
Hindawi Publishing Corporation
EURASIP Journal on Audio, Speech, and Music Processing
Volume 2010, Article ID 862138, 10 pages
doi:10.1155/2010/862138

Research Article

Employing Second-Order Circular Suprasegmental Hidden
MarkovModels to Enhance Speaker Identification Performance in
Shouted Talking Environments

Ismail Shahin

Electrical and Computer Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates

Correspondence should be addressed to Ismail Shahin, ismail@sharjah.ac.ae

Received 8 November 2009; Accepted 18 May 2010

Academic Editor: Yves Laprie

Copyright © 2010 Ismail Shahin. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Speaker identification performance is almost perfect in neutral talking environments. However, the performance is deteriorated
significantly in shouted talking environments. This work is devoted to proposing, implementing, and evaluating new models called
Second-Order Circular Suprasegmental Hidden Markov Models (CSPHMM2s) to alleviate the deteriorated performance in the
shouted talking environments. These proposed models possess the characteristics of both Circular Suprasegmental Hidden Markov
Models (CSPHMMs) and Second-Order Suprasegmental Hidden Markov Models (SPHMM2s). The results of this work show that
CSPHMM2s outperform each of First-Order Left-to-Right Suprasegmental Hidden Markov Models (LTRSPHMM1s), Second-
Order Left-to-Right Suprasegmental Hidden Markov Models (LTRSPHMM2s), and First-Order Circular Suprasegmental Hidden
Markov Models (CSPHMM1s) in the shouted talking environments. In such talking environments and using our collected speech
database, average speaker identification performance based on LTRSPHMM1s, LTRSPHMM2s, CSPHMM1s, and CSPHMM2s is
74.6%, 78.4%, 78.7%, and 83.4%, respectively. Speaker identification performance obtained based on CSPHMM2s is close to that
obtained based on subjective assessment by human listeners.

1. Introduction

Speaker recognition is the process of automatically recog-
nizing who is speaking on the basis of individual infor-
mation embedded in speech signals. Speaker recognition
involves two applications: speaker identification and speaker
verification (authentication). Speaker identification is the
process of finding the identity of the unknown speaker by
comparing his/her voice with voices of registered speakers
in the database. The comparison results are measures of
the similarity from which the maximal quality is chosen.
Speaker identification can be used in criminal investigations
to determine the suspected persons who generated the voice
recorded at the scene of the crime. Speaker identification
can also be used in civil cases or for the media. These cases
include calls to radio stations, local or other government
authorities, insurance companies, monitoring people by
their voices, and many other applications.

Speaker verification is the process of determining
whether the speaker identity is who the person claims to

be. In this type of speaker recognition, the voiceprint is
compared with the speaker voice model registered in the
speech data corpus that is required to be verified. The result
of comparison is a measure of the similarity from which
acceptance or rejection of the verified speaker follows. The
applications of speaker verification include using the voice as
a key to confirm the identity claim of a speaker. Such services
include banking transactions using a telephone network,
database access services, security control for confidential
information areas, remote access to computers, tracking
speakers in a conversation or broadcast, and many other
applications.

Speaker recognition is often classified into closed-set
recognition and open-set recognition. The closed-set refers
to the cases that the unknown voice must come from a set
of known speakers, while the open-set refers to the cases that
the unknown voice may come from unregistered speakers.
Speaker recognition systems could also be divided according
to the speech modalities: text-dependent (fixed-text) recog-
nition and text-independent (free-text) recognition. In the
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text-dependent recognition, the text spoken by the speaker
is known; however, in the text-independent recognition, the
system should be able to identify the unknown speaker from
any text.

2. Motivation and Literature Review

Speaker recognition systems perform extremely well in
neutral talking environments [1–4]; however, such systems
perform poorly in stressful talking environments [5–13].
Neutral talking environments are defined as the talking envi-
ronments in which speech is generated assuming that speak-
ers are not suffering from any stressful or emotional talking
conditions. Stressful talking environments are defined as
the talking environments that cause speakers to vary their
generation of speech from neutral talking condition to other
stressful talking conditions such as shouted, loud and fast.

