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Robust recognition of general audio events constitutes a topic of intensive research in the signal processing community. This
work presents an efficient methodology for acoustic surveillance of atypical situations which can find use under different acoustic
backgrounds. The primary goal is the continuous acoustic monitoring of a scene for potentially hazardous events in order to help
an authorized officer to take the appropriate actions towards preventing human loss and/or property damage. A probabilistic
hierarchical scheme is designed based on Gaussian mixture models and state-of-the-art sound parameters selected through
extensive experimentation. A feature of the proposed system is its model adaptation loop that provides adaptability to different
sound environments. We report extensive experimental results including installation in a real environment and operational
detection rates for three days of function on a 24 hour basis. Moreover, we adopt a reliable testing procedure that demonstrates
high detection rates as regards average recognition, miss probability, and false alarm rates.
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1. Introduction

Lately automatic systems which monitor human daily activ-
ities are becoming increasingly common [1, 2]. The aim of
this work is to contribute to civil safety by proposing and
automatic acoustic surveillance system that monitors public
spaces for potentially hazardous situations. These hazardous
events imply a threat to human life or property loss/damage
(e.g., gunshot, explosion and human reaction to this kind of
situation) and usually entail a strong acoustic emission. This
work reports on a practical system that exploits solely the
acoustic modality. This modality is cost-effective compared
to other kind of sensors (e.g., infrared and visual cameras
as well as laser scanners) and can be used in a stand-alone
mode as a recognizer of acoustic events or in a fusion process
that combines the likelihood of detected events along with
complementary cues of other sensors.

The research area of acoustic surveillance in particular,
has gained a lot of attention recently addressing various types
of applications [3–10]. It is a branch of generalized sound

recognition technology, namely computational auditory
scene analysis. This particular domain tries to interpret
the surrounding environment using the incoming audio,
inspired by the respective property that humans exhibit in
their everyday life quite effortless. Previous efforts in the
abnormal sound event detection domain consider a wide
range of audio features combined with various classification
techniques. Previous research on the subject is far from
concluding on a common framework as, for example, in the
case of speech/speaker recognition where the classifier and
the feature extraction process is more or less established (i.e.,
GMMs and HMMs as classifiers and variations of spectral
features as input). The difficulty lies on the fact that (a) an
atypical situation is not a well defined category (e.g., laughter
versus cry versus scream), (b) there are many cases where
there is a thin line between a typical and an atypical situation
(e.g., gunshot versus explosion), and (c) the microphone
can be located far from the source of the acoustic incident
therefore, reverberation and acoustic events belonging to an
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almost unrestricted range of classes may become the input to
the microphone.

Previous approaches on the task of acoustic monitoring
focus on different aspects of the classifier, the feature
extraction process, the training data and the number of
classes. In [3] the authors used an emotion recognition
system for detecting fear-type emotional manifestations
which take place during abnormal situations. The extracted
features described prosody and audio quality in combination
with spectral and cepstral parameters to train Gaussian
mixture models separately for voiced and unvoiced audio
parts. Their database was based on fiction movies and
consisted of seven hours of recordings organized into 400
audiovisual sequences (SAFE corpus). The classification task
concerned fear and neutral speech while they achieve 30%
error rate. Valenzise et al. [4] presented a surveillance system
for gunshot and scream detection and localization in a
public square. Forty-nine features were computed in total
and given as an input to a hybrid filter/wrapper selection
method. Its output was used to build two parallel GMMs
for identifying screams from noise and gunshots from noise.
Data were drawn out from movie sound tracks, internet
repositories and people shouting at a microphone while the
noise samples were captured in a public square of Milan.
The resulted precision was 93% at a false rejection rate
of 5% when the SNR condition is 10 dB. An interesting
application, crime detection inside elevators was described
in [5]. Their approach relied on time-series analysis and
signal segmentation. By automatic clustering of audio data,
consistent patterns were discovered and data were collected
for training a GMM for each one of the eight classes
using low-level features. The data set contained recordings
of suspicious activities in elevators and some event free
clips while they reported detection of all the suspicious
activities without any misses. A gunshot detection method
under noisy environments was explained in [6]. Their corpus
consisted of data which were artificially created from a
set of multiple public places and gunshot sound events
extracted from the national French public radio. Widely used
features were employed, including MFCC for constructing
two GMMs with respect to gunshot and normal class using
data of various SNR levels. The benefits of supervised and
unsupervised clustering for acoustic surveillance in a typical
office environment were described in [7]. Their system
was based on a continuously updated background noise
spectrum profile which served interesting event detection.
Both k-means and manual selection of cluster centers
methods were used for clustering audio files that were
captured in a standard office room for a period of 48 days.
The detection relied on two alternative criteria each of which
put a threshold onto two quantities which were designed to
detect loud onset and transients in the environment. In [8]
the issue of detection of audio events in public transport
vehicles was addressed by utilizing both a generative and a
discriminative method. The audio data were recorded using 4
microphones during four different scenarios which included
fight scenes, a violent robbery scene and scenes of bag or
mobile snatching. They utilized GMM and SVM while their
feature set was formed from the first 12 MFCC, energy,

