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Abstract

The spectrum subtraction method is one of the most common methods by which to remove noise from a spectrum.
Like many noise reduction methods, the spectrum subtraction method uses discrete Fourier transform (DFT) for
frequency analysis. There is generally a trade-off between frequency and time resolution in DFT. If the frequency
resolution is low, then the noise spectrum can overlap with the signal source spectrum, which makes it difficult to
extract the latter signal. Similarly, if the time resolution is low, rapid frequency variations cannot be detected. In order
to solve this problem, as a frequency analysis method, we have applied non-harmonic analysis (NHA), which has high
accuracy for detached frequency components and is only slightly affected by the frame length. Therefore, we
examined the effect of the frequency resolution on noise reduction using NHA rather than DFT as the preprocessing
step of the noise reduction process. The accuracy in extracting single sinusoidal waves from a noisy environment was
first investigated. The accuracy of NHA was found to be higher than the theoretical upper limit of DFT. The
effectiveness of NHA and DFT in extracting music from a noisy environment was then investigated. In this case, NHA
was found to be superior to DFT, providing an approximately 2 dB improvement in SNR.

1. Introduction
Noise reduction to recover a target signal from an input
waveform is important in a number of fields. We usually
use a frequency spectrum to remove noise from the input
waveform. Although it is difficult to distinguish a signal
from the noise in the time domain, this task tends to
become easier in the frequency domain. However, it is
difficult to filter out noise that is similar to a signal. For
example, the consonant, which is the part of the sound
that has a frequency spectrum that is similar to a noise.
This study proposes a basic technology by which to
remove a noise from musical sound including several
periodic signals. We selected white noise and pink noise
as the noise signals. These noises are common in cities as
well as in nature and have a continuous spectrum. Based
on this study, we can remove white noise, including
wideband noise such as pulse and white noise, from an
old music recording in order to apply digital remastering
in multimedia industries. We will also be able to remove
noise from a recording of a singing voice because this is a
periodic signal. When listening to music in a high-noise
environment, difficulty in hearing the music and the

presence of ambient noise can decrease the level of
enjoyment. Therefore, various noise reduction methods
are being investigated, and a number of noise reduction
techniques have been proposed. The spectral subtraction
method (SS method) is a widely used approach [1] in
which the target signal is extracted from a noisy signal by
measuring the noise in advance and modeling the statisti-
cal spectral envelope characteristics [2-4]. The SS method
does not require multiple microphones, and highly effec-
tive results can be obtained by using a relatively simple
algorithm. For this reason, many techniques for improv-
ing the SS method have been proposed. Sorensen and
Andersen [5] also used the SS method in combination
with speech presence detection. Soon and Koh [6] and
Ding et al. [7] treated audio signals as graphics and
applied 2D and 1D Wiener filters in the frequency
domain for noise reduction. The advantage of this
method is the possibility of frame-to-frame correlation.
In addition, the amplitude in the frequency domain can
be adjusted and an unmodified initial phase can be used.
Finally, Virag [8] and Udrea et al. [9] suggested an SS
method based on the characteristics of the human audi-
tory system.
However, using unmodified noisy phases limits the

noise reduction effect. In general, the discrete Fourier
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transform (DFT) is used to obtain the spectral charac-
teristics during preprocessing for the SS method. The
frequency resolution of the DFT is restricted because it
depends on the analytical frame length and the window
function. If the frequency resolution is low, the noise
spectrum can overlap the spectrum of the signal source,
which makes it difficult to extract the original signal.
Energy leaks into another band and side lobes are gen-
erated when the frequency of the analytic signal does
not correspond to an integral multiple of the base fre-
quency. In harmonic frequency analysis, there is then a
high probability of overlap between the side-lobes of the
source spectrum and the noise spectrum. If the side-
lobes are removed, then the signal source can fully be
recovered. Similarly, if the time resolution is low, then
rapid frequency variations cannot be detected. In order
to solve this problem, Kauppinen and Roth attempted to
increase the frequency resolution by applying an extra-
polation method to the signal frame in the time domain
[10]. In this study, we have applied non-harmonic analy-
sis (NHA), which has a high frequency resolution with
limited influence of the frame length [11], to the pro-
blem of noise reduction. For a similar frame length,
NHA is expected to achieve better frequency resolution
than the length extrapolation method used in [10].
Therefore, we investigated the use of NHA as an alter-
native preprocessing method to DFT for noise reduc-
tion. Since the effects of frequency resolution can best
be evaluated for periodic signals, sounds produced by
musical instruments were used in this study, and preli-
minary noise reduction experiments were performed.
The remainder of this article is organized as follows.

In Section 2, we provide an introduction to the NHA
algorithm. In Section 3, we investigate noise reduction
using single sinusoidal waves. Section 4 describes the
side-lobe suppression experiments. In Section 5, noise
reduction experiments are carried out using sounds pro-
duced by musical instruments, and the results are
described in Section 6.