In literature, there are many studies that focus on
speech recognition and speaker recognition fields in stressful
talking environments [5–13]. Specifically, these two fields
are investigated by very few researchers in shouted talking
environments. Therefore, the number of studies that focus
on the two fields in such talking environments is limited
[7–11]. Shouted talking environments are defined as the
talking environments in which when speakers shout, their
aim is to produce a very loud acoustic signal, either to
increase its range of transmission or its ratio to background
noise [8–11]. Speaker recognition systems in shouted talking
environments can be used in criminal investigations to
identify the suspected persons who uttered voice in a shouted
talking condition and in the applications of talking condition
recognition systems. Talking condition recognition systems
can be used in medical applications, telecommunications,
law enforcement, and military applications [12].

Chen studied talker-stress-induced intraword variabil-
ity and an algorithm that compensates for the system-
atic changes observed based on hidden Markov models
(HMMs) trained by speech tokens in different talking
conditions [7]. In four of his earlier studies, Shahin
focused on enhancing speaker identification performance
in shouted talking environments based on each of Second-
Order Hidden Markov Models (HMM2s) [8], Second-
Order Circular Hidden Markov Models (CHMM2s) [9],
Suprasegmental Hidden Markov Models (SPHMMs) [10],
and gender-dependent approach using SPHMMs [11]. He
achieved speaker identification performance in such talking
environments of 59.0%, 72.0%, 75.0%, and 79.2% based
on HMM2s, CHMM2s, SPHMM2s, and gender-dependent
approach using SPHMMs, respectively [8–11].

This paper aims at proposing, implementing, and testing
new models to enhance text-dependent speaker identifica-
tion performance in shouted talking environments. The new
proposed models are called Second-Order Circular Supraseg-
mental Hidden Markov Models (CSPHMM2s). This work
is a continuation to the work of the four previous studies
in [8–11]. Specifically, the main goal of this work is to
further improve speaker identification performance in such
talking environments based on a combination of each of

HMM2s, CHMM2s, and SPHMMs. This combination is
called CSPHMM2s. We believe that CSPHMM2s are supe-
rior models to each of First-Order Left-to-Right Supraseg-
mental Hidden Markov Models (LTRSPHMM1s), Second-
Order Left-to-Right Suprasegmental Hidden Markov Models
(LTRSPHMM2s), and First-Order Circular Suprasegmental
Hidden Markov Models (CSPHMM1s). This is because
CSPHMM2s possess the combined characteristics of each
of LTRSPHMM1s, LTRSPHMM2s, and CSPHMM1s. In
this work, speaker identification performance in each of
the neutral and shouted talking environments based on
CSPHMM2s is compared separately with that based on each
of: LTRSPHMM1s, LTRSPHMM2s, and CSPHMM1s.

The rest of the paper is organized as follows. The
next section overviews the fundamentals of SPHMMs.
Section 4 summarizes LTRSPHMM1s, LTRSPHMM2s, and
CSPHMM1s. The details of CSPHMM2s are discussed in
Section 5. Section 6 describes the collected speech data
corpus adopted for the experiments. Section 7 is committed
to discussing speaker identification algorithm and the exper-
iments based on each of LTRSPHMM1s, LTRSPHMM2s,
CSPHMM1s, and CSPHMM2s. Section 8 discusses the
results obtained in this work. Concluding remarks are given
in Section 9.

3. Fundamentals of Suprasegmental Hidden
MarkovModels

SPHMMs have been developed, used, and tested by Shahin
in the fields of speaker recognition [10, 11, 14] and emotion
recognition [15]. SPHMMs have demonstrated to be supe-
rior models over HMMs for speaker recognition in each of
the shouted [10, 11] and emotional talking environments
[14]. SPHMMs have the ability to condense several states
of HMMs into a new state called suprasegmental state.
Suprasegmental state has the capability to look at the
observation sequence through a larger window. Such a state
allows observations at rates appropriate for the situation
of modeling. For example, prosodic information cannot be
detected at a rate that is used for acoustic modeling. Funda-
mental frequency, intensity, and duration of speech signals
are the main acoustic parameters that describe prosody
[16]. Suprasegmental observations encompass information
about the pitch of the speech signal, information about the
intensity of the uttered utterance and information about the
duration of the relevant segment. These three parameters in
addition to the speaking style feature have been adopted and
used in the current work. Prosodic features of a unit of speech
are called suprasegmental features since they affect all the
segments of the unit. Therefore, prosodic events at the levels
of phone, syllable, word, and utterance are modeled using
suprasegmental states; on the other hand, acoustic events are
modeled using conventional states.

