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Abstract

Digital audio has been ubiquitous over the past decade. Since it can be easily modified by editing tools, there has
been a strong need to protect its content for secure multimedia applications. Previous audio authentication
algorithms are mainly focused on either human speech or general audio with music as part of the test data, while
special research on music authentication has been somewhat neglected. In this article, we propose a novel
algorithm to protect the integrity and authenticity of music signals. Its main contributions include the following:
(1) Music is segmented into beat-based frames, which not only endows the authentication units with more
semantic meaning but also perfectly resolves the challenging synchronization problem. (2) Robust hashes are
generated from chroma-based mid-level audio feature which can appropriately characterize the music content and
integrated with an encryption procedure to ensure the security against malicious block-wise vector quantization
attack. (3) Fuzzy logic is adopted to make the authentication decision in the light of three measures defined on bit
errors, coinciding with the inherent blurred nature of authentication. The experiments exhibit good discriminative

ability between admissible and malicious operations.

1. Introduction

Modern audio editing and processing tools make high-
quality forgery pretty easy and convenient. For example,
the semantic meaning of audio can be altered by simply
reordering or dropping out a few small parts without
introducing perceptible artifacts. Thus, judging the
authenticity and integrity of audio data by human percep-
tion alone is far from enough, tamper detection is increas-
ingly essential to secure audio applications. Traditional
data authentication in cryptography does not permit any
change of the binary bit stream; this is not suitable for
audio data which can be equivalently represented in
various formats without perceptible distinction. Therefore,
audio authentication which is aimed at effectively
protecting the perceptual authenticity and integrity of
audio has become an emerging technique in recent years.
It ensures that the received audio signal was not mali-
ciously changed by a third party during the course of
transmission, that is, the received and the original audio
signals are the same in the sense of human auditory
perception.
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Based on the protection level, audio authentication can
be classified into hard and soft authentication [1]. Hard
authentication rejects any modifications except lossless
compression or format conversion. Soft authentication
passes certain incidental or admissible manipulations and
rejects all the rest called malicious manipulations. Soft
authentication can be further divided into quality-based
authentication which rejects any manipulations that lower
the perceptual quality below an acceptable level and
content-based authentication which rejects any manipula-
tions that change the semantic meaning of the content.
Apparently, hard authentication has the minimum distor-
tion endurance, while content-based soft authentication
has the maximum capability.

Differentiating acceptable and unacceptable mani-
pulations is the main research challenge in multimedia
authentication techniques. In addition, it is dependent on
a specific application, namely, an admissible operation in
one application might be regarded as unacceptable in
another situation. For example, MP3 compression is
deemed as a content-preserving operation in most appli-
cations, whereas it must be excluded in the production of
CD masters in recording studio because any quality loss
should be avoided. Different from previous audio authen-
tication algorithms which are specialized to speech or only
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use music as part of the test data, this research is focused
on music authentication, and in this circumstance we clas-
sify possible intermediate operations into two categories:

1. The first is content-preserving operations that only
change the signal but not the content and typically
include standard audio signal processing, such as
MP3 compression, filtering, and resampling, and
time-domain synchronization manipulations like
time-scale modification (TSM) and jittering.

2. The second is malicious operations that substantially
change the semantic meaning and commonly
include three types of illegal tampering, i.e.,
cropping, adding, and replacing.

Soft authentication typically measures distortion in
some metrics between a feature vector from the dubious
signal and that from the original signal, and by compa-
ring with a preset threshold, the final decision is made on
the signal's authenticity. It is usually hard to distinguish
distortions caused by incidental operations from that
caused by malicious manipulations, namely, there is no
sharp boundary between authentic and inauthentic
signals. This intrinsic fuzziness makes the soft authentica-
tion design challenging and ad hoc in most cases [2].
Another bottleneck is how to resist time-domain synchro-
nization distortions, like malicious cropping/adding, and
content-preserving jittering and time-scale modifications.
Because audio signals must be divided into many frames
for the purpose of tamper localization, the above time-
domain distortions will bring about ruinous results to
most previous authentication algorithms.