2. The NHA method
2.1 Background
The DFT is generally used for frequency analysis. A dis-
crete spectrum X of the discrete time signal x(n) of
length N can be expressed as

X(k) =
1
N

N−1∑
n=0

x(n)e

−j2πkn
N (k = 0, 1, 2, . . . ,N − 1). (1)

When the sampling frequency is Δt and the original
signal x(n) has a period of NΔt/k, X(k) can accurately
reflect the spectral structure. However, if a period other
than NΔt/k appears in x(n), X(k) is expressed by the
combination of NΔt/k in terms of several frequency

components, and X(k) is not accurately reflected in the
spectral structure.
In order to increase the frequency resolution, the

value of N is generally increased. If the frequency is
accompanied by a temporal fluctuation, however, then
the average period is extracted and the analytical accu-
racy deteriorates as N is increased. Some techniques use
an analysis window function for x(n) in preprocessing.
However, this does not improve the apparent frequency
resolution.
Figure 1 shows some of the problems associated with

frequency analysis. Even when analyzing the simplest fre-
quency signal shown at the top of Figure 1, one portion
of the section is removed when determining the periodi-
city of the analyzed signal. The center left section of
Figure 1 shows the analytical accuracy. The period can
accurately be identified only if the frame length is a mul-
tiple of the period of the analyzed signal. In other words,
a group of different spectra appear near the true fre-
quency because the analyzed signal is expressed as a mul-
tiple number of periods NΔt/k. In order to prevent this,
an analysis window function may be used, as shown in
the center right section of Figure 1. However, this will
merely concentrate around the true value, making it diffi-
cult to determine the true value. We, therefore, noted
that the Fourier coefficient could be estimated by solving
a nonlinear equation based on the assumption of a sta-
tionary signal (see the bottom of Figure 1). Thus, the
NHA developed in this study achieves a high analytical
accuracy because this NHA reduces the influence of the
analysis window.

2.2 Algorithm of NHA
Figure 2 shows the algorithm used by NHA. First, a fre-
quency analysis of the input signal is carried out by fast
Fourier transform (FFT) for obtaining the initial value.
Next, the frequency and initial phase of the spectral com-
ponent that has the largest amplitude are converged
using a cost function with the steepest descent method.
At this time, a weighting coefficient based on the retarda-
tion method is applied to convert the cost functions cal-
culated by the recurrence formulas into a monotonically
decreasing sequence. The amplitude is then converged
using Newton’s method. Following this, Newton’s
method is applied again to converge both the frequency
and the initial phase to a high degree of accuracy. Follow-
ing a final convergence of the amplitude using Newton’s
method, we obtain the fully converged spectrum.
Finally, we describe the motivation for the structure

shown in Figure 2. For the cost function equation, given
by Equation 2, although the convergence speed is slow,
the steepest descent method can find the stationary
point within a wide range. In contrast, the Newton
method can quickly find a nearby stationary point.
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Therefore, we first use the steepest descent method to
find the stationary point within a wide range. Then, we
use the Newton method to quickly find a stationary
point. Either way, we distinguish the convergence calcu-
lation of amplitude A from the other parameters, so
that the local stationary point will not be calculated
incorrectly.

2.3 Details of NHA
In this section, we present a more detailed description
of the NHA method. Since the Fourier coefficient is
estimated by solving a nonlinear equation, NHA enables
the frequency and its associated parameters to be accu-
rately estimated without being significantly affected by
the frame length. In order to minimize the sum of

Figure 1 Fourier transform and NHA technique.

Figure 2 NHA algorithm.
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squares of the difference between the object signal and

the sinusoidal model signal, the frequency f̂ , amplitude

Â , and initial phase φ̂ are calculated using the cost
function, as follows:

F(Â, f̂ , ϕ̂) =
1
N

N−1∑
n=0

{
x(n) − Â cos

(
2π

f̂
fs
n + ϕ̂

)}2

, (2)

where N is the frame length and fs is the sampling fre-
quency (fs = 1/Δt).
2.3.1. Steepest descent method
George and Smith [12,13] attempted to introduce the
signal parameter A and the initial phase j by applying
the least mean squares method to the difference signal
between the analyzed signal and the modulated harmo-
nic sinusoidal wave.
However, this method is strongly dependent on the

frame length and is difficult to apply to the analysis of
signals that do not have a simple frequency harmonic
structure because frequencies that are dependent on the
frame length are used for the group of harmonic fre-
quencies, as in DFT. In other words, small frequency
changes cannot be detected.
By focusing on the problem of solving a nonlinear

equation, we apply the nonlinear equation process to
Equation 2 for optimum calculation of the frequency f, as
well as the parameter amplitude A and initial phase j.
Figure 3 shows an example of the characteristics of f̂

and φ̂ in the evaluation function of Equation 2, enlarged

around the true value, where N is 512, fs is 512, and the
true values of A, f, and j are 1, 100 Hz, and 0.5π rad,
respectively. Since small values are given in black,
troughs appear as black and peaks as white. In other
words, Equation 2 is a multimodal nonlinear evaluation