Prosodic and acoustic information can be combined and
integrated within HMMs as given by the following formula
[17]:

logP(λv,Ψv | O)=(1−α) . logP(λv | O)+α . logP(Ψv | O),
(1)



EURASIP Journal on Audio, Speech, and Music Processing 3

a11 a22 a33 a44 a55 a66

a12 a23 a34 a45 a56

q1 q2 q3 q4 q5 q6

b11 b22

b12

p1 p2

p3

Figure 1: Basic structure of LTRSPHMM1s derived from LTRHMM1s.

where α is a weighting factor. When:

0.5 > α > 0 biased towards acoustic model,

1 > α > 0.5 biased towards prosodic model,

α = 0 biased completely towards acoustic model,

and no effect of prosodic model,

α = 0.5 no biasing towards any model,

α = 1 biased completely towards prosodic model,

and no impact of acoustic model,
(2)

λv: is the acoustic model of the vth speaker, Ψv: is the
suprasegmental model of the vth speaker, O: is the obser-
vation vector or sequence of an utterance, P(λv | O): is
the probability of the vth HMM speaker model given the
observation vector O. P(Ψv | O): is the probability of the vth
SPHMM speaker model given the observation vector O. The
reader can obtain more details about suprasegmental hidden
Markov models from the references: [10, 11, 14, 15].

4. Overview of: LTRSPHMM1s, LTRSPHMM2s,
and CSPHMM1s

4.1. First-Order Left-to-Right Suprasegmental Hidden Markov
Models. First-Order Left-to-Right Suprasegmental Hidden
Markov Models have been derived from acoustic First-
Order Left-to-Right Hidden Markov Models (LTRHMM1s).
LTRHMM1s have been adopted in many studies in the
areas of speech, speaker, and emotion recognition in the
last three decades because phonemes follow strictly the left
to right sequence [18–20]. Figure 1 shows an example of a
basic structure of LTRSPHMM1s that has been derived from

LTRHMM1s. This figure shows an example of six first-order
acoustic hidden Markov states (q1, q2, . . . , q6) with a left-
to-right transition, p1 is a first-order suprasegmental state
consisting of q1, q2, and q3, p2 is a first-order suprasegmental
state composing of q4, q5, and q6. The suprasegmental states
p1 and p2 are arranged in a left-to-right form. p3 is a first-
order suprasegmental state which is made up of p1 and p2.
ai j is the transition probability between the ith and the jth
acoustic hidden Markov states, while bi j is the transition
probability between the ith and the jth suprasegmental
states.

In LTRHMM1s, the state sequence is a first-order Markov
chain where the stochastic process is expressed in a 2D matrix
of a priori transition probabilities (ai j) between states si and
s j where ai j are given as

ai j = Prob
(
qt = s j | qt−1 = si

)
. (3)

In these acoustic models, it is assumed that the state-
transition probability at time t + 1 depends only on the
state of the Markov chain at time t. More information about
acoustic first-order left-to-right hidden Markov models can
be found in the references [21, 22].

4.2. Second-Order Left-to-Right Suprasegmental Hidden
Markov Models. Second-Order Left-to-Right Suprasegmen-
tal Hidden Markov Models have been obtained from acous-
tic Second-Order Left-to-Right Hidden Markov Models
(LTRHMM2s). As an example of such models, the six first-
order acoustic left-to-right hidden Markov states of Figure 1
are replaced by six second-order acoustic hidden Markov
states arranged in the left-to-right form. The suprasegmental
second-order states p1 and p2 are arranged in the left-to-
right form. The suprasegmental state p3 in such models
becomes a second-order suprasegmental state.
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In LTRHMM2s, the state sequence is a second-order
Markov chain where the stochastic process is specified by a
3D matrix (ai jk). Therefore, the transition probabilities in
LTRHMM2s are given as [23]

ai jk = Prob
(
qt = sk | qt−1 = s j , qt−2 = si

)
(4)

with the constraints,

N∑

k=1

ai jk = 1, N ≥ i, j ≥ 1. (5)

The state-transition probability in LTRHMM2s at time t + 1
depends on the states of the Markov chain at times t and
t − 1. The reader can find more information about acoustic
second-order left-to-right hidden Markov models in the
references [8, 9, 23].

4.3. First-Order Circular Suprasegmental Hidden Markov
Models. First-Order Circular Suprasegmental Hidden
Markov Models have been constructed from acoustic
First-Order Circular Hidden Markov Models (CHMM1s).
CHMM1s were proposed and used by Zheng and Yuan
for speaker identification systems in neutral talking
environments [24]. Shahin showed that these models
outperform LTRHMM1s for speaker identification in
shouted talking environments [9]. More details about
CHMM1s can be obtained from the references [9, 24].