In the literature, only a few audio authentication algo-
rithms have been published. Note that algorithms of
blind audio forensics summarized in [3,4] are out of the
scope of this research. Most algorithms are focused on
speech authentication or general audio authentication.
In the latter case, some algorithms take music signals as
part of the test data. In regard to speech authentication,
Wu and Kuo started the earliest work in this field. In [5],
they proposed a fragile speech watermarking scheme
based on the modified odd/even modulation with expo-
nential scale quantization and a localized frequency
masking model. Malicious alterations can be distinguished
from content preserving operations like resampling, white
noise pollution, and G.711 and G.721 speech coding with
very low error probabilities. In [6,7], they developed two
robust hashing schemes integrated with CELP and ITU
G.723.1 speech coders. Semantic-level speech features
including pitch information, changing shape of the vocal
tract, and energy envelope are extracted, encrypted, and
attached as the header information. The speech signal
could go through GSM-AMR speech coder, recompres-
sion, amplification, transcoding, resampling, D/A and A/D
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conversion, and minor white noise pollution without trig-
gering the verification alarm. To gain resynchronization
caused by content-preserving operations, a low-cost
mechanism based on salient point detection is adopted in
[6]. Besides, Jiao et al. designed a word-level robust speech
hashing algorithm based on linear spectrum frequencies
(LSFs) which can model the vocal tract [8]. Discrete cosine
transform (DCT) is introduced to decorrelate the LSFs,
and low-frequency DCT coefficients are taken to enhance
the discriminative capacity. Owing to these global features,
the algorithm is robust against speech transcoding,
resampling, noise addition, random cropping, and slight
time scaling. Park et al. proposed to detect speech forgery
using curve-fitting-based watermark pattern recovery
techniques [9]. The watermark pattern will be modified if
some changes such as substitution, insertion, and removal
have been made to the speech content; therefore, modi-
fication and forgery can be measured and detected by pat-
tern recovery. This method uses cyclic pattern embedding
to overcome the synchronization problems and enhance
the robustness. With respect to general audio authentica-
tion, Radhakrishnan and Memon proposed a classical al-
gorithm based on an invariant feature [10]. The core idea
is that if two audio signals are perceptually similar, their
psychoacoustic masking curves should also resemble each
other. Accordingly, this property can be used to differenti-
ate allowed signal processing like MP3 compression from
certain malicious operations. Quan and Zhang designed a
wavelet packet domain watermarking scheme that decom-
poses audio signals into subband structure close to the
critical bands in psychoacoustic [11]. Not only it can au-
thenticate the integrity but also locate time/frequency
tampering. In [12], Steinebach and Dittmann used audio
features including the root mean square, zero cross rate,
and spectral information of frame-based audio samples to
design a content-fragile authentication scheme. The error
rates increase with the strength of attacks; accordingly, a
threshold-based identification is adopted to differentiate
content changes. Zmudzinski and Steinebach used a
perception-based robust hash function adapted from the
famous Philips audio fingerprint to verify the integrity of
audio recordings [13]. Experiments show a high level of
distinction between perceptually different audio data and
high robustness against content-preserving signal transfor-
mations. In [14], Varodayan et al. developed a backward-
compatible audio authentication scheme based on distrib-
uted source coding, which provides the desired robustness
against legitimate encoding variations and at the same
time detects illegitimate modifications. The key idea is to
provide a Slepian-Wolf-encoded quantized perceptually
significant audio projection as authentication data.
Valenzise et al. combined compressive sensing and distri-
buted source coding to generate compact hash signature
and applied it to audio content protection [15]. Three
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kinds of tampering, ie., time-localized tampering,
frequency-localized tampering, and time-frequency-local-
ized tampering, are classified and sparse tampering can be
reconstructed. In summary, although the above algorithms
have obtained certain achievements in different aspects of
audio content authentication, they still exhibit some
common weakness to be improved. First, audio signals are
all segmented into fixed-length frames which may cause
serious synchronization problems under cropping, adding,
and time stretching; next, adopted features are not suit-
able enough to characterize the content of music signals;
last, all algorithms take a yes/no decision instead of a
fuzzy one.

In this paper, we propose a novel content-based soft
authentication algorithm for widespread music works.
To overcome previous methods' fragility under time-
domain synchronization distortions which are mainly
caused by the fixed framing of audio signal, we instead
adopt a beat tracking method to segment the bit stream.
After post-processing, most reserved beat times can be
roughly deemed as music edges like drums or onsets
which are very important to human auditory perception
and have been shown to be rather stable under various
distortions. In other words, this is an implicit synchro-
nization method which partitions the time axis into a
series of authentication units with each unit bounded by
a left and a right music beat. Combined with dynamic
time warping (DTW) technique, synchronization bet-
ween the original and the received music signal is
perfectly achieved without loss of precision for tamper
localization. By integrating an encryption procedure and
chroma feature which is popularly used in music
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information retrieval to characterize the progression of
melody and harmonics, we achieve the secure robust
hash against various content-preserving distortions. To
avoid the deficiency of previous audio authentication
methods that give a definite classification between
admissible and malicious operations, herein we perform
fuzzy classification on three defined statistics between
the original and the dubious hash sequence to make the
final decision with an authentication degree.

2. System overview

To get an overall idea of this content-based music
authentication algorithm, the general framework which
is composed of two stages, i.e., the protection stage and
the verification stage, is illustrated in Figure 1. In the
protection stage, original music signal is first segmented
into variable frames by an effective beat tracking algo-
rithm and post-processing; then, chroma features that
are commonly used in music analysis to characterize the
content are extracted in every beat-based frame; next,
they are nonuniformly quantized into binary sequences
to form the final robust hash by integrating an encryp-
tion procedure; last, concatenated hashes are stored in a
trusted authentication center for future use. In the verifi-
cation stage, the same beat tracking and chroma-based
hash calculation are first performed on the input music
signal to be authenticated; then, the beat alignment is
done to rectify the missegmented beats caused by distor-
tions during the transmission, thus, the extracted hash
sequence and its stored counterpart are resynchronized
and compared in terms of normalized Hamming dis-
tance; finally, fuzzy classification is performed on three

Protection Stage keys
M
l Original
Original Beat Ch Robust Eo T Kufiadni
rigin e roma obus uthentication
Music T Segmentation = Calculation = Hashing 7 Center
Dubious Beat Chroma Robust Compare &
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keys
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Figure 1 General framework of the proposed music authentication scheme.
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statistical measures that are defined on the above dis-
tance to give the verification result with an authentica-
tion degree.

