resolution at low and high
frequencies in the cochlear.

The frequency selectivity of peripheral auditory system
such as basilar membrane is simulated by a bank of
cochlear filters. The cochlear filterbank represents frequency
selectivity at various locations along the basilar membrane
in a cochlea. The “gammatone” filterbanks implemented by
Slaney [24] are used in this paper, which have an impulse
response in the following form:

gi(t) = ait" 1P ERBUN cos (2m fit +¢;) (1 <i<N),
(15)

where n is the order of the filter, N is the number of
filterbanks. For the ith filter bank, f; is the center frequency,
ERB(f;) = 24.7(4.37 f;/1000+ 1) is the equivalent rectangular
bandwidth (ERB) of the auditory filter, ¢; is the phase,
ai,b; € R are constants, where b; determines the rate of
decay of the impulse response, which is related to bandwidth.
The outputs of each gammatone filterbank is xg,(t) =
py xpre(T)gi(t - 7).

In order to model nonlinearity of the inner hair cells, we
compute the power of each band in every frame k with a
logarithmic nonlinearity

P(i,k) = log (1 +y Z {xé(t)}z), (16)
teframe k
where P(i, k) is the output power, y is a scaling constant.
This model can be considered as average firing rates in the
inner hair cells, which simulate the higher auditory pathway.
The resulting power feature vector P(i,k) at frame k with
component index of frequency f; comprises the spectrotem-
poral power representation of the auditory response. Figure 2
presents an example of clean speech utterance (sampling rate
8 kHz) and corresponding illustrations of the cochlear power
feature in the spectrotemporal domain. Similar to mel-scale

processing in MFCC extraction, this power spectrum pro-
vides a much higher frequency resolution at low frequencies
than at high frequencies.

3.2. Sparse representation based on tensor structure

In order to extract robust feature based on tensor structure,
we model the cochlear power feature of different speakers as
3-order tensor X € RN/*NexNs Each feature tensor is an array
with three models frequency X time X speaker identity which
comprises the cochlear power feature matrix X € RN/>Ne of
different speakers. Then we transform the auditory feature
tensor into multiple interrelated subspaces by NTPCA to
learn the projection matrices U; (I = 1,2,3). Figure3
shows the tensor model for projection matrices calculation.
Compared with traditional subspace learning methods, the
extracted tensor features may characterize the differences
of speakers and preserve the discriminative information for
classification.

As described in Section 3.1, the cochlear power feature
can be considered as neuron response in the inner hair cells,
and hair cells have receptive fields which refer to a coding of
sound frequency. Recently, a sparse coding for sound based
on skewness maximization [15] was successfully applied to
explain the characteristics of sparse auditory receptive fields.
And here we employ the sparse localized projection matrix
U € RPN in time-frequency subspace to transform the
auditory feature into the sparse feature subspace, where d
is the dimension of sparse feature subspace. The auditory
sparse feature representation X is obtained via the following
transformation:

X, = UX. (17)

Figure 4(a) shows an example of projection matrix in
spectrotemporal domain. From this result we can see that
most elements of this project matrix are near to zero, which
accords with the sparse constraint of NTPCA. Figure 4(b)
gives several samples for coefficients of feature vector after
projection, which also prove the sparse characteristic of
feature.

For the final feature set, we apply discrete cosine
transform (DCT) on the feature vector to reduce the
dimensionality and decorrelate feature components. A vector
of cepstral coefficients Xc.ps = CX; is obtained from sparse
feature representation X;, where C € RQ*4 is discrete cosine
transform matrix.

4. EXPERIMENTS AND DISCUSSION

In this section, we describe the evaluation results of a
close-set speaker identification system using ANTCC feature.
Comparisons with MFCC, LPCC, and RASTA-PLP features
are also provided.

4.1. Clean data evaluation

The first stage is to evaluate the performance of different
speaker identification methods in the two clean speech
datasets: Grid and TIMIT.
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FiGure 3: Tensor model for calculation of projection matrices via NTPCA.
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FIGURE 4: (a) Projection matrix (80 X 100) in spectrotemporal domain. (b) Samples for sparse coefficients (encoding) of feature vector.