Figure 2 shows an example of a basic structure of
CSPHMM1s that has been obtained from CHMM1s. This
figure consists of six first-order acoustic hidden Markov
states: q1, q2, . . . , q6 arranged in a circular form. p1 is a first-
order suprasegmental state consisting of q4, q5, and q6. p2 is
a first-order suprasegmental state composing of q1, q2, and
q3. The suprasegmental states: p1 and p2 are arranged in a
circular form. p3 is a first-order suprasegmental state which
is made up of p1 and p2.

5. Second-Order Circular Suprasegmental
HiddenMarkovModels

Second-Order Circular Suprasegmental Hidden Markov
Models (CSPHMM2s) have been formed from acoustic
Second-Order Circular Hidden Markov Models (CHMM2s).
CHMM2s were proposed, used, and examined by Shahin for
speaker identification in each of the shouted and emotional
talking environments [9, 14]. CHMM2s have shown to be
superior models over each of LTRHMM1s, LTRHMM2s, and
CHMM1s because CHMM2s contain the characteristics of
both CHMMs and HMM2s [9].

As an example of CSPHMM2s, the six first-order acoustic
circular hidden Markov states of Figure 2 are replaced by
six second-order acoustic circular hidden Markov states
arranged in the same form. p1 and p2 become second-order
suprasegmental states arranged in a circular form. p3 is a
second-order suprasegmental state which is composed of p1

and p2.

Prosodic and acoustic information within CHMM2s
can be merged into CSPHMM2s as given by the following
formula:

logP
(
λvCHMM2s,Ψ

v
CSPHMM2s | O

)

= (1− α) · logP
(
λvCHMM2s | O

)

+ α · logP
(
Ψv

CSPHMM2s | O
)
,

(6)

where λvCHMM2s is the acoustic second-order circular hidden
Markov model of the vth speaker. Ψv

CSPHMM2s is the supraseg-
mental second-order circular hidden Markov model of the
vth speaker.

To the best of our knowledge, this is the first known
investigation into CSPHMM2s evaluated for speaker iden-
tification in each of the neutral and shouted talking
environments. CSPHMM2s are superior models over each
of LTRSPHMM1s, LTRSPHMM2s, and CSPHMM1s. This
is because the characteristics of both CSPHMMs and
SPHMM2s are combined and integrated into CSPHMM2s:

(1) In SPHMM2s, the state sequence is a second-order
suprasegmental chain where the stochastic process is
specified by a 3D matrix since the state-transition
probability at time t + 1 depends on the states of
the suprasegmental chain at times t and t − 1. On
the other hand, the state sequence in SPHMM1s is a
first-order suprasegmental chain where the stochastic
process is specified by a 2D matrix since the state-
transition probability at time t + 1 depends only on
the suprasegmental state at time t. Therefore, the
stochastic process that is specified by a 3D matrix
yields higher speaker identification performance than
that specified by a 2D matrix.

(2) Suprasegmental chain in CSPHMMs is more pow-
erful and more efficient than that possessed in
LTRSPHMMs to model the changing statistical char-
acteristics that are available in the actual observations
of speech signals.

6. Collected Speech Data Corpus

The proposed models in the current work have been
evaluated using the collected speech data corpus. In this
corpus, eight sentences were generated under each of the
neutral and shouted talking conditions. These sentences
were:

(1) He works five days a week.

(2) The sun is shining.

(3) The weather is fair.

(4) The students study hard.

(5) Assistant professors are looking for promotion.

(6) University of Sharjah.

(7) Electrical and Computer Engineering Department.

(8) He has two sons and two daughters.
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Figure 2: Basic structure of CSPHMM1s obtained from CHMM1s.

Fifty (twenty five males and twenty five females) healthy
adult native speakers of American English were asked to utter
the eight sentences. The fifty speakers were untrained to
avoid exaggerated expressions. Each speaker was separately
asked to utter each sentence five times in one session
(training session) and four times in another separate session
(test session) under the neutral talking condition. Each
speaker was also asked to generate each sentence nine times
under the shouted talking condition for testing purposes.
The total number of utterances in both sessions under both
talking conditions was 7200.

The collected data corpus was captured by a speech
acquisition board using a 16-bit linear coding A/D converter
and sampled at a sampling rate of 16 kHz. The data corpus
was a 16-bit per sample linear data. The speech signals were
applied every 5 ms to a 30 ms Hamming window.