derivatives and accelerations. Vacher et al. [9] presented a
framework for sound detection and classification for medical
telesurvey. Their corpus consisted of recordings made in the
CLIPS laboratory, files of the “Sound Scene Database in Real
Acoustical Environment” (RCWP, Japan). They used wavelet
based cepstral coefficients to train GMMs for eight sound
classes while their system was evaluated under different SNR
conditions. Last but not least, a hierarchical classification
scheme which identified normal from excited sound events
was described in [10]. The authors used four audio features
for training GMMs, each one associated with one node of the
classification tree. The audio was recorded for around two
hours in the real environment (office corridor) and included
talk, shout, knock, and footsteps.

To our point of view, previous approaches focus on
different aspects of classification of general audio events
trying to optimize a specific part of the problem and are
mostly laboratory based experiments, that is, prerecorded
well defined classes are presented to a classification algo-
rithm. Our approach targets to a practical system that
operates in a real space on a 24/7 basis and does not use
isolated events but rather a continuous of acoustic events
as in the case of real life. Our emphasis is on making an
integrated acoustic surveillance system that is self-adaptive
to different acoustic environments (e.g., metro station,
urban etc). This paper is focused on abnormal situations
characterized by specific sound events—screams, explosions,
and gunshots—which take place in (a) metro station, (b)
urban environment and (c) a setting suited for military
applications. Furthermore special care has been taken so that
our dataset is thorough and concise after combining several
well documented professional sound effect collections which
contain audio of high quality. We provide a thorough
investigation of features for the detection of three types of
atypical sound events and a self-adaptive functionality that
retrains its models during its activity.

Table 1 provides a comparison of the aspects which are
considered in this work and several existing approaches.
Screamed speech is a vocal sound directly related to human
negative emotions (e.g., fear, pain, anger) and its detection
can help minimizing the cost or even avoiding threatening
circumstances. Our methodology was tested in a real internal
space where both typical and atypical situations were played
at random for three consecutive days through loudspeakers
while a computer analyzed the emitted sound every 2
seconds. A video which demonstrates the proposed acoustic
surveillance system can be downloaded from http://www.wcl
.ece.upatras.gr/dalas/doku.php?id=demos. The feature extr-
action part is Matlab c© based while the classification part is
written in C++. The system is practically real time since it
reports an event with an average delay of 2 seconds. For the
type of the application we are investigating this delay is not
critical and, moreover, the processing delay can be further
reduced since the code is not optimized as regards the feature
extraction process.

The rest of this paper is organized as follows: in Section 2
a complete overview of the system is given along with a short
description of all sets of sound parameters. Sections 3 and
4 explain the experimental procedures and report detailed
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Table 1: Research approaches on the task of acoustic surveillance.

Reference
Atypical sound
classes

Model adaptation Environments Classifier Features Database

Proposed
approach

Scream, gunshot
and explosion

MAP adaptation of
GMMs

Metro station,
urban and
military setting

GMM
MFCC, MPEG-7,
CB-TEO,
Intonation

Large audio corpora
from professional
sound effects
collections

Clavel et al. [3]
Fear-type
emotions

— — GMM
Prosody, audio
quality, spectral,
cepstral

SAFE corpus

Valenzise et al.
[4]

Scream and
gunshot

— Public square GMM
Temporal, spectral,
cepstral,
correlation

Movie soundtracks,
internet and people
shouts

Radhakrishnan
and Divakaran
[5]

Banging and
non-neutral
speech

— Elevator GMM MFCC Elevator recordings

Clavel et al. [6] Gunshot — Public space GMM
MFCC, spectral
moments

CDs for the national
French public radio

Harma et al. [7]
Interesting events
in an office

Noise spectrum
update

Office
Threshold,
clustering

Temporal, spectral
Recordings from an
office room

Rouas et al. [8] Shout
Adaptive threshold
for sound activity
detection

Railway GMM, SVM Energy, MFCC
Recorded during 4
scenarios

Vacher et al. [9]
Scream and glass
break

— Apartment GMM
Wavelet based
cepstral coefficients

Laboratory
recordings and
RCWP

Atrey et al. [10] Shout — Office corridor GMM
ZCR, LPC, LPCC,
LFCC

Recorded in office
corridor

detection results obtained at different SNR levels while our
conclusions are drawn in the last section.