function. Around the true value ( f̂ = 100, φ̂/(2π) = 0.5),

minimum and maximum values are aligned vertically.
This is because the true value is a minimum but becomes
a maximum for the antiphase case (j(2π) = 0, 1). Since
the trough at the minimum value is 2 Hz wide, the mini-
mum of the evaluation function can be estimated only if
the initial value lies in the trough when solving the non-
linear equation. Since the DFT frequency resolution is 1
Hz, one or two points can be contained in a trough that
is 2 Hz wide. At the point on the frequency axis where
the DFT amplitude becomes maximum (i.e., the integral
frequency when the frame length is 1 s), the evaluation
function of Equation 2 is minimized at the initial phase
determined by DFT.
If the maximum amplitude A determined by DFT and

the frequency f and initial phase j are used as initial
values (A0,0, f0,0, j0,0), then the initial values can be
given inside the trough containing the minimum of cost
function in Figure 3.
Therefore, in order to obtain an accurate spectrum,

we use the initial value (A0,0, f0,0, j0,0), which is con-
verged using the nonlinear equation process. Consider-
ing Equation 2 as the cost function, this nonlinear
problem is converted into a minimization problem, and

f̂m,p and φ̂m,p are determined using the steepest descent

Figure 3 Distribution of the cost function.
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method and the retardation method to obtain the fol-
lowing expressions:

f̂m,p = f̂m,0 − μm,p
∂Fm,0,0

∂f
, (3)

φ̂m,p = φ̂m,0 − μm,p
∂Fm,0,0

∂φ
, (4)

where p is the operated number of the retardation
methods for the frequency and the phase, and m is the
number of iterations of the steepest descent method.
We use the following shorthand

Fm,p,q = F(Âm,q, f̂m,p, φ̂m,p), (5)

where q is the number of iterations of the retardation
method. These variables are iterated as shown in Figure 4.
In the above equations, μm,p is a weighting coefficient
based on the retardation method and has a value between
0 and 1 to convert the cost functions calculated by recur-
rence formulas into a monotonically decreasing sequence
[14-16]. In this article, we use this weighting coefficient as
follows

μm,p+1 = 0.5μm,p, (6)

where μm,1 is set to 1.

This series of calculations is repeated to cause f̂m,p

and φ̂m,p to converge with high accuracy until the fol-

lowing conditions occur:

Fm,p,0 < ((1 − 0.5μm,p) · Fm,0,0). (7)

The next step is the convergence of the amplitude.

2.3.2. Amplitude convergence

Here, A can be uniquely determined only if f̂m,p and

φ̂m,p are known, and the following formula is used to

cause A to converge:

Âm,q = Âm,0 − νm,q
∂Fm,p,0

∂A
(8)

Similarly, μm,p and vm,q are weighting coefficients
based on the retardation method [14-16] and are given
by

νm,q+1 = 0.5νm,q, (9)

with vm,1 = 1. This causes Âm,q to converge with a

high degree of accuracy until

Fm,p,q < ((1 − 0.5νm,q) · Fm,p,0). (10)

Then, Âm+1,0, f̂m+1,0 , and φ̂m+1,0 are set to Âm,q, f̂m,p ,

and φ̂m,p , and q and p are reset to 1.

Next, the steepest descent method and the amplitude
converging algorithm are recursed until the cost func-
tion becomes partially converged. Newton’s method is
then applied.
2.3.3. Newton’s method
Although the steepest descent method causes values to
converge over a comparatively wide range, a single ser-
ies of operations cannot ensure sufficient accuracy. In
order to achieve a highly accurate conversion, NHA
uses Newton’s method following the lower accuracy
steepest descent method. The following recurrence for-
mula is used for Newton’s method:

f̂m,p = f̂m,0 − μm,p

J

∣∣∣∣∣∣∣∣
∂Fm,0,0

∂f
∂2Fm,0,0

∂f∂φ
∂2Fm,0,0

∂φ

∂2Fm,0,0

∂φ2

∣∣∣∣∣∣∣∣
, (11)

φ̂m,p = φ̂m,0 − μm,p

J

∣∣∣∣∣∣∣∣
∂2Fm,0,0

∂f 2
∂Fm,0,0

∂f
∂2Fm,0,0

∂f∂φ

∂Fm,0,0

∂φ

∣∣∣∣∣∣∣∣
, (12)

where

J =

∣∣∣∣∣∣∣∣
∂2Fm,0,0

∂f 2
∂2Fm,0,0

∂f∂φ
∂2Fm,0,0

∂f∂φ

∂2Fm,0,0

∂φ2

∣∣∣∣∣∣∣∣
, (13)

and m is the number of iterations of Newton’s
method. In addition, μm,p is similarly obtained from
Equation 6. This series of calculations is also repeated

