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Abstract

and reverberant environments.

Time delay estimation (TDE) is a fundamental subsystem for a speaker localization and tracking system. Most of the
traditional TDE methods are based on second-order statistics (SOS) under Gaussian assumption for the source. This
article resolves the TDE problem using two information-theoretic measures, joint entropy and mutual information
(MI), which can be considered to indirectly include higher order statistics (HOS). The TDE solutions using the two
measures are presented for both Gaussian and Laplacian models. We show that, for stationary signals, the two
measures are equivalent for TDE. However, for non-stationary signals (e.g., noisy speech signals), maximizing M|
gives more consistent estimate than minimizing joint entropy. Moreover, an existing idea of using modified Ml to
embed information about reverberation is generalized to the multiple microphones case. From the experimental
results for speech signals, this scheme with Gaussian model shows the most robust performance in various noisy

Introduction

Time delay estimation (TDE) is a basic problem in mod-
ern signal processing and it has found extensive applica-
tions such as localizing and tracking radiating sources in
radar and sonar. Nowadays, the same technique is used
to localize and track acoustic sources in room environ-
ments. For example, in automatic camera tracking for
video conferencing [1,2], the location of the current
speaker is required for the camera to turn toward them;
in speech enhancement [3,4] using a steerable micro-
phone array, the speaker location is required for noise
cancellation.

TDE for speech signals in adverse acoustic environ-
ments with strong noise and reverberation levels has
long been a challenging problem. Among the traditional
methods for TDE, the most popular one is the general-
ized cross-correlation (GCC) method proposed by
Knapp and Carter [5]. The relative delay is estimated by
maximizing the cross-correlation between filtered ver-
sions of the received signals. It has been shown in [6,7]
that, the GCC method performs fairly well in moder-
ately noisy and lightly reverberant environments. How-
ever, it degrades dramatically when noise or
reverberation is high. In an attempt to deal better with
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noise and reverberation, an effective approach was intro-
duced based on multichannel cross-correlation coeffi-
cient (MCCC) [8], which performs well in combating
both noise and reverberation by taking advantage of the
redundant information from multiple sensor pairs. It is
found that the approach’s robustness gets better as the
number of sensors increases.

As a second-order statistics (SOS) measure of the
dependence among multiple random variables, the
MCCC is ideal for Gaussian signals. However, for non-
Gaussian source signals, higher order statistics (HOS)
have more to say about their dependence. More
recently, the two information-theoretic concepts of joint
entropy and mutual information (MI), which can be
considered as higher order statistics [9], are used to
develop new TDE estimators [10,11]. In [10], the Lapla-
cian is employed to model the speech source, and the
relative delay is estimated via minimizing the joint
entropy of the multiple microphone output signals. In
[11], based on characterizing the speech source as Gaus-
sian, the MI measure is used for TDE, however, the
method is restricted to the two microphone case.

Analysing further the work of [10,11], in this article,
we present a framework that treats the TDE problem
from an information theory point-of-view. Since the two
information-theoretic measures have the freedom of
selecting a specific distribution model for the source
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signal, the solutions based on minimizing the joint
entropy and maximizing the MI of the multichannel
output signals are derived for both Gaussian and Lapla-
cian models. From the experimental results, the Gaus-
sian, compared to the Laplacian, is a better model for
the small frames of noisy speech signals used for TDE.
Moreover, we show that the two measures are equiva-
lent for TDE when the source signal is stationary. How-
ever, for non-stationary signals, maximizing the MI
gives more stable and consistent estimate of the relative
delay than minimizing the joint entropy.

In addition, in order to combat reverberation more
effectively, the MI of multichannel outputs is modified
to embed information about reverberation, which helps
to improve the estimator’s robustness against reverbera-
tion. The proposed scheme is verified by simulations in
various noisy and reverberant environments.

This paper is organized as follows. ‘Signal model” sec-
tion describes the signal model used throughout this
article. “TDE based on information theory” section pre-
sents the joint entropy and MI based methods for both
Gaussian and Laplacian models. ‘Modified MI of multi-
channel outputs’ section details how to modify the MI
based estimator to be more robust against reverberation
for multiple microphones. Simulations are presented in
‘Simulations’ section. ‘Conclusion’ section summarizes
the conclusions of the article.