In this work, the features that have been adopted to
represent the phonetic content of speech signals are called
the Mel-Frequency Cepstral Coefficients (static MFCCs) and
delta Mel-Frequency Cepstral Coefficients (delta MFCCs).
These coefficients have been used in the stressful speech
and speaker recognition fields because such coefficients
outperform other features in the two fields and because
they provide a high-level approximation of human auditory

perception [25–27]. These spectral features have also been
found to be useful in the classification of stress in speech [28,
29]. A 16-dimension feature analysis of both static MFCC
and delta MFCC was used to form the observation vectors
in each of LTRSPHMM1s, LTRSPHMM2s, CSPHMM1s, and
CSPHMM2s. The number of conventional states, N , was
nine and the number of suprasegmental states was three
(each suprasegmental state was composed of three con-
ventional states) in each of LTRSPHMM1s, LTRSPHMM2s,
CSPHMM1s, and CSPHMM2s with a continuous mixture
observation density was selected for each model.

7. Speaker Identification Algorithm
Based on Each of LTRSPHMM1s,
LTRSPHMM2s, CSPHMM1s, and
CSPHMM2s and the Experiments

The training session of LTRSPHMM1s, LTRSPHMM2s,
CSPHMM1s, and CSPHMM2s was very similar to the train-
ing session of the conventional LTRHMM1s, LTRHMM2s,
CHMM1s, and CHMM2s, respectively. In the training
session of LTRSPHMM1s, LTRSPHMM2s, CSPHMM1s and
CSPHMM2s (completely four separate training sessions),
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suprasegmental: first-order left-to-right, second-order left-
to-right, first-order circular, and second-order circular mod-
els were trained on top of acoustic: first-order left-to-right,
second-order left-to-right, first-order circular and second-
order circular models, respectively. For each model of this
session, each speaker per sentence was represented by one
reference model where each reference model was derived
using five of the nine utterances per the same sentence per
the same speaker under the neutral talking condition. The
total number of utterances in each session was 2000.

In the test (identification) session for each of LTR-
SPHMM1s, LTRSPHMM2s, CSPHMM1s, and CSPHMM2s
(completely four separate test sessions), each one of the
fifty speakers used separately four of the nine utterances
per the same sentence (text-dependent) under the neutral
talking condition. In another separate test session for
each of LTRSPHMM1s, LTRSPHMM2s, CSPHMM1s, and
CSPHMM2s (completely four separate test sessions), each
one of the fifty speakers used separately nine utterances
per the same sentence under the shouted talking condition.
The total number of utterances in each session was 5200.
The probability of generating every utterance per speaker
was separately computed based on each of LTRSPHMM1s,
LTRSPHMM2s, CSPHMM1s, and CSPHMM2s. For each
one of these four suprasegmental models, the model with
the highest probability was chosen as the output of speaker
identification as given in the following formula per sentence
per talking environment:

(a) In LTRSPHMM1s.

V∗ = arg max
50≥v≥1

{
P
(
O | λvLTRHMM1s,Ψ

v
LTRSPHMM1s

)}
, (7)

where O is the observation vector or sequence that belongs
to the unknown speaker. λvLTRHMM1s is the acoustic first-
order left-to-right model of the vth speaker. Ψv

LTRSPHMM1s is
the suprasegmental first-order left-to-right model of the vth
speaker.

(b) In LTRSPHMM2s.

V∗ = arg max
50≥v≥1

{
P
(
O | λvLTRHMM2s,Ψ

v
LTRSPHMM2s

)}
, (8)

where λvLTRHMM2s is the acoustic second-order left-to-right
model of the vth speaker. Ψv

LTRSPHMM2s is the suprasegmental
second-order left-to-right model of the vth speaker.

(c) In CSPHMM1s.

V∗ = arg max
50≥v≥1

{
P
(
O | λvCHMM1s,Ψ

v
CSPHMM1s

)}
, (9)

where λvCHMM1s is the acoustic first-order circular model of
the vth speaker. Ψv

CSPHMM1s is the suprasegmental first-order
circular model of the vth speaker.

(d) In CSPHMM2s.