Figure 4 Convergence process for the steepest descent and
the retardation method.
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to cause f̂m and φ̂m to converge accurately. After apply-

ing Equations 11 and 12, Âm is made to converge by
applying Equation 8 in the same manner as in the stee-
pest descent method, and the series of calculations is
repeated. The only difference is that the converging
algorithm is repeated using Newton’s method instead of
the steepest descent method. Thus, the frequency para-
meters are estimated to a high degree of accuracy and
at high speed by using a hybrid process combining the
steepest descent and Newton’s method.
2.3.4. Sequential reduction
Even for the case in which there are several sinusoidal
waves, the spectral parameters can approximately be
derived by sequential reduction. Here, x(n) is expressed as
the sum of K sinusoidal waves in the following manner:

x(n) =
K∑
k=1

{
Ak cos

(
2π

fk
fs
n + φk

)}
. (14)

According to Parseval’s theorem, the object signal fre-

quency fk and the model signal’s frequency f̂ do not

match, i.e., if

fk �= f̂ , (15)

then

F(Â, f̂ , φ̂) = Â2 +
K∑
k=1

Â2
k . (16)

In addition, if the pair of f̂ and φ̂ matches either fk
or φk , then

F(Â, f̂ , φ̂) =
(
Â2 − Aj

)2
+

K∑
k=1.k �=j

Â2
k . (17)

If both Aj and A match, then a frequency component
of an estimated spectrum can completely be removed
from an object signal. Therefore, the problem of acquir-
ing an optimum solution is frequency independent and
is applicable even to a signal consisting of several sinu-
soidal waves by sequential and individual estimation
from the object signal. In other words, even when the
object signal is a composite sinusoidal wave, several
sinusoidal waves can be extracted by performing similar
processing on sequential residual signals. If the frequen-
cies of two spectra are adjacent to each other, the other
spectrum generates another trough in the trough around
the true value shown in Figure 3 and distorts the evalua-
tion function. This may result in an error, as discussed
later herein.

2.4. Accuracy of NHA
Among the techniques based on DFT, generalized harmo-
nic analysis (GHA or Hirata’s algorithm) is generally con-
sidered to have the highest accuracy [17-20].
According to these analyses, the frequency resolution

depends on the frame length because one analysis window
apparently has the length of several windows. However,
the decomposition frequency has a finite length, and an
object signal of any other frequency cannot be analyzed.
Figure 5 shows the numbers of frequencies that can be
analyzed by DFT and GHA at each frame length. Success-
ful frequency analysis means that the number of spectra of
the object signal matches the number of spectra after ana-
lysis, that is, if the frame length is unique, then DFT has N
decomposition frequencies (0, fs/N, 2f/N,..., (N - 1)fs/N
[Hz]). Compared to DFT of approximately half the data
length, GHA is one order of magnitude more accurate. If
the spectrum of the object signal is not in the group of the
harmonic spectra, the group of harmonic spectra appears
near the true frequency.
In order to verify the frequency resolution of NHA, we

compared DFT and GHA experimentally, as shown in
Figure 6. With the frame length set to 1 s (512 samples),
we analyzed a single sinusoidal wave. By each technique,
one sinusoidal wave was extracted, and the square of the
error from the original signal was examined.
DFT exhibited low analytical accuracy except when the

signals had frequencies that were integral multiples of
the fundamental frequency. At frequencies above 1 Hz,
GHA exhibited accuracies that were two to five orders of
magnitude greater. At the same frequencies, NHA was 10
or more orders of magnitude more accurate than DFT.
At frequencies below 1 Hz, DFT and GHA were equally
accurate, but NHA was able to estimate the frequency

Figure 5 Frequency resolution of DFT and GHA.
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and other parameters correctly without being affected by
the frame length. Thus, NHA was demonstrated to have
an even greater analysis accuracy than GHA, which was
developed from DFT.
Accurate estimation at frequencies below 1 Hz means

that even object signals having periods longer than the
frame length can accurately be analyzed. Therefore, it
may be possible to accurately estimate the spectral
structures of signals representing stock prices and other
fluctuation factors.
Figures 7 and 8 show the square errors of two sinusoidal

waves. A similar evaluation to that in Figure 6 was per-
formed by adding another sinusoidal wave (f = 0.6 Hz) in
order to determine whether both sinusoidal waves could
be correctly extracted.
The ratio of the amplitudes of the two sinusoidal waves

is 1:1 in Figure 7 and 1:10 in Figure 8. The latter is the
sinusoidal wave ratio at f = 0.6 Hz. In both cases, the
accuracy increases in the order of NHA, GHA, and DFT.
If the two sinusoidal waves have similar amplitudes, the
evaluation functions shown in Figure 3 interfere with
each other, increasing the distortion, which results in a
greater error than that when only one sinusoidal wave is
used. As mentioned above, this tendency becomes more
noticeable as the frequencies become closer to each
other. However, the NHA error is less than the average,
as compared to the errors of DFT and GHA.