Signal model

In an attempt to estimate only one time delay, two sen-
sors are enough. However, it has been shown in [8,10]
that employing more than two sensors can significantly
improve the estimator’s robustness against noise and
reverberation by taking advantage of the available
redundant information. Consider that we have a linear
microphone array consisting of N microphones posi-
tioned in an acoustical enclosure. When the reverbera-
tion is ignored, the received signals from a single far-
field source can be denoted as

Xn(k) = Aus[k — t — @n(7)] + wn(k) (1)

for n = 1,2,...N, where 1,, are the attenuation factors, ¢ is
the propagation time from the source s(k) to microphone
1 (without loss of generality, microphone 1 is selected as
the reference point), the noise term w,,(k) is assumed to
be white Gaussian with zero mean and uncorrelated with
the source signal and the noise signals at other micro-
phones, ¢,,(7) is the relative delay between microphones 1
and #n (with ¢1(7) = 0 and ¢,(r) = 1). Since we consider
only linear equispaced arrays and the far-field case, the
function ¢,,(z) solely depends on the delay t

¢n(7) = (n—1)r. ()
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In other scenarios with linear but non-equispaced or
non-linear arrays, the mathematical formulation of ¢,,(7)
can be obtained depending on the array geometry. In
addition, we assume that the sampling rate was suffi-
ciently high such that the value of ¢,(7) can be treated
as integer.

However, the model described by (1) does not include
the effect of reverberation in real room acoustic envir-
onments. In order to describe the TDE problem in a
room environment where each microphone often
receives a large number of echoes due to reflections of
the wavefront from objects and room boundaries, we
can use a more realistic reverberation model which
models the received signals as [12]

xn (k) = hy * s(k) + wu (k) (3)

where /%, denotes the reverberant impulse response
between the source and the nth microphone and the
symbol * denotes convolution. In this model, j, contains
not only the effect of the direct path delay but also that
of other reflected path delays. The size of j, is generally
a function of the reverberation time.

TDE based on information theory

Most of the traditional TDE algorithms are proposed
based on a SOS criterion. Since the sensor output sig-
nals are random variables, it makes more sense to take
into account the probability density functions (pdfs) in
quantifying the dependence among those multiple ran-
dom variables by employing a HOS criterion.

Entropy and M

In general, the entropy is a measure of uncertainty of a
random variable. Shannon, using an axiomatic approach
[13], defined entropy of a random variable x with a pdf f
(x) as

sl = = [ £ Infs. @
Let us now consider N random variables

X =[x x5 ... xn]" (5)

with joint density f(x), where [-]* denotes a vector/
matrix transpose. The corresponding joint entropy of
the N random variables can be considered to be the
entropy of the single vector-valued random variable x

Hm=—fﬂmmﬂMM. ©)

The MI is an information-theoretic measure of the
information that one random variable contains about
another random variable. If we consider two variables x;
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and x,, then the MI I(x;, x,) is the Kullback-Leibler (KL)
divergence between the joint density flx;, x,) and the
factorized marginal density flx;) and I(x,) [9], ie.,

f(x1,%2)
I(x1,x2) = //f(xl’xz)lnf(x1)f(x2)

When multiple random variables are concerned, we
use the total correlation [14], which is one of several
generalizations of the MI in probability theory and in
particular in information theory, to express the amount
of dependency existing among the variables. The multi-
variate MI of x can be formulated as

dx;dux,. (7)

I(X) =/f(X) In Nf(X) dx
X [1/f(xn)
i ®)

N
=) Hlx,] — H[X].
n=1
According to (1), we consider the following parame-
terized vector:

X(k, m) = [x1 (k) x2[k + @2(m)] ... xn[k +on(m)]]". (9)

Obviously, when we determine the correct delay m =
7, the signal components at different microphones will
be synchronized, and the information that one micro-
phone signal has about the others will be maximum. In
this case, the entropy and MI of x(k, m) will reach mini-
mum and maximum, respectively. Thus, the relative
delay can be estimated by minimizing the entropy or
maximizing the MI

Te = arg rn”'%n H(X(k, m)) (10)

™I = argmmaXI(X(k, m)). (11)

In order to apply the two measures, the joint density
and marginal distributions of the multichannel output
signals are required. Since the information-theoretic
concepts have the advantage of freely source model
selection, other potential density such as Laplacian can
be tried as in this article or [10].