For Grid dataset, there are 17000 sentences spoken by
34 speakers (18 males and 16 females). In our experiment,
the sampling rate of speech signals was 8 kHz. For the
given speech signals, we employed every window of length
8000 samples (1 second) and time duration 20 samples (2.5
milliseconds) and 36 gammatone filters were selected. We
calculated the projection matrix in spectrotemporal domain
using NTPCA after the calculation of the average firing
rates in the inner hair cells. 170 sentences (5 sentences
each person) were selected randomly as the training data
for learning projection matrices in different subspaces. 1700
sentences (50 sentences each person) were used as training
data and 2040 sentences (60 sentences each person) were
used as testing data.

TIMIT is a noise-free speech database recorded with a
high-quality microphone sampled at 16 kHz. In this paper,
randomly selected 70 speakers in the train folder of TIMIT
were used in the experiment. In TIMIT, each speaker
produces 10 sentences, the first 7 sentences were used for
training, and the last 3 sentences were used for testing, which
were about 24 s of speech for training and 6 s for testing. For
the projection matrix learning, we select 350 sentences (5
sentences each person) as training data and the dimension
of sparse tensor representation is 32.

We use 20 coefficient feature vectors in all our experi-
ments to keep a fair comparison. The classification engine
used in this experiment was based on a 16, 32, 64, and 128
mixtures GMM classifier. Table 1 presents the identification
accuracy obtained by the various features in clean condition.

From the simulation results, we can see that all the
methods can give a good performance for the Grid dataset
with different Gaussian mixture numbers. For the TIMIT

TaBLE 1: Identification accuracy with different mixture numbers for
clean data of Grid and TIMIT datasets.

Grid(%) TIMIT(%)

32 64 128 16 32 64 128
ANTCC 99.9 100 100 100 96.5 97.62 98.57 98.7
LPCC 100 100 100 100 97.6 98.1 98.1  98.1
MFCC 100 100 100 100 98.1 981 98,57 99

PLP 100 100 100 100 89.1 92.38 90 93.1

Features

dataset, MFCC also represents a good performance on
the testing conditions. And ANTCC feature provides the
same performance as MFCC when the Gaussian mixture
number increases. This may indicate that the distribution of
ANTCC feature is sparse and not smooth, which causes the
performance to degrade when the Gaussian mixture number
is too small. So we have to increase Gaussian mixture number
to fit its actual distribution.

4.2. Performance evaluation under different
noisy environments

In consideration of practical applications of robust speaker
identification, different noise classes were considered to
evaluate the performance of ANTCC against the other
commonly used features and identification accuracy was
assessed again. Noise samples for the experiments were
obtained from Noisex-92 database. The noise clippings were
added to clean speech obtained from Grid and TIMIT
datasets to generate testing data.



Q. Wu and L. Zhang

TABLE 2: Identification accuracy in four noisy conditions (white,
pink, factory, and f16) for Grid dataset.

(%) SNR ANTCC GMM-UBM MEFCC LPCC RASTA-PLP

0dB 10.29 3.54 294  2.45 9.8
White 5dB 38.24 13.08 9.8 3.43 12.25
10dB  69.61 26.5 24.02 8.82 24.51
15dB  95.59 55.29 42.65 25 56.37
0dB 9.31 10.67 16.67 7.35 10.29
Pink 5dB 45.1 21.92 28.92 15.69 24.51
10d 87.75 54.51 49.51 37.25 49.02
15d  95.59 88.09 86.27 72.55 91.18
0dB 8.82 11.58 14.71 9.31 11.27
Factory 5dB  44.61 41.92 35.29 25 29.9
10d 87.75 60.04 66.18 52.94 63.24
15d 97.55 88.2 92.65 87.75 96.57
0dB 9.8 8.89 7.35 7.84 12.25
Fl6 5dB 27.49 15.6 12.75 15.2 26.47
10d  69.12 45.63 52.94 36.76 50
15d 95.1 82.4 76.47 63.73 83.33
4.2.1.  Grid dataset in noisy environments

Table 2 shows the identification accuracy of ANTCC at
various SNRs (0dB, 5dB, 10dB, and 15dB) with white,
pink, factory, and f16 noises. For the projection matrix and
GMM speaker model training, we use the similar setting as
clean data evaluation for Grid dataset. For comparison, we
implement an GMM-UBM system using MFCC feature. 256-
mixture UBM is created for TIMIT dataset and Grid dataset
is used for GMM training and testing.