3. Extracting single sinusoidal waves
In this section, a quantitative comparison of the extrac-
tion accuracy and the calculation time of DFT and

NHA is performed. A single sinusoidal wave in a noisy
environment was used for the experiment. For each
method, an optimum spectrum (closest to the target sig-
nal frequency) was selected and converted to a wave-
form for evaluation. For DFT, f is necessarily an integral
multiple of the fundamental frequency. For the calcula-
tions, the frame length was set to 256, and the sampling
frequency was set to 488 kHz. The sinusoidal wave was
set to 488 Hz in order to investigate frequencies that
DFT could not estimate.
Figure 9 shows the sinusoidal wave extracted by DFT

and NHA from a white-noise environment in which the
SNR was 0 dB, where (a) is the 488 Hz target signal and
(b) is the added white noise signal.
Figure 9c, 9e are the signals detected by NHA and

DFT, respectively, and (d) and (f) are the residual signals
obtained by subtracting (c) and (e) from the target sig-
nal. This figure shows that NHA more accurately
extracts the original signal. When noise is added to the
signal, DFT produces errors if the frequency is not a
multiple of the fundamental frequency. The output SNR
was approximately 24 dB when NHA was used for
extraction and approximately 4 dB when DFT was used.
Thus, an improvement of approximately 20 dB was
confirmed.
These calculations were performed using a personal

computer (CPU: Intel Core i7-930@2.8 GHz, Memory: 6
GB). The time required for calculating a signal consist-
ing of 256 samples by DFT and NHA are 2.8 and 12.0
ms, respectively. It is noted that DFT is calculated by
the fastest FFT using a radix-2 number in this article.

Figure 6 Square error (frame length: 512).
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Figure 7 Square error of the obstruction sine wave (A = 1, f = 0.6).

Figure 8 Square error of the obstruction sine wave (A = 10, f = 0.6).
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For statistical verification at various target signal fre-
quencies, an extraction experiment was conducted in
which the frequency f and the initial phase j of the tar-
get signal were varied 1,000 times in different noise
environments using uniformly distributed random num-
bers. The range of f and j was 0 <f < 4000 and -π <j
<π, respectively. In this case, the amplitude A was main-
tained constant. The input signal was generated by add-
ing white noise to a single sinusoidal wave. Throughout
the experiments, the input SNR was maintained in the
range from -10 to +10 dB and was varied in 5-dB steps.
Figure 10 shows the results for a white-noise environ-

ment. The upper dotted line indicates the theoretical limit
of recovery using DFT. This corresponds to the case in
which the extracted spectrum could be converted back to
a waveform with the original amplitude. As shown in
Figure 10, NHA performed much better in white-noise
environments. Because of the finite frequency resolution,
recovery of a single spectrum using DFT was limited, par-
ticularly in a low-noise environment. Recovery using NHA

yielded results well above the theoretical limit of DFT and
showed a linear improvement even in a low-noise environ-
ment, thus confirming the importance of improved fre-
quency resolution.

4. Suppression of side-lobes
In this section, the ability of NHA to suppress side-lobes
is discussed. A frequency analysis was performed on a
waveform composed of four sinusoidal waves (see Table 1).
Figure 11 shows the resulting waveform, and Figure 12
shows the frequency spectra of this waveform as deter-
mined by DFT (zero-padding indicates interpolation of the
DFT) and NHA. In the case of DFT, side-lobes exist
around the main-lobe because of the limited frequency
resolution. In the case of NHA, a line spectrum that is
similar to that of the original waveform is obtained, and no
side-lobes are produced. Even spectral components that
are weaker than the DFT side-lobes can be extracted, as
shown in Figure 12c.
In a case such as that shown in Figure 13, in which the

source spectrum is mixed with a noise spectrum, side-
lobe suppression can lead to greater noise reduction. The
black line indicates the signal source spectrum, and the
gray line represents the noise signal spectrum.
Figure 13a shows the case for DFT. The side-lobes of the

source spectrum overlap the noise spectrum, making it
difficult to estimate the amplitude. In addition, the phase
information of the target signal is lost. If the side-lobes are
removed, then the signal source cannot fully be recovered.
On the other hand, the possibility of any overlap between

Figure 9 Sinusoidal waves extracted by DFT and NHA from a white-noise environment (SNR: 0 dB).

Figure 10 SNR changes of sinusoidal waves extracted by DFT
and NHA in a white-noise environment.

Table 1 Parameters of sinusoidal waves

Sinusoidal waves

Mark Amplitude Target frequency (Hz)

(a) 0.8 4.2

(b) 1 10.3

(c) 0.1 13.7

(d) 0.6 20.3
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the source and noise spectrum decreases because NHA is
a high-frequency resolution analysis, as shown in Figure
13b. Therefore, there is a high possibility that the informa-
tion contained in the source spectrum is isolated from the
noise spectrum and can be recovered.