V∗ = arg max
50≥v≥1

{
P
(
O | λvCHMM2s,Ψ

v
CSPHMM2s

)}
. (10)

8. Results and Discussion

In the current work, CSPHMM2s have been proposed,
implemented, and evaluated for speaker identification sys-
tems in each of the neutral and shouted talking environ-
ments. To evaluate the proposed models, speaker identi-
fication performance based on such models is compared
separately with that based on each of LTRSPHMM1s,
LTRSPHMM2s, and CSPHMM1s in the two talking environ-
ments. In this work, the weighting factor (α) has been chosen
to be equal to 0.5 to avoid biasing towards any acoustic or
prosodic model.

Table 1 shows speaker identification performance in each
of the neutral and shouted talking environments using
the collected database based on each of LTRSPHMM1s,
LTRSPHMM2s, CSPHMM1s and CSPHMM2s. It is evident
from this table that each of LTRSPHMM1s, LTRSPHMM2s,
CSPHMM1s, and CSPHMM2s perform almost perfect in the
neutral talking environments. This is because each of the
acoustic models: LTRHMM1s, LTRHMM2s, CHMM1s, and
CHMM2s yield high speaker identification performance in
such talking environments as shown in Table 2.

A statistical significance test has been performed to
show whether speaker identification performance differences
(speaker identification performance based on CSPHMM2s
and that based on each of LTRSPHMM1s, LTRSPHMM2s,
and CSPHMM1s in each of the neutral and shouted
talking environments) are real or simply due to statistical
fluctuations. The statistical significance test has been carried
out based on the Student t Distribution test as given by the
following formula:

tmodel 1, model 2 = xmodel 1 − xmodel 2

SDpooled
, (11)

where xmodel 1 is the mean of the first sample (model 1) of
size n. xmodel 2 is the mean of the second sample (model 2) of
the same size. SDpooled is the pooled standard deviation of the
two samples (models) given as,

SDpooled =
√

SD2
model 1 + SD2

model 2

n
, (12)

where SDmodel 1 is the standard deviation of the first sample
(model 1) of size n. SDmodel 2 is the standard deviation of the
second sample (model 2) of the same size.

In this work, the calculated t values in each of the
neutral and shouted talking environments using the collected
database between CSPHMM2s and each of LTRSPHMM1s,
LTRSPHMM2s and CSPHMM1s are given in Table 3. In the
neutral talking environments, each calculated t value is less
than the tabulated critical value at 0.05 significant level t0.05 =
1.645. On the other hand, in the shouted talking environ-
ments, each calculated t value is greater than the tabulated
critical value t0.05 = 1.645. Therefore, CSPHMM2s are supe-
rior models over each of LTRSPHMM1s, LTRSPHMM2s,
and CSPHMM1s in the shouted talking environments. This
is because CSPHMM2s possess the combined characteristics
of each of LTRSPHMM1s, LTRSPHMM2s, and CSPHMM1s
as was discussed in Section 5. This superiority becomes less
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Table 1: Speaker identification performance in each of the neutral and shouted talking environments using the collected database based on
each of LTRSPHMM1s, LTRSPHMM2s, CSPHMM1s, and CSPHMM2s.

Models Gender
Speaker identification performance (%)

Neutral talking environments Shouted talking environments

LTRSPHMM1s
Male 96.6 73.5

Female 96.8 75.7

Average 96.7 74.6

LTRSPHMM2s
Male 97.5 78.9

Female 97.5 77.9

Average 97.5 78.4

CSPHMM1s
Male 97.4 78.3

Female 98.4 79.1

Average 97.9 78.7

CSPHMM2s
Male 98.9 82.9

Female 98.7 83.9

Average 98.8 83.4

Table 2: Speaker identification performance in each of the neutral and shouted talking environments using the collected database based on
each of LTRHMM1s, LTRHMM2s, CHMM1s, and CHMM2s.

Models Gender
Speaker identification performance (%)

Neutral talking environments Shouted talking environments

LTRHMM1s
Male 92.3 28.5

Female 93.3 29.3

Average 92.8 28.9

LTRHMM2s
Male 94.4 59.4

Female 94.6 58.6

Average 94.5 59.0

CHMM1s
Male 94.8 58.5

Female 94.2 59.5

Average 94.5 59.0

CHMM2s
Male 96.6 72.8

Female 96.8 74.6

Average 96.7 73.7

in the neutral talking environments because the acoustic
models LTRHMM1s, LTRHMM2s, and CHMM1s perform
well in such talking environments as shown in Table 2.