Gaussian signals
A Gaussian random variable x with mean zero and var-
iance 2 has a pdf given by

1
_ xz/gz
x) = e 27, (12)
f(x) Jaro,
The resulting entropy is
1
Hx) = In{27meo?} (13)
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Let that x, x5,...., ¥ 5 follow a multivariate Gaussian
distribution with mean 0 and covariance matrix

ax21 Txgz C T
R ExXT) = | 0 TR T e (14)
Txyxn Txpxn * " U,.CzN
The joint pdf of x1, xy,...., xx is
1 — ! X'R™1X (15)
T2 2 et (m) 2

By substituting (15) into (6), the entropy of x can be
obtained as [10]

H(X) = j;_ In [(?Jre)N det(R)] . (16)

Accordingly, the MI of the jointly Gaussian distributed
random vector x can be formulated as [11]

I(X) = —; In [ lfllfft(lz)z } .

In practice, with K observations of x, we firstly esti-
mate the covariance matrix

(17)

R(m) = E{X(k, m)X" (k, m)}. (18)

Then, we compute the entropy H(x(k, m)) (or the MI [
(x(k, m))) for different m and choose the one that mini-
mizes the entropy (or maximizes the MI) to be the opti-
mal estimate of the relative delay.

It can be easily checked that maximizing the MI for
Gaussian signals (17) is, indeed, equivalent to maximiz-
ing the squared MCCC among the N random variables,
which is defined as [8]

det[R(m)]
- I—[I::l og '

Furthermore, note that, the time shift independent

p*(m) =1 (19)

variance cr,i are constant if the signals are stationary and
the data sample length K is sufficiently large (ideally K
— oo). In this case, it is obvious that, minimizing the
entropy (16) is equivalent to maximizing the MI (17) or
MCCC (19) for TDE. However, for non-stationary sig-
nals, the entropy (16) is affected by the variance change.
These findings will be verified by simulations later.

Laplacian signals

The univariate Laplacian distribution with mean zero
. 2 . .

and variance ¢ is given by
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2 - o
- Y2V (20)
20,
The corresponding entropy is
1
H(x) =1+ In{v/20,} (21)

Suppose that the elements of the random vector x
have a multivariate Laplacian distribution with mean 0
and covariance matrix R. The joint density is given by
[15]

F(X) = 2(2) N2 det (R) 2 (X'R™'X /2)"2Bp(v/2XTR'X) (22)

where P = 1-N/2 and Bp() is the modified Bessel func-
tion of the second kind.
The joint entropy can be obtained as [10]

N
HX) = L in {(2”) 4“““] - Ve {in(s/2)) - EfnBr(y2p)] (23)

with

B =XRIX (24)

By substituting (21) and (23) into (8), the MI is given
by

N det(R)

INTTN 52
4e l_ln=1 o')c,I

I(X)=—;ln|:

} + E{in(8/2)}
+E{lan(\/2,3)}

(25)

When the entropy (23) or MI (25) is applied to TDE,
we use a numerical way to estimate E{In(f/2))} and
E{lnBp(,/28)} from observed data since they do not
seem to have a closed form. Suppose that we have K
samples for each element of the observation vector x(k,
m), we replace ensemble averages by time averages

K-1
E{ln(p/2)} ~ ;{ > In[B(k — K, m)/2] (26)
k=0

K-1
E [lan(/zﬂ)] ~ Il< glan[\/Zﬁ(k —k,m)] (27)

with
Bk —K,m)=X(k—k,mR(m)X(k—K,m). (28)

In practice, we estimate the covariance matrix R(m)
firstly. Afterwards, (26) and (27) can be estimated imme-
diately. Then, the entropy (23) or MI (25) can be com-
puted to estimate the relative delay.

It has been shown that the Laplacian distribution is
the best model for speech samples during voice activity
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intervals compared to the Gaussian, generalized Gaus-
sian and gamma distribution [16], which has been taken
into account for the estimation of entropy for speech
signals in [10]. However, since the noise is typically
Gaussian, assuming a Laplacian distribution for the
noisy microphone array outputs is questionable, particu-
larly for low SNR conditions.

In addition, similar to the solutions for Gaussian sig-
nal, the MI (25) is insensitive to variance change of the
sensor outputs compared to the entropy (23).

Modified Ml of multichannel outputs

It is shown in [11] that the estimator searching the rela-
tive delay between two microphone signals by directly
maximizing the MI suffers from the same limitations of
GCC, and it is not robust enough in reverberant acous-
tic environments.