2. General Architecture of the System

The main goal of our system is to detect human vocal
reactions (i.e., screams, expressions of pain) and non-
vocal atypical events associated with hazardous situations
(gunshot and explosions). To this end, the structure that
was designed has the form depicted in Figure 1. We employ
a hierarchy of three discrete subsequent stages, where each
stage depends on the previous one, for processing the
incoming audio sequence before its class is determined. In
brief, after preprocessing and feature extraction, the sound
is classified as vocalic (normal or screamed speech) or non-
vocalic (background environment, gunshot or explosion)
event. Based on this decision a different path is chosen to
further characterize the audio signal. In case it is found
to be a vocalic event, a different set of descriptors is
computed and the sound is classified as normal or screamed
speech. In the case of nonvocalic event, an additional feature
extraction phase follows and the signal is classified as non-
threatening background environment or as an atypical sound
event, while during the third stage the systems proceeds
into specifying the type of the hazardous situation. Normal
situations encompass all contexts that do not demonstrate
life and/or property hazard.

2.1. Feature Extraction Analysis. In this paragraph we explain
the-low level attributes that are extracted from the audio
signals for constructing statistical models which represent
the basic a priori knowledge we have about the audio
categories. They were chosen because they capture diverse
aspects of the audio structure. Furthermore they are not
too sensitive to the SNR conditions, like energy or loudness.
The first stage discriminates between vocalic and non-vocalic
events, thus we used Mel frequency cepstral coefficients
(MFCC) which provide a gross description of how the energy
is distributed on frequencies. Subsequently, vocalic events
are characterized upon their abnormality using critical
band based Teager energy operator (TEO) autocorrelation
envelope area [11], pitch and harmonic to noise ratio (HNR).
They are indicative of the variations that intonation exhibits
when in comes to atypical speech. Non-vocalic events are
processed by computing Waveform Min, Waveform Max,
Audio Fundamental Frequency and Audio Spectrum Flatness
(ASF) as defined by the MPEG-7 audio standards [12], which
capture the time-domain shape, periodicity and flatness of
the spectrum in different bands.

Since we try to spot specific sound events we experi-
mented with larger frame sizes than the ones commonly
used (10–30 milliseconds) for speech/speaker recognition
and based on the highest recognition rate after extensive
experimentation we concluded to frames of 200 milliseconds
with 75% overlap. Next, we briefly explain the feature
extraction processes.



4 EURASIP Journal on Audio, Speech, and Music Processing

Incoming
audio signal

Signal
preprocessing

(gain adaptation,
mean removal)

MFCC and
dMFCC

Vocalic sound
events

Non-vocalic
sound events

Typical/
normal speech

Screamed
speech

Typical
background

environment  

Atypical sound
events

GMM for
explosion class

GMM for
gunshot class

TEO and
intonational

features 

MPEG7
descriptors

Log-likelihood
computation

Log-likelihood
computation

Maximum log-
likelihood model

selection

Maximum log-
likelihood model

selection

Atypical event
notification

Background
sound models 

Environment listing

1. Metro station

2. Military campus

3. Bank

···

Figure 1: Block diagram of the acoustic surveillance system.

2.1.1. Mel-Frequency Cepstral Coefficients. The energy of
short time Fourier transform associated with each frame is
first computed and then filtered using Mel scale which lowers
the number of dimensionality and emphasizes spectral bands
that are important to human perception. Subsequently the
logarithmic operator is applied to the extracted coeffi-
cients and finally the discrete cosine transform is used to
decorrelate them. We retain the thirteen most important
vectors, including the 0th one which expresses the energy
of the signal. Furthermore, cepstral mean normalization is
employed throughout the paper. The rate at which they
change over time is also calculated to result to a feature
vector with twenty six dimensions. MFCCs are used alone
to discriminate vocalic sound events from the non-vocalic
ones as well as during the other phases of system’s topology
combined with the descriptors explained next.