From the identification comparison, the performance
under Gaussian white additive noise indicates that ANTCC is
the predominant feature and topping to 95.59% under SNR
of 15dB. However, it is not recommended for noise level
less than 5 dB SNR where the identification rate becomes less
than 40%. RASTA-PLP is the second-best feature, yet it yields
56.37% less than ANTCC under 15 dB SNR.

Figure 5 describes the identification rate in four noisy
conditions averaged over SNRs between 0 and 15 dB, and the
overall average accuracy across all the conditions. ANTCC
under different noise conditions, respectively, showed better
average performance than the other features, indicating the
potential of the new feature for dealing with a wider variety
of noisy conditions.

4.2.2. TIMIT dataset in noisy environments

For speaker identification experiments that were conducted
using TIMIT dataset with different additive noise, the general
setting was almost the same as that used with clean TIMIT
dataset.

Table 3 shows the identification accuracy comparison
using four features with GMM classifiers. The results show
that ANTCC feature demonstrates good performance in
the presence of four noises. Especially for the white and

7
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FiGURE 5: Identification accuracy in four noisy conditions averaged
over SNRs between 0 and 15 dB, and the overall average accuracy
across all the conditions, for ANTCC and other features using Grid
dataset mixed with additive noises.
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F1GURE 6: Identification accuracy in four noisy conditions averaged
over SNRs between 0 and 15 dB, and the overall average accuracy
across all the conditions, for ANTCC and other three features using
TIMIT dataset mixed with additive noises.

pink noise, ANTCC improves average accuracy by 21% and
16% compared with other three features, which indicate
the stationary noise components are suppressed after the
multiple interrelated subspace projection. From Figure 6, we
can see that the average identification rate confirm again that
ANTCC feature is better than all other features.

4.2.3. Aurora2 dataset evaluation result

Aurora2 dataset is designed to evaluate the performance of
speech recognition algorithms in noisy conditions. In the
training set, there are 110 speakers (55 males and 55 females)
with clean and noisy speech data. In our experiments, the
sampling rate of speech signals was 8 kHz. For the given
speech signals, we employed time window of length 8000
samples (1 second) and time duration 20 samples (2.5
millisecond) and 36 cochlear filterbanks. As described above,
we calculated the projection matrix using NTPCA after
the calculation of cochlear power feature. 550 sentences
(5 sentences each person) were selected randomly as the
training data for learning projection matrix in different
subspaces and 32 dimension sparse tensor representation are
extracted.
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across all the conditions, for ANTCC and other three features using
Aurora2 noise testing dataset.

In order to estimate the speaker model and test the
efficiency of our method, we used 5500 sentences (50
sentences each person) as training data and 1320 sentences
(12 sentences each person) mixed with different kinds of
noise were used as testing data. The testing data was mixed
with subway, babble, car noise, and exhibition hall in SNR
intensities of 20dB, 15dB, 10dB, and 5dB. For the final
feature set, 16 cepstral coefficients were extracted and used
for speaker modeling.

For comparison, the performance of MFCC, LPCC,
and RASTA-PLP with 16-order cepstral coefficients was
also tested. GMM was used to build the recognizer with
64 Gaussian mixtures. Table 4 presents the identification
accuracy obtained by ANTCC and baseline system in all
testing conditions. We can observe from Table 4 that the
performance degradation of ANTCC is slower with noise
intensity increase compared with other features. It performs
better than other three features in the high-noise conditions
such as 5 dB condition noise.

Figure 7 describes the average accuracy in all noisy
conditions. The results suggest that this auditory-based
tensor representation feature is robust against the additive
noise and suitable to the real application such as handheld
devices or Internet.

4.3. Discussion

In our feature extraction framework, the preprocessing
method is motivated by the auditory perception mechanism
of human being which simulates a cochlear-like peripheral
auditory stage. The cochlear-like filtering uses the ERB,
which compresses the information in high-frequency region.
So such feature can provide a much higher frequency
resolution at low frequencies as shown in Figure 1(b).