Consider that the relative delay between the two sig-
nals x;(k) and x,(k) is 7. In the absence of reverberation,
only a single delay is present between the two signals.
Thus, the information contained in a sample / of x;(k) is
only dependent on the information contained in the
sample [ - 7 of x,(k). When reverberation is present,
then, the information contained in a sample [ of x;(k) is
also contained in neighboring samples of the sample [ -
7 of x,(k). In this scenario, the MI is not representative
enough in the presence of reverberation. Thus, in order
to better estimate the information conveyed by the two
signals, the modified MI that consider jointly Q neigh-
boring samples can be formulated as [11]

Iq(x1(k), x2(k))

= H[x; (k)] + H[x1(k+ 1)] + - - + H[x1 (k + Q)]
+H[xy(k)] + H[xa(k+ 1)] + - - - + H[x2(k + Q)]
—H[x1(k),- - ,x1(k+Q),x2(k), -, x2(k + Q)]

(29)

When the condition of using multiple sensors is con-
cerned, the modified MI of x(k, m) can be formulated as

Io(X(k, m)) = I(Xq(k, m)) (30)
with
Xa(k,m) = [x1(k) x: (k4 1) -+ 21 (e + Q) xalk + g2 (m)]
xolk+@a(m) +1] - xo[k+@a(m)+ Q] -+ (31)

anfk+ pn(m) + QI

The length of x is N(Q + 1). We call Q the order of
the system. Accordingly, with the K data samples, we
compute the MI I(xo(k, m)) for different m and choose
the one that maximizes the MI to be a good estimation
of the relative delay

N[k +on(m)] xn[k + on(m) + 1] -
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Tg = arg mmaxI(XQ(k, m)). (32)

Simulations

In this section, we conduct experiments for speech sig-
nals to evaluate the estimators using both simulated and
real impulse responses in reverberant room environ-
ments. A real female speech signal is convolved with the
room impulse responses to generate microphone signals.
The microphone signals are partitioned into non-over-
lapping frames with a frame size of 600 samples. In
addition, mutually independent zero-mean white Gaus-
sian noise is introduced to each microphone signal to
control the SNR.
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For each set of experimental conditions, the 100
frames are processed to generate 100 estimates. The
TDE performance is evaluated in terms of the root
mean-squared error (RMSE) of the estimates.

Simulated reverberant channels

The image model technology [17,18] is used to simulate
real reverberant acoustic environments of a room with
room dimensions of [8 6.5 3] m. A linear equispaced
microphone array of six omni-directional receivers with
inter-element spacing of 10 cm is considered. Two
reverberation conditions are simulated for different
reverberation time Ty, which is defined as the time for
the sound to decay to a level 60 dB below its original
level. The two reverberation times are approximately
200 and 500 ms, respectively. The results are averaged
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Figure 1 Examples of simulated channel responses between the source and the first microphone for two reverberation conditions. (a)

Teo = 200 ms and (b) Teo = 500 ms.
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over twenty random displacements and rotations of the

relative geometry between the source and the array  conditions.

inside the room. Figure 1 shows two examples of the
simulated channel responses between the source and
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the first microphone for the two reverberation

In the first experiment, the entropy, MI and modified
MI based estimators for both Gaussian and Laplacian

8
*_
TE
A
N,
.
8L ™\

RMSE

---%--- Laplacian Entropy
---&--- Laplacian Ml

—%— Gaussian Entropy
—&— Gaussian Ml
—©6— Gaussian MI, Q=4

---@--- Laplacian MI, Q=4 | |

microphone number

---4--- Laplacian Entropy
---&---- Laplacian MI

—%— Gaussian Entropy
—&— Gaussian Ml
—6— Gaussian MI, Q=4

---&--- Laplacian MI, Q=4 | |

reverberant environments where Tg, = 200 ms.

"

SNR (dB)

Figure 2 RMSE versus different number of microphones for the two noise conditions. (a) SNR = -5 dB, (b) SNR = 25 dB in the moderately
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RMSE

---%--- Laplacian Entropy
---&--- | aplacian Ml |
---&---- Laplacian Ml, Q=4

—¥— Gaussian Entropy
—&A— Gaussian Ml -
—&— Gaussian MI, Q=4

microphone number

---%--- Laplacian Entropy
---&---- Laplacian Ml
---&---- Laplacian MI, Q=4 | |
—#— Gaussian Entropy
—&— Gaussian Ml
—&— Gaussian M|, Q=4

RMSE

reverberant environments where Tgo = 500 ms.