2.1.2. MPEG-7 Audio Protocol Descriptors. The idea behind
MPEG-7 audio protocol is the creation of a large set of
standardized tools for automatic audio content characteriza-
tion. The sound descriptors that are calculated in both cases
(vocalic and non-vocalic sound event detection) contain
information that is complementary to MFCCs. While MFCC
comprise a general description of the audio event, MPEG-
7 LLDs reflect upon the flatness, ratio of the geometric
and arithmetic mean of the spectral power coefficients
associated to a given band (ASF), the envelope’s structure
(AWF) and the periodicity (AFF) of the specific sound,
thus characterizing it at a higher level. In the case of non-
vocalic sound events this information is crucial and needs
to be taken under account during the modeling procedure.
On the contrary when a vocalic sound event appears in
the audio stream, the needed features are the ones with
capabilities to identify whether a vocalic segment is typical
or atypical. Pitch and harmonicity measurements are also
included to characterize the periodic character of the signal.

Comparative results regarding the addition of these groups
of parameters are depicted in Table 2.

2.1.3. Intonation and Teager Energy Operator Based Features.
TEO analysis takes place on the sixteen critical bands. Gabor
band pass filters are used to focus on a particular spectral
band while each one’s TEO profile is windowized into
frames of 200 milliseconds with 75% overlap. Subsequently
the autocorrelation envelope area is computed and then
normalized by half the frame length. The output feature
vector has sixteen coefficients like the number of the critical
bands. The audio analysis which relies on Teager energy
operator can reveal aspects of verbal or non-verbal human
reactions which are not captured by MFCC and are related
to stress expression. It has been reported to be indicative
of the alterations that the airflow pattern exhibits regarding
the speech production under atypical circumstances. They
are appended to pitch, pitch derivative and HNR (based
on a forward cross-correlation analysis) which depict the
variation of intonation regarding typical and atypical speech.
Together with the already computed MFCC they form a
vector for discriminating between normal and screamed
speech audio events. For their calculation we used PRAAT
software [13] which is optimized for speech signals.

2.2. Classification Process. We utilized diagonal Gaussian
mixture models (GMM) for modeling the distribution of
each sound class. They are based on the underlying assump-
tion that the distribution of the data belonging to each
class can be described statistically by a linear combination
of Gaussian distributions. Torch [14] implementation of
GMMs, written in C++ was used while the maximum
number of k-means iterations for initialization was 50 and
the EM algorithm had and upper limit of 25 iterations with
a threshold of 0.001 applied to the difference between two
consecutive iterations. The probabilistic models were stored



EURASIP Journal on Audio, Speech, and Music Processing 5

Table 2: Recognition rates achieved regarding each stage of system’s topology for different kinds of environments. The recognition score
without the additional feature extraction stage is depicted in parenthesis for comparison.

Classification problem No. of mixtures Feature set Recognition rate (%)

Vocalic versus non-vocalic sound events
(subway environment)

64 MFCC+dMFCC 100

Vocalic versus non-vocalic sound events
(urban environment)

128 MFCC+dMFCC 99.85

Vocalic versus non-vocalic sound events
(military environment)

128 MFCC+dMFCC+MPEG-7 LLDs 100

Typical versus atypical non-vocalic sound
events (subway environment)

128 MFCC+dMFCC+MPEG-7 LLDs 97.2 (87.6)

Typical versus atypical non-vocalic sound
events (urban environment)

128 MFCC+dMFCC+MPEG-7 LLDs 92.95 (88.2)

Typical versus atypical non-vocalic sound
events (military environment)

32 MFCC+dMFCC+MPEG-7 LLDs 100 (91.6)

Explosion versus gunshot sound events 512 MFCC+dMFCC+MPEG-7 LLDs 83.9 (76.4)

Normal versus screamed speech 128 MFCC+dMFCC+intonation
+CB-TEO-auto-Env

100 (89.1)

and consequently used for determining the log-likelihood
that a specific sample was generated by the specific model.
Finally this type of score with respect to every model was
computed and the origin of the sound sample was identified
by selecting the model with the maximum log-likelihood.

3. Experimental Set-Up

This section contains the description of the organization
of the experiments that were conducted. In Section 3.1,
we explain classification tests regarding every stage of the
proposed system for determining the number of Gaussian
components that offers the highest recognition rate. In
Section 3.2 the system incorporating the previously con-
structed models was evaluated in terms of false alarm
and detection rates through an artificial kind of experi-
ment at various SNR conditions. Atypical sound events
were randomly merged with background noise and tested
for detection. The last experimental phase, discussed in
Section 4 aimed at simulating an ongoing atypical situation.
The system including the feedback loop for model adaptation
was tested upon the detection of simulated atypical and
typical situations.