In one of his previous studies, Shahin showed that
CHMM2s contain the characteristics of each of LTRHMM1s,
LTRHMM2s, and CHMM1s. Therefore, the enhanced
speaker identification performance based on CHMM2s is the
resultant of speaker identification performance based on the
combination of each of the three acoustic models as shown
in Table 2. Since CSPHMM2s are derived from CHMM2s,
the improved speaker identification performance in shouted
talking environments based on CSPHMM2s is the resultant
of the enhanced speaker identification performance based
on each of the three suprasegmental models as shown in
Table 1.

Table 2 yields speaker identification performance in each
of the neutral and shouted talking environments based
on each of the acoustic models LTRHMM1s, LTRHMM2s,

Table 3: The calculated t values in each of the neutral and
shouted talking environments using the collected database between
CSPHMM2s and each of LTRSPHMM1s, LTRSPHMM2s, and
CSPHMM1s.

tmodel 1, model 2
Calculated t value

Neutral
environments

Shouted
environments

tCSPHMM2s, LTRSPHMM1s 1.231 1.874

tCSPHMM2s, LTRSPHMM2s 1.347 1.755

tCSPHMM2s, CSPHMM1s 1.452 1.701

CHMM1s, and CHMM2s. Speaker identification perfor-
mance achieved in this work in each of the neutral
and shouted talking environments is consistent with that
obtained in [9] using a different speech database (forty
speakers uttering ten isolated words in each of the neutral
and shouted talking environments) [9].
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Table 4: The calculated t values between each suprasegmental
model and its corresponding acoustic model in each of the neutral
and shouted talking environments using the collected database.

tsup . model, acoustic model
Calculated t value

Neutral
environments

Shouted
environments

tLTRSPHMM1s, LTRHMM1s 1.677 1.785

tLTRSPHMM2s, LTRHMM2s 1.686 1.793

tCSPHMM1s, CHMM1s 1.697 1.887

tCSPHMM2s, CHMM2s 1.702 1.896
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Figure 3: Speaker identification performance in each of the neutral
and angry talking conditions using SUSAS database based on each
of LTRSPHMM1s, LTRSPHMM2s, CSPHMM1s, and CSPHMM2s.

Table 4 gives the calculated t values between each
suprasegmental model and its corresponding acoustic model
in each of the neutral and shouted talking environments
using the collected database. This table shows evidently that
each suprasegmental model outperforms its corresponding
acoustic model in each talking environment since each
calculated t value in this table is greater than the tabulated
critical value t0.05 = 1.645.

Four more experiments have been separately conducted
in this work to evaluate the results achieved based on
CSPHMM2s. The four experiments are as follows.

(1) The new proposed models have been tested using a
well-known speech database called Speech Under Simulated
and Actual Stress (SUSAS). SUSAS database was designed
originally for speech recognition under neutral and stressful
talking conditions [30]. In the present work, isolated words
recorded at 8 kHz sampling rate were used under each of
the neutral and angry talking conditions. Angry talking
condition has been used as an alternative to the shouted
talking condition since the shouted talking condition cannot
be entirely separated from the angry talking condition in

Table 5: The calculated t values in each of the neutral and angry
talking conditions using SUSAS database between CSPHMM2s and
each of LTRSPHMM1s, LTRSPHMM2s, and CSPHMM1s.

tmodel 1, model 2
Calculated t value

Neutral condition Angry condition

tCSPHMM2s, LTRSPHMM1s 1.345 1.783

tCSPHMM2s, LTRSPHMM2s 1.398 1.805

tCSPHMM2s, CSPHMM1s 1.499 1.795

our real life [8]. Thirty different utterances uttered by seven
speakers (four males and three females) in each of the neutral
and angry talking conditions have been chosen to assess the
proposed models. This number of speakers is very limited
compared to the number of speakers used in the collected
speech database.

Figure 3 illustrates speaker identification performance in
each of the neutral and angry talking conditions using SUSAS
database based on each of LTRSPHMM1s, LTRSPHMM2s,
CSPHMM1s, and CSPHMM2s. This figure shows apparently
that speaker identification performance based on each model
is almost ideal in the neutral talking condition. Based on
each model, speaker identification performance using the
collected database is very close to that using SUSAS database.