microphone number

Figure 3 RMSE versus different number of microphones for the two noise conditions. (a) SNR = -5 dB, (b) SNR = 25 dB in the moderately

models are compared in two different noise conditions  conditions, respectively. The system order of the modi-

with SNR = -5 and 25 dB, respectively. Figures 2 and 3  fied MI based method is chosen to be Q = 4.

depict the relationship between the estimate RMSE and As clearly shown in Figures 2 and 3, all the estimators
the number of microphones for the two reverberation  deteriorate as noise or reverberation time increases. For
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example, for two microphones, the RMSE of each
approach for SNR = -5 dB is at least more than six
times that for SNR = 25 dB in the moderate reverbera-
tion condition with Tsn = 200 ms. Meanwhile, when the
number of microphones is fixed and in the same noise
conditions, each approach shows much higher RMSE in
the highly reverberant environment compared to the
moderately reverberant environment. However, for the
same noise and reverberation conditions, the RMSE
drops evidently as the number of microphones increases
for all the algorithms, particularly in the high noise con-
dition. This indicates that better performance can be
achieved by employing more microphones.

Moreover, it can be seen that the entropy and MI
measures have comparable performance in the low
noise condition with SNR = 25 dB. But in the high
noise condition with SNR = -5 dB, the MI based
approaches performs distinctly better than the entropy
based ones. That can be interpreted as the MI, com-
pared to entropy, is insensitive to the variance change
caused by the non-stationary of the noise corrupted
speech signals.

In addition, each of the three measures with the Gaus-
sian model exhibits a better performance compared to
Laplacian, especially for the high noise condition. This
can be explained as follows. The speech samples during
voice activity intervals are Laplacian random variables
[16] and the noise is typically Gaussian. Thus, the noisy
microphone output, which is a mixture of Laplacian and
Gaussian random variables, cannot be well modeled by
Laplacian, particularly when the noise is high. Moreover,
it has been shown that, the joint distribution of two
samples of speech with 0.1 ms distance looks very like
Gaussian [16]. That is the case of this article, where the
sampling period is approximately 0.1 ms.
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In general, for the same number of microphones and
the same noise and reverberation conditions, the modi-
fied MI based algorithms with an order of Q = 4
obviously performs better than their entropy based and
MI based counterparts, which is demonstrated by their
distinct lower RMSE in most cases.

Real reverberant channels
In this subsection, we repeat the first experiment using
real measured room impulse responses from the Multi-
channel Acoustic Reverberation Database at York
(MARDY) to evaluate the algorithms. The database com-
prises a collection of room impulse responses measured
with a linear array for various source-array separations in
a varechoic room. The collected data are available at
http://www.commsp.ee.ic.ac.uk/sap/. Figure 4 shows one
of the recorded channel responses. The reverberation time
of the used channel responses is approximately 447 ms.
Figure 5 presents the relationship between the esti-
mate RMSE and the number of microphones for two
noise conditions with SNR = -5 dB and SNR = 25 dB,
respectively. The modified MI based algorithms dis-
tinctly performs better than other algorithms except for
the six microphones case with SNR = 25 dB. Moreover,
while the Gaussian model shows better performance
than the Laplacian model in the low SNR condition
with SNR = -5 dB, both the models in general give com-
parable performance in the high SNR condition with
SNR = 25 dB.

Conclusions

In this article, the TDE problem is viewed from an
information theory point. It is revealed that, maximizing
the MI for TDE gives more consistent results compared
to minimizing the joint entropy since it is insensitive to

0.1 T T

0.05

|

o

o

(8
T

Simulated channel response

-0.15 !
0

500 1000
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Figure 4 One of the recorded channel responses of MARDY, Tgo = 447 ms.
A
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Figure 5 RMSE versus different number of microphones for the two noise conditions. (a) SNR = -5 dB, (b) SNR = 25 dB using the real
measured room impulse responses of MARDY, Tgo = 447 ms.
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the variance change of sensor outputs. Moreover, an
existing idea of using modified MI to embed informa-
tion about reverberation is generalized to the multiple
microphones case. The effectiveness of the proposed
scheme is verified by simulations for speech signals in
different reverberant environments. Simulation results
also demonstrate that the Gaussian distribution models
the small segments of noise speech signals better than
the Laplacian distribution for TDE.
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GCC: generalized cross-correlation; HOS: higher order statistics; MCCC:
multichannel cross-correlation coefficient; MI: mutual information; pdfs:
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