Atypical audio data including extreme emotional man-
ifestations and abnormal sound events are not publicly
available because of their private character, their scarcity
and unpredictability [15]. Data that indicate catastrophic
situations as regards the particular kind of dangers men-
tioned in this article were identified and isolated from large
scale professional sound effect collections. These types of
collections are mainly used by the movie industry due to
their vast variety, massive quantity and high quality. It is
almost always the case that a movie’s audio stream (e.g.,
footsteps, door knocking, etc.) is not the one that was
actually recorded at the scene but a different one imposed
to the movie. Thus, there exists an enormous corpus of
almost any kind of audio events including non-vocal as

Table 3: The audio corpus.

Category
Number of sound

records

Average duration of
each record in

seconds

Explosion 131 13.77

Gunshot 187 32.94

Scream 270 4.04

Normal speech 1680 3.08

Subway environment 32 44.88

Urban environment 106 83.35

Environment suited for
military applications

31 68.69

Total 2437 35.82

well as vocal atypical reactions for building up statistical
recognition models. The final corpus was acquired from the
following compilations: (i) BBC Sound Effects Library, (ii)
Sound Ideas Series 6000, (iii) Sound Ideas: the art of Foley,
(iv) Best Service Studio Box Sound Effects, (v) TIMIT and
(vi) sound effects from various internet sources. By using
these datasets simultaneously a high degree of variation as
well as diversity regarding the entity of the audio classes was
incorporated to the models. The sampling rate of all sound
samples was 16 kbps with 16 bit analysis while the average
duration for each category and in total is given in Table 3.
Furthermore, in Figure 2 the spectrograms of representative
samples taken from each category are illustrated. Atypical
sound events were artificially merged with highly non-
stationary background noise of the under study environment
for simulating abnormal situations and conducting detection
experiments. Details concerning the evaluation of the system
under different SNR conditions are provided in the next
section.
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3.1. Statistical Model Construction and Classification Experi-
ments. We employed 75% of the data belonging to each class
for training a statistical model to represent the corresponding
sound class. The remaining 25% were used for testing
while splitting was done in a random way. Audio pattern
recognition is based on the underlying assumption that each
audio effect has a unique way in which is spreading its
energy across different frequency bands. This constitutes
its so-called audio signature which can be revealed and
subsequently identified automatically using statistical pat-
tern analysis techniques. GMMs with diagonal covariance
matrix were built for every category while testing consisted
of a simple comparison of log-likelihoods. Following the
topology of the system two types of models were created
first: vocalic (including normal and screamed speech) and
nonvocalic (including explosion, gunshot and the respective
background environment). Subsequently we build up mod-
els regarding normal speech, screamed speech, typical back-
ground environment and atypical sound events (including
explosion and gunshot). After extensive experimentations
on the number of Gaussian mixtures and on the feature
sets used during each classification problem, we achieved
the recognition rates which are given in Table 2 associated
with every stage of the system’s architecture for different
kind of environments. During this experimental phase we
classified each sound sample of the corpus by summing the
log-likelihoods obtained from each model with respect to all
the frames of the specific recordings. Finally the model which
presented the highest summed log-likelihood was selected
and its class was assigned to the particular sound.

As it can be observed, the average recognition rates
achieved during every processing step of the system are
relatively high and in some cases such as normal versus
screamed speech, the discrimination rate reaches 100%.
In the specific task the dissimilarity regarding the spec-
tral/energy distribution that screamed vocal reactions exhibit
when compared to normal speech is reflected. This kind of
difference is illustrated in Figure 2 among with characteristic
spectrograms of each audio category. The classification of
explosions and gunshot sound events presents the lowest rate
which is 83.9%. At the particular stage, the errors occur due
to the great variability among sound recordings of the same
class. Additionally several sound clips are acoustically similar
even though they belong to different categories, meaning that
some explosion sounds like gunshots and vice versa. Further
incorporation of a series of sound descriptors not only did
not provide better performance, but raised the computa-
tional cost. After extensive experimentations, we managed
to capture distinctive and characteristic information of the
audio classes using a feature vector of rather low number of
dimensions for every phase of the system’s topology.

3.2. Detection of Abnormal Situations in Different Acous-
tic Environments. During the second experimental phase,
threatening situations were generated artificially by merging
abnormal sound events of three types with subway, urban
and military background environment under different SNR
conditions (varying from −5 dB to 15 dB with 5 dB step).

Normal/typical audio events (background soundscape and
normal speech) were also provided as input for measuring
the abnormality level that our topology characterizes them
with. This is an early indicator of the false alarm rate
produced by our methodology, which should be kept to a
minimum.