NTPCA is applied to extract the robust feature by calcu-
lating projection matrices in multirelated feature subspace.
This method is a supervised learning procedure which
preserves the individual, spectrotemporal information in the
tensor structure.

Our feature extraction model is a noiseless model, and
here we add sparse constraints to NTPCA. It is based on
the fact that in sparse coding the energy of the signal is

TaBLE 3: Identification accuracy in four noisy conditions (white,
pink, factory, and f16) for TIMIT dataset.

(%) SNR ANTCC MFCC LPCC  RASTA-PLP
0dB 2.9 1.43 2.38 2.38
White 5dB 3.81 2.38 2.86 5.24
10dB 29.52 3.33 6.19 15.71
15d B 64.29 11.43 12.86 39.52
0dB 2.43 1.43 3.33 1.43
. 5dB 13.81 1.9 3.81 5.24
Pink
10d 50.95 8.57 8.1 27.14
15d 78.57 30 32.86 60.95
0dB 2.43 1.43 2.76 1.43
5dB 12.86 3.33 10.48 10
Factory
10d 49.52 21.9 34.29 46.67
15d 78.1 70 73.81 74.76
0dB 2.9 2.86 2.33 1.43
Fl6 5dB 15.24 7.14 14.76 8.1
10d 47.14 24.76 28.57 34.76
15d 77.62 57.14 67.62 60.48

TaBLE 4: Identification accuracy in four noisy conditions (subway,
car noise, babble, and exhibition hall) for Aurora2 noise testing
dataset.

(%) SNR ANTCC MFCC LPCC RASTA-PLP
5dB 26.36 2.73 5.45 14.55
10dB  63.64 16.36  11.82 39.09
Subway
15dB 75.45 4455 34,55 57.27
20dB  89.09 76.36 60.0 76.36
5dB 43.27 16.36  15.45 22.73
Babble 10dB  62.73 51.82  33.64 57.27
15dB  78.18 79.09  66.36 86.36
20dB  87.27 93.64 86.36 92.73
5dB 19.09 5.45 3.64 8.18
. 10dB  30.91 17.27 1091 35.45
Car noise
15dB  60.91 4455  33.64 60.91
20dB 78.18 78.18  59.09 79.45
5dB 24.55 1.82 2.73 13.64
Exhibition hall 10dB  62.73 20.0 19.09 31.82
15dB  85.45 50.0 44.55 59.09
20dB  95.45 76.36  74.55 82.73

concentrated on a few components only, while the energy
of additive noise remains uniformly spread on all the
components. As a soft-threshold operation, the absolute
values of pattern from the sparse coding components are
compressed towards to zero. The noise is reduced while
the signal is not strongly affected. We also employ the
variance maximum criteria to extract the helpful feature in
principal component subspace for identification. The noise
component will be removed as the useless information in
minor components subspace.

From Section 4.1, we know the performance of ANTCC
in clean speech is not better than conventional feature MFCC
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and LPCC when the speaker model estimation with few
Gaussian mixtures. The main reason is that the sparse feature
does not have the smoothness property as MFCC and LPCC.
We have to increase the Gaussian mixture number to fit its
actual distribution.

5. CONCLUSIONS

In this paper, we presented a novel speech feature extraction
framework which is robust to noise with different SNR
intensities. This approach is primarily data driven and is
able to extract robust speech feature called ANTCC, which
is invariant to noise types and interference with different
intensities. We derived new feature extraction methods
called NTPCA for robust speaker identification. The study
is mainly focused on the encoding of speech based on
general higher-order tensor structure to extract the robust
auditory-based feature from interrelated feature subspace.
The frequency selectivity features at basilar membrane and
inner hair cells were used to represent the speech signals in
the spectrotemporal domain, and then NTPCA algorithm
was employed to extract the sparse tensor representation
for robust speaker modeling. The discriminative and robust
information of different speakers may be preserved after
the multirelated subspace projection. Experimental results
on three datasets showed that the new method improved
the robustness of feature, in comparison to baseline systems
trained on the same speech datasets.
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