By DFT and NHA, we performed a frequency analysis
on the part of the sound for which the input SNR of the
white noise is 0 dB. Figure 14a is the original voice signal,
and Figure 14b is the voice signal to which a noise was
added. We removed noise by the SS method using DFT

Figure 11 Composite wave synthesized by four sinusoidal waves.

Figure 12 Frequency characteristics of four sinusoidal waves.
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and NHA; the results of which are described in Figure 14c,
d, respectively. Figure 14e shows the variation of the out-
put SNR by changing the threshold of the SS method.
This figure shows that the maxima of output SNR using
DFT and NHA are 9.1 and 17.4 dB, respectively. There-
fore, the proposed technique using NHA is more useful in
the noise reduction than that using DFT. In addition, it is
important to appropriately determine the threshold for
each noise because, as shown in Figure 14e, the output
SNR changes significantly near the threshold to distinguish
between signal and noise. One part of the output SNR
using NHA is a straight line because small side lobes
appear from the signal. However, NHA does not reveal
the spectrum components of a sound in the side lobes.
DFT is inferior to NHA because, in DFT, noise is mixed
with the sound in the side lobes. Therefore, in NHA, the

threshold can be increased and the numerous noises can
be suppressed, thereby improving the output SNR.

5. Constant threshold experiment
5.1. Experimental conditions for the constant threshold
experiments
In order to investigate the relationship between the fre-
quency resolution obtained by DTF, NHA, and the Ismo
method [21,22], and the noise compression obtained by
the SS method, we evaluate the results obtained by the
segmental SNR method. In general, in the SS method,
musical noises occur and affect the subjective evalua-
tion. Although the spectral floor [23] has been proposed
to eliminate these noises, in order to determine only the
improvement in the results, we do not use this method
in this study. In DFT, NHA, and the Ismo method,

Figure 13 Spectrographs for a noise signal and a signal source. (a) low resolution, (b) high resolution.
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(e) Relationship between threshold and Output SNR.
      The solid line indicates the DFTresults, and
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(d) Noise reduction using NHA.

(c) Noise reducttion using DFT.

Figure 14 Noise reduction of the vowel sound.
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various window functions were chosen. In DFT and the
Ismo method, a Hanning and a rectangular window
functions were used. In NHA, only a rectangular win-
dow was used. In a previous study [11], the Ismo
method applied a Hanning window at points at which
the signal changed suddenly, and a rectangular window
was applied at the other points. In this article, to con-
sider frequency resolution, we use a Hanning window
and a rectangular window separately in different experi-
ments. The signal sources are musical sounds in the
form of midi data (Do-Re-Mi, Für Elise) that are played
by a YAMAHA XG WDM SoftSynthesizer for 2 s.
Based on the findings of a previous study [11], the order
of the filter used for the prediction of the Ismo method
is less than one frame length, and the half-frame-length
sections before and after the signal frame are extrapo-
lated. Here, the frequency resolution of the Ismo
method is theoretically twice that of DFT. In most cases
considered herein, NHA is used to extract 512 spectra
per frame. In addition, after subtracting the signals of 3/
4-frame-length sections before and after the signal
frame, we evaluate the result of the NHA to consider
the overlap of the signal frames. We then determined
whether the same tendency was observed for each
method, for four window lengths of 256, 512, 1024, and
2048. Table 2 lists the experimental conditions.

5.2 Details of the methods used to obtain the amplitude-
modified spectra
First, spectrum (Ak, fk, jk), X(k), and XISM(k) are calcu-
lated by NHA, DFT, and the Ismo method, respectively.
The previously estimated noise spectrum is then sub-
tracted from the calculated spectrum. Output signal
ŝDFTsub obtained by DFT using the SS method is as fol-
lows:

ŝDFTsub(n) = �
[
IFFT

{
|X̂(k)| exp(j � X(k))

}]
k = 0, 1, 2, . . . ,N − 1

|X̂(k)| =
{ |X(k)| − α|D̂(k)| if(|X(k)| − α|D̂(k)|) > 0

0 otherwise

(18)

where |X(k)| , k, and a denote the spectral amplitude,
the spectral number, and the most suitable threshold of
the input signal, respectively. In general, the SS method
used in noise compression yields the most suitable out-
put by adjusting the noise spectrum model by means of
a subtraction factor [23]. However, we calculate the seg-
mental SNR using a few suitable threshold values for
each analysis method because it is predicted that the
most suitable values of the variable used in noise com-
pression differ depending of the analysis method. The
obtained results confirm that the most suitable thresh-
old values do differ depending on the analysis method.
Consequently, we calculated the suitable values for each
signal waveform and compared the analysis methods
with the most suitable segmental SNR. For the case of

white Gaussian noise, we use |D̂(k)| that is constant for
k, because the power spectrum density is uniform in any
frequency band. We select the most suitable value of a
so that the segmental SNR becomes maximum by gra-
dually increasing the segmental SNR from a small value
and use the selected value of a in the experiments. For

the case of pink noise, we use the noise model |D̂(k)|
that varies linearly along frequency axis and select the
most suitable value of a using the above-mentioned
method. In this study, we also remove the noise by the
spectrum extraction (SE) method based on the concept
of high frequency resolution preventing spectrum mix-
ture. In the SE method, the output signal of DFT ŝDFTex

is given as

ŝDFTex(n) = �
[
IFFT

{
|X̂(k)| exp(j� X(k))