Our efforts are towards constructing a system that can
efficiently work under different kind of environments. We
demonstrate the performance of the proposed methodology
operating in three different kinds of audio environments:
subway, urban and military. The subway soundscape includes
horns, opening/closing doors, people talking in the back-
ground, train locomotion and so forth. The urban one is
dominated by movements of transport vehicles (e.g., cars,
motorcycles, buses, etc.) and crowd noise but it also contains
wind, rain, thunder as well as other sounds associated
with weather conditions. The background setting suited
for military applications is characterized by a great deal of
sounds that appear during a military operation [16].

Recognition rates and/or confusion matrices do not
constitute a sufficient way for reliable evaluation of an event
detection task. In the particular type of problems there exist
two kinds of errors that one should be aware of and try
to minimize: (i) the case where an atypical sound event is
present but it is not identified and (ii) the case where an
atypical sound event is not present but it is falsely detected.
The needed testing platform is provided by Detection Error
Tradeoff (DET) curves which have been shown to be effective
for the evaluation of detections tasks [17]. In our case special
attention was placed upon achieving as low false alarm rates
as possible for creating a useful and practical system.

The DET curves detect abnormal situations under three
kinds of environments and SNR conditions. Fifty represen-
tative atypical sound events were selected from each category
(scream, explosion, and gunshot) which were artificially
merged with a part of the same size belonging to the normal
environmental background soundscene chosen randomly.
This procedure was iterated for each atypical event 50 times
for obtaining reliable results, thus each class of abnormal
situations was tested for identification 2500 times.

Two series of experiments were conducted for atypical
sound event detection under metro station and urban
environment. Each recording is normalized by its maximum
value (gain normalization). The DET curves for both types
of environment are illustrated in Figures 3 and 4. The log-
likelihood produced by the abnormal non-vocalic Gaussian
mixture was employed in the case of explosion and gunshot
detection while the log-likelihoods produced by the atypical
vocalic mixture were used to generate the screamed versus
normal speech DET curves. These values were each time
normalized with the respective normal one.

Figure 3 depicts results of atypical sound event detection
for all three different sound categories under metro station
background environment. A rapid degradation is observed
when the SNR condition of the test signals decreases.
However emergency situations are adequately detected even
at very low SNR conditions. In the case of −5 dB SNR
the average equal error rate (EER) of all types of events is
8.29% while the best detection rate concerns the abnormal
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Figure 2: Representative figures of all background environments and atypical sound events in the Mel-spectral domain.

vocalic sound events with 6.46% EER. This is an outcome
of the structure of our implementation, where each stage
discriminates audio signals that have different spectral
patterns and share only a few common characteristics. The
audio signals that are most vulnerable to background noise
corruption are the “gunshots” with 12.47% EER at −5 dB
SNR. At the energy ratio of 0 dB which represent real-world
conditions appropriately, the proposed system demonstrates
high performance with average EER of 6.68%, average miss
detection rate of 16.4% and average false alarm probability
for abnormal events of 2.26% which is of severe importance
for this kind of applications.

Figure 4 illustrates the capabilities of our implementation
under urban environment. At this stage we used the statistical
models that were created with the inclusion of urban audio
data. As expected, miss detection probability falls as the
SNR conditions increase from −5 dB to 15 dB. Atypical
sound events are detected with relatively low EERs across
all SNR values when the audio signal is corrupted by
urban background environmental noise. We observe that
better performance is achieved with average EER at −5 dB
SNR being 5.19% in contrast to subway background. More
precisely emergency situations at −5 dB SNR are detected

with EERs of 6.05%, 4.35% and 5.19% where the abnor-
mality refers to explosion, gunshot and scream sound events
respectively. The events that are less affected by background
noise are scream sounds while explosion detection presents
the highest EERs across all SNR conditions. Additionally, our
implementation provides very low false alarm probability
with a mean value of 1% for the three abnormal sound events
at 0 dB SNR conditions while the respective average miss
detection rate is 13.2%. The corresponding EERs achieved
by the system regarding to abnormal situation expressed as
explosion, gunshot and screams are 5.78%, 4.23%, and 1.7%,
respectively.