Table 5 yields the calculated t values in each of the
neutral and angry talking conditions using SUSAS database
between CSPHMM2s and each of LTRSPHMM1s, LTR-
SPHMM2s, and CSPHMM1s. This table demonstrates that
CSPHMM2s lead each of LTRSPHMM1s, LTRSPHMM2s,
and CSPHMM1s in the angry talking condition. Shahin
reported in one of his previous studies speaker identifi-
cation performance of 99.0% and 97.8% based on LTR-
SPHMM1s and gender-dependent approach using LTR-
SPHMM1s, respectively, in the neutral talking condition
using SUSAS database [10, 11]. In the angry talking con-
dition using the same database, Shahin achieved speaker
identification performance of 79.0% and 79.2% based on
LTRSPHMM1s and gender-dependent approach using LTR-
SPHMM1s, respectively [10, 11]. Based on using SUSAS
database in each of the neutral and angry talking conditions,
the results obtained in this experiment are consistent with
those reported in some previous studies [10, 11].

(2) The new proposed models have been tested for
different values of the weighting factor (α). Figure 4 shows
speaker identification performance in each of the neutral
and shouted talking environments based on CSPHMM2s
using the collected database for different values of α
(0.0, 0.1, 0.2, . . . , 0.9, 1.0). This figure indicates that increas-
ing the value of α has a significant impact on enhancing
speaker identification performance in the shouted talking
environments. On the other hand, increasing the value
of α has a less effect on improving the performance in
the neutral talking environments. Therefore, suprasegmental
hidden Markov models have more influence on speaker iden-
tification performance in the shouted talking environments
than acoustic hidden Markov models.

(3) A statistical cross-validation technique has been car-
ried out to estimate the standard deviation of the recognition
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Figure 4: Speaker identification performance in each of the neutral
and shouted talking environments based on CSPHMM2s using the
collected database for different values of α.

rates in each of the neutral and shouted talking environ-
ments based on each of LTRSPHMM1s, LTRSPHMM2s,
CSPHMM1s, and CSPHMM2s. Cross-validation technique
has been performed separately for each model as follows:
the entire collected database (7200 utterances per model)
is partitioned at random into five subsets per model. Each
subset is composed of 1440 utterances (400 utterances are
used in the training session and the remaining are used
in the evaluation session). Based on these five subsets per
model, the standard deviation per model is calculated.
The values are summarized in Figure 5. Based on this
figure, cross-validation technique shows that the calculated
values of standard deviation are very low. Therefore, it is
apparent that speaker identification performance in each
of the neutral and shouted talking environments based on
each of LTRSPHMM1s, LTRSPHMM2s, CSPHMM1s, and
CSPHMM2s using the five subsets per model is very close
to that using the entire database (very slight fluctuations).

(4) An informal subjective assessment of the new
proposed models using the collected speech database has
been performed with ten nonprofessional listeners (human
judges). A total of 800 utterances (fifty speakers, two
talking environments, and eight sentences) were used in
this assessment. During the evaluation, each listener was
asked to identify the unknown speaker in each of the
neutral and shouted talking environments (completely two
separate talking environments) for every test utterance. The
average speaker identification performance in the neutral
and shouted talking environments was 94.7% and 79.3%,
respectively. These averages are very close to the achieved
averages in the present work based on CSPHMM2s.

9. Concluding Remarks

In this work, CSPHMM2s have been proposed, imple-
mented and evaluated to enhance speaker identification
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Figure 5: The calculated standard deviation values using statistical
cross-validation technique in each of the neutral and shouted talk-
ing environments based on each of LTRSPHMM1s, LTRSPHMM2s,
CSPHMM1s, and CSPHMM2s.

performance in the shouted/angry talking environments.
Several experiments have been separately conducted in
such talking environments using different databases based
on the new proposed models. The current work shows
that CSPHHM2s are superior models over each of LTR-
SPHMM1s, LTRSPHMM2s, and CSPHMM1s in each of the
neutral and shouted/angry talking environments. This is
because CSPHHM2s possess the combined characteristics of
each of LTRSPHMM1s, LTRSPHMM2s, and CSPHMM1s.
This superiority is significant in the shouted/angry talking
environments; however, it is less significant in the neutral
talking environments. This is because the conventional
HMMs perform extremely well in the neutral talking
environments. Using CSPHMM2s for speaker identifica-
tion systems increases nonlinearly the computational cost
and the training requirements needed compared to using
each of LTRSPHMM1s and CSPHMM1s for the same
systems.

For future work, we plan to apply the proposed models to
speaker identification systems in emotional talking environ-
ments. These models can also be applied to speaker verifica-
tion systems in each of the shouted and emotional talking
environments and to multilanguage speaker identification
systems.
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