}]
k = 0, 1, 2, . . . ,N − 1

|X̂(k)| =
{ |X(k)| if(|X(k)| − α|D̂(k)|) > 0

0 otherwise

(19)

Substituting Xism(k) obtained using the Ismo method
for X(k) in Equations 18 and 19, we calculate these
equations in a similar manner and obtain the output
ŝISMsub by the SS method, and the output ŝISMexby the
SE method.

Table 2 Experimental conditions

Analysis method DFT (rectangular), DFT (Hanning), Ismo (rectangular), Ismo(Hanning), NHA

Amplitude modification Spectral extraction, SS

Sampling frequency 44.1 KHz

Length of Music 2 s

Frame length 256, 512, 1024, 2048

Shift length (Frame length)/4

Added noise White Gaussian noise, Pink noise

Input SNR (dB) -10, -5, 0, 5, 10

Instrument of MIDI Flute, Grand piano, Reed organ, Overdrive guitar, Trumpet

Music (midi) Do-Re-Mi, For Elise

Software synthesizer YAMAHA XG WDM SoftSynthesizer
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As mentioned earlier, we investigated both X(k) and
XISM(k) using a Hanning window and a rectangular win-
dow (a is optimally selected for each window function).
The output signal ŝNHAsub of NHA obtained by the SS
method is given by the following equation:

ŝNHAsub(n) =
K∑
k=0

Ãk cos

(
2π

f̂k
fs
n + ϕ̂k

)

Ãk =
{
(Âk − 2α|D̂(fk)|) if(Âk − 2α|D̂(fk)|) > 0

0 otherwise
,

(20)

and (Ak, fk, jk) is the spectrum component obtained
from the noise signal obtained by NHA. Here, a is
doubled in order to be equal to |X(k)| . Similarly, the
output signal ŝNHAex of NHA obtained by the SE
method is as follows:

ŝNHAex(n) =
K∑
k=0

Ãk cos

(
2π

f̂k
fs
n + ϕ̂k

)
, Ãk =

{
Âk if(Âk − 2α|D̂(fk)|) > 0

0 otherwise (21)

5.3. Results of the fixed-threshold experiment
The variation with respect to time of the output SNR
for input signals in which white Gaussian noise is added
to a grand piano sound source is shown in Figures 15,
16, and 17. In these figures, (a), (b), and (c) show the
output SNRs obtained by the SE method, the SS
method, and the time-waveform, respectively, for the
original signal. The window length is 2048.
Compared to the SE method, the NHA, indicated by

blue solid lines, provided the best results, followed by
the Ismo method with a Hanning window, and DTF
with a rectangular window provided the worst results.
Similarly, compared to the SS method, NHA provided
the best results, and DTF with a rectangular window
provided the worst results.
For this sound source, the output SNR calculated by

each method has a different magnitude, but these mag-
nitudes change at approximately the same time and
exhibit a similar trend.

Figure 15 Change with respect to time in the output SNR of the signal source of a grand piano in a white Gaussian noise
environment for which the input SNR is 0 dB. (a) SE method, (b) SS method, (c) signal source.
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Figure 16 Change with respect to time in the output SNR of the signal source of a grand piano in a white Gaussian noise
environment for which the input SNR is 10 dB. (a) SE method, (b) SS method, (c) signal source.

Figure 17 Change with respect to time in the output SNR of the signal source of a grand piano in a white Gaussian noise
environment for which the input SNR is -10 dB. (a) SE method, (b) SS method, (c) signal source.

Yoshizawa et al. EURASIP Journal on Audio, Speech, and Music Processing 2011, 2011:5
http://asmp.eurasipjournals.com/content/2011/1/5

Page 14 of 19



The results obtained for all of the analysis methods
were poor during the periods of sudden changes in
amplitude. In regions of stable amplitude, the high fre-
quency resolution analysis methods that use a Hanning
window function provided good results. Examples of sig-
nals for which a stable envelope was maintained are
shown in Figures 18, 19, and 20.
The signal used here is stable and exhibits only a few

changes in its envelope for both the SE and SS methods,
as shown in Figures 18, 19, and 20. The calculated results
for that signal were ranked in order of NHA, the Ismo
method, and DFT. For the SE method, the Ismo method
and NHA provided better results than DFT by approxi-
mately 5 and 3 dB, respectively, when the envelope chan-
ged markedly. For the SS method, the Ismo method and
NHA provided better results than DFT by approximately
1.5 and 0.7 dB, respectively, when the envelope changed
markedly. The results obtained by NHA may have been
superior because the signal source spectrum was not dis-
persed and the frequency resolution was high. In addi-
tion, the results of the Ismo method are comparatively