The respective DET curves regarding to the case of an
environment suited for military applications are shown in
Figure 5. As it can be visually verified, the results in this
case are significantly improved. They achieve very low EERs
with respect to the detection of all three different kinds
of atypical situations. The best detection rates appear in
the screamed speech case, which was expected due to the
different structure of the specific audio signals compared
to the variations that the particular environment exhibits.
Abnormal situations are well detected even at low SNR
conditions. More specifically in the case of −5 dB SNR the
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Figure 3: DET curves. Target classes are explosion, gunshot, screamed, and normal speech. Background is subway noise under different
SNRs.
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Figure 4: DET curves. Target classes are explosion, gunshot, screamed, and normal speech sound events. Events are merged with urban
noise under different SNRs.
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Figure 5: DET curves target classes are explosion, gunshot, screamed, and normal speech sound events. Events are merged with military
environment under different SNRs.
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obtained EERs are 1.93%, 5.24% and 1.03% for explosion,
gunshot and scream sound event detection respectively. An
important objective of such a system is to limit the probabil-
ities of false alarms. Care was taken regarding this aspect and
in the case of 0 dB SNR we had 0.93% average false alarm
probability and 2.67% average miss detection probability for
the three kinds of atypical situations and 2.24% average EER
(it should be mentioned that the corresponding EERs for
every atypical sound event under all three different types of
environment are shown on the upper right corner of every
figure). We conclude that the results analyzed in this section
are very encouraging and underline the importance of the
selected statistical architecture in which features that capture
different aspects of the audio structure were incorporated.

4. Experimentations in Real Internal Spaces

Our main goal during the third experimental phase was to
approximate real-life operational conditions and to evaluate
the statistical model adaptation which is provided via
the feedback loop (see Figure 7). Atypical situations were
artificially created at a random way, as described in Section 3
and played through loudspeakers while a microphone was
placed in another part of a real 6.75 × 4.9 × 3 room with
reverberation time of 0.3 second. We employed two personal
computers, one was reproducing abnormal sound events
at predetermined time instances (so as to have a-priori
knowledge of the ground truth) through two conventional

loudspeakers while the second one was constantly capturing
audio data with a simple microphone. Subsequently these
data were processed and classified by the proposed system.
This personal computer was also used to carry out both
supervised and unsupervised model adaptation while the
entire set-up is depicted in Figure 6.

4.1. The Problem of Sliding Windows. Several issues came
up in the specific type of experiment including the sliding
windows and the rareness in which atypical events appear.
Windowing the incoming audio signal into chunks of a
predefined size was not adequate to provide satisfying results
because the duration of explosions, gunshots and screams
sound events varied greatly. Neither the start time nor the
duration of a keysound effect was known to the system,
thus it may be cut into parts belonging to different sound
classes. To this end we decided to process the incoming
audio signal on a frame by frame basis (200 milliseconds
with 75% overlap), while the consecutive frames with the
same label were merged into one segment with the start
time corresponding to the first frame and the duration
corresponding to the total number of frames in the segment.
Both pieces of information were saved for helping future
investigation of the scene at the particular time as well as the
sum of log-likelihoods normalized by the number of frames
for each sound event. Moreover, a smoothing process was
then applied to remove unreasonable inconsistencies among
neighboring frames. Basically we removed single frame
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Figure 8: DET curves representing the ability of the adapted system to detect both nonvocalic and vocalic abnormal sound events under
three different kind of environments.
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Table 4: Equal error rates for the three phases of the experiment.

Adaptation phase Environment Average EER (for three
atypical events)

Average EER for three
environments
(% improvement)

No Adaptation

Subway 0.32461

Urban 0.2901 0.26253 (−)

Military 0.17289

Supervised

Subway 0.11226

Urban 0.12673 0.09676 (63.14%)

Military 0.0513

Both supervised
and unsupervised

Subway 0.03786

Urban 0.01346 0.02856 (70.48%)

Military 0.03436

detections (outliers) which correspond to 200 milliseconds
and do not comprise a logical duration regarding to atypical
sound events.

4.2. Dealing with the Rareness of Atypical Situations. The
second issue consisted of not only the rareness which
characterizes the existence of abnormal situations but also
the fact that another non interesting sound event may take
place and cause a misdetection (false alarm). It is a rather
difficult task to create accurate models to represent these
sounds mainly because their existence is hard to be known
a-priori (e.g., jiggling keys, horns, dog barking, etc.) while
it is important not to be misinterpreted by the system as
an atypical events. To this aim, we collected data from
various types of sources making sure that the background
soundscape of each scenario is described by a high degree
of variance (e.g., the subway soundscape includes horns,
opening/closing doors, people talking in the background,
train locomotion, etc.).