good, in part because the prediction of the signal became
easy.
Figure 21 shows the average segmental SNR for the

music signal as obtained by ten noise reduction meth-
ods, which are the combinations of two noise subtrac-
tion methods and five frequency analysis methods in an
analysis frame. Similar magnitude correlations appeared
among the methods, even when the window length
changed in Figure 21a-f. Similar results are observed for
SNRs of 10, 0, and -10 dB.
Figure 21a-c shows the results for input SNRs of 10, 0,

and -10 dB, respectively, in a white Gaussian noise envir-
onment. Based on the results, the average segmental SNR
obtained by NHA is the highest for the SE method, fol-
lowed by the Ismo method using a Hanning window. For
the SS method, the average segmental SNR obtained by
NHA is high compared to other techniques. Unlike in a
previous study [11], the improvement in precision by the
Ismo method for the SS method could not be confirmed
in the present experiment. However, the higher values
are thought to have been obtained using transient

Figure 18 Change with respect to time in the output SNR of the signal source of a reed organ in a white Gaussian noise environment
for which the input SNR is 10 dB. (a) SE method, (b) SS method, (c) signal source.
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Figure 19 Change with respect to time in the output SNR of the signal source of a reed organ in a white Gaussian noise environment
for which the input SNR is 0 dB. (a) SE method, (b) SS method, (c) signal source.

Figure 20 Change with respect to time in the output SNR of the signal source of a reed organ in a white Gaussian noise environment
for which the input SNR is -10 dB. (a): SE method, (b): SS method, (c): signal source.
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detection [21]. In this study, the threshold is chosen so
that the segmental SNR I maximized each time the seg-
mental SNR is calculated. The Ismo method is thought
to be well suited to real applications (e.g., threshold

decision method that considers either human hearing [8]
or musical noise [23]) and provides good affinity. Figure
21d-f shows the results for input SNRs of 10, 0, and -10
dB, respectively, in a pink noise environment. In this

Figure 21 Average segmental SNR of a white Gaussian noise and a pink noise environment.
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case, the best NHA results were obtained using either the
SE method or the SS method. Moreover, the combination
of the Ismo method and a Hanning window provide good
results compared to DFT by the SE method.

6. Summary
Previous studies have confirmed that the precision of
the noise suppression is improved by increased fre-
quency resolution for quality enhancement of sound to
a previously existing recording. In this study, we demon-
strate that NHA provides high frequency resolution by
suppressing the influence of the window length. The
limit to the precision improvement of noise suppression
by NHA is examined. Since a frequency spectrum using
NHA is not affected by the window length at the time
of frequency conversion, the frequency resolution width
is regarded as theoretically infinitesimal.
We added white Gaussian noise and pink noise to a

music signal and performed experiments to examine the
effects of noise suppression by the basic SS method.
Segmental SNR was used to evaluate the effectiveness of
noise suppression through a fixed-threshold experiment,
and NHA and the conventional SS method were com-
pared. The precision of the noise suppression obtained
by NHA was confirmed to be better than that obtained
by the conventional method. A similar magnitude corre-
lation was confirmed to appear among the methods
even if the window length changed. In addition, the
improvement in precision of noise suppression by high
frequency resolution was confirmed when the envelope
was stable. Based on these results, an improvement in
noise suppression precision, as compared to that pro-
vided by the conventional method, can be expected in
various applications by incorporating NHA with a theo-
retically infinitesimal frequency resolution.
In this study, we attempt only to re-master the old

music sources. Therefore, the main noise sources are
usually generated by the old recording device and the
deterioration of the recording media as pulsive noise
and white noise. We do not assume noise encountered
in a noisy environment, such as a subway or a roadside.
It may be feasible to apply the proposed technique to

sound sources of daily conversations. It appears that we
can recover enough even if a noise is mixed because the
vowel sound is a periodic signal over a short time per-
iod. However, in the frequency analysis of the conso-
nant, the calculation using NHA is approximately
equivalent to the calculation using FFT.
In addition, we examined a pink noise as a representa-

tive colored noise. Other steady noises can be reduced
in the same manner if the outline of the power spec-
trum is known. However, it appears that we must incor-
porate new methods other than the proposed method,
and the new methods must be dynamically devised

because the characteristic of an unsteady noise must be
predicted.
At this stage, we have not incorporated the proposed

method into the embedded system or the portable
device because the proposed method is several times
longer than the calculation time of DFT (equivalent to
the fastest FFT using a radix-2 number in this article).
The high-speed SS method appears to be advantageous
if the application is for the research of the speech recog-
nition in the daily conversations. Although the calcula-
tion time is increased, the proposed technique will be
effective if used in an application that requires high pre-
cision. We believe that the defects of the proposed
method are best left for consideration in a future study
if the proposed method is applied to a portable product
or the research of speech recognition.
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