Although the audio samples are representative of the cat-
egories we need, they do not provide an accurate description
of all possible realizations of such events. Consequently we
incorporate a technique which gives our system the ability
to adapt itself to the acoustic conditions of the operational
environment. Adaptivity is provided by the application of
the maximum a posteriori (MAP) method to the statistical
models of each class and is implemented via a feedback
loop [18]. Initially this is a supervised semiautomatic process
which takes into account the ground truth as an input from
authorized personnel. After this starting period of time the
system adapts in an unsupervised manner exploiting its own
decisions.

The feedback loop is depicted in Figure 7. A history
index is kept that contains the series of decisions made
by the system regarding n intervals with duration of t
seconds, where each duration depends on the outcome of
the matching process, that is, when the system predicts the
same class for consecutive frames, these specific frames then
comprise one audio sequence while a new sequence is formed
when the prediction changes. The ground truth was also kept
in parallel for the same periods of time and the audio data

were stored at 16 KHz with 16 bit analysis. Subsequently the
misclassified data were analyzed and the respective feature
sequences were used for adapting the corresponding models.
This phase takes place during an inactive period of time.
Afterwards the system was adapted in an unsupervised
manner using its own decisions to replace the manually
reported ground truth. More specifically the process of unsu-
pervised adaptation works in the following way: for a given
period of time all the segments including the corresponding
predictions are stored. Subsequently the appropriate sound
parameters are extracted by the system (e.g., MFCC and
dMFCC for adapting the vocalic/non-vocalic model). These
parameters are then employed to adapt the respective model
according to system’s prediction. This way the system is
capable for autonomous model refinement and thus further
adapting itself to the environmental conditions.

4.3. DET Curves of the Adapted System. At the first phase, the
particular experiment was conducted for three subsequent
days while the ground truth was known. Half of these data
were manually analyzed for classification errors and then
used for adaptation of the respective models (supervised
MAP adaptation). At the second phase the Gaussian models
were adapted in an unsupervised manner based on decisions
made automatically by the system, utilizing audio data that
were captured during one day. The results reported in this
section were obtained using the log-likelihoods that were
given as outputs by the models that were adapted after both
phases. During the adaptation process the parameters of
the Gaussian components (weights, variances and means)
were learnt from the adaptation data while the value of the
prior weight during update was set to 0.5 (changes to this
parameter did not provide better performance). In contrast
to other adaptation algorithms (e.g., maximum likelihood
linear regression), the specific methodology requires more
adaptation data since it works at the component level.
However because of this low-level approach, when large
amount of data are available MAP method tends to perform
better, something that holds to our approach since we
collected 72 hours (3 × 24 hours) of data. Half of these data
were used for supervised model adaptation. The next twenty
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four hours served unsupervised adaptation while the rest of
the data (12 hours) were employed for testing the adapted
system. It should be mentioned that this experimental stage
exploits the reverberation reduction properties that cepstral
mean normalization offers.

The DET curves with respect to each one of the three
environments are depicted in Figure 8 (explosion, gunshot
and atypical speech detection). As we can see the best
detection rates are achieved in the urban environment
(average EER= 0.01346) followed by the environment suited
for military applications (average EER= 0.03436) and the
subway (average EER= 0.03786) one. Additionally false
alarm rates are kept to low values regarding the typical
conditions of all three environments. It should be noted that
the system is to continue the adapting process in an unsu-
pervised manner, thus achieving even better performance.
In Table 4 the EERs which correspond to every stage of the
particular experiment are tabulated. As we can see there
exist significant improvements at both adaptation phases.
We conclude that the results of the adapted system are quite
promising and show the portability and flexibility that the
proposed structure offers.

5. Conclusions

We proposed an integrated system for acoustic surveillance
of atypical situations. We investigated a large number of
feature sets in order to conclude to the best representatives
of an atypical situation that involves audio expressions of
pain, stress, gunshots and explosions. We constructed a
hierarchical system that is based on probabilistic models
which was trained using a large amount of high quality
sounds from professional sound effects collections. The
system was evaluated under adverse conditions containing
highly nonstationary background noise under three different
kinds of environments. The system is adaptable to the
internal or external space where it is installed by using online
model adaptation. The latter can become an indispensable
part of a practical acoustic surveillance system.

Our future work includes the incorporation of blind
channel equalization methods to deal with the problem of
reverberation. Furthermore we will work on the adaptation
module for making it faster and more efficient by using a
thresholding technique on the confidence score. This will
produce a weighting measure on the adaptation data so that
the system exploits in a different way data with different
confidence measures. Finally, we intend to fuse the likelihood
of the atypical event with information from visual and
infrared sensors so as to provide enhanced detection of
hazardous events.
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