3. Protection stage

In this section, we describe the procedure of generating
secure robust hashes for the music authenticity protec-
tion stage which consists of three steps, i.e., beat-based
music segmentation, chroma-based feature extraction,
and robust hash generation with security considerations.

3.1 Beat-based music segmentation

In order to fulfill the requirement of tamper localization,
an authentication algorithm must divide the multimedia
signal into many basic authentication units, e.g., frames
for audio and blocks for images. Conventional audio
authentication schemes usually use fixed-length framing,
whereas this kind of signal partition will bring about two
major problems. First, it breaks the natural continuity
between adjacent audio segments and thus affects the
semantic characterization of the content. Second, it will
cause serious desynchronization problem due to time-
domain distortions. It is known that music signals typic-
ally exhibit obvious rhythm. Therefore, fixed-length
framing is inappropriate for music authentication; in this
research, we instead adopt beat-based framing which is
composed of a state-of-the-art beat tracking method and
a post-processing module to partition authentication
units. In the literature, similar ideas of music segmen-
tation have been wused in the scenario of robust
watermarking for ownership protection [16,17]. In [16],
music segmentation is also based on beat detection,
while it uses a different beat tracking algorithm and a
different mechanism for resynchronization between the
original and the distorted beats. Moreover, it does not
have the post-processing procedure. In [17], note onset
detection instead of beat tracking is used for music
segmentation. Audio feature extracted from a note
duration is generally not so robust as within a beat
duration, since one beat is normally several times as long
as the smallest note and accordingly increase the feature's
resistibility against various distortions. As expected, the
experiments only show moderate robustness under some
audio signal distortions and cropping, while results under
other time-domain distortions were not reported.

As stated above, beat-based segmentation not only
keeps the inherent relationship of audio samples per
frame and hence endows semantic meaning to the gen-
erated hashes, but also provides a powerful mechanism
to resist time-domain modifications since many beat
times are perceptually important music edges and will
be kept unchanged or only trivially changed under
various distortions. In our implementation, we first
resort to an existing beat tracking approach introduced
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in reference [18] and then perform post-processing to
pick out those steadier beat times as frame boundaries.
This algorithm includes the following steps:

1. Convert the input audio into an onset strength
envelope by taking the first-order difference along
time in each subband, throwing away negative
values and convolving with a Gaussian envelope
about 20 ms wide.

2. Estimate an approximate global tempo by calculating
the autocorrelation of the onset strength and
searching peaks in perceptual weighting windows.
The period with the highest peak is identified as the
target tempo.

3. Define an objective function to maximize both the
onset strength at every hypothesized beat time and
the consistency of the inter-beat interval with the
estimated constant tempo.

4. The set of times that optimize the objective function
are derived using dynamic programming and chosen
as the beat times of the input music, denoted as C =
{Cili =1, 2, ..., M}, where M is the total number of
beats of a whole song.

5. In this step, we perform post-processing to pick out
the steadier beats. Specifically, if the energy in a small
local region centered at C; is less than 1/4 of the
average of all beats, then beat C; is abandoned. The
preserved beats are marked as B = {Bj|i = 1, 2,...,N},
they are used as frame boundaries and are generally
very steady music edges.

Figure 2 is an illustration of the beat-based frames of a
5-s long music and its time-scale modified (-5%) version.
It can be seen that most beats under this distortion are
not obviously affected and are still able to be mapped to
their original position.

3.2 Chroma-based feature extraction

In an effort to verify the semantic meaning of music con-
tent, selecting suitable features that can characterize the
music plays a crucial role. On the basis of beat-based
framing, we employ chroma which has been widely used
in music content analysis as the key feature to characterize
the progression of main melody and harmonics.

Chroma, also called pitch class profile, is a frame-
based representation of music signals where the full
spectrum is projected into 12 semitone classes included
in an octave to reflect the distribution of music notes
[19]. Specifically, a 12-dimensional chroma feature of
one frame is calculated as below:

XPCP(I(,VI): Z Xster (K, n) (1)

K:P(K)=K'
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Figure 2 Beat-based framing for a piece of music and its distorted copy under time-scale modification (—5%).

where STFT means the short-time Fourier transform,
Xpcp(K', n) and Xgter(K, n) are the chroma feature and
the magnitude spectrogram of music signal x(n), respect-
ively, n is the time index and K, K’ are the frequency
indices. The spectral warping between frequency index
Kin STFT and K in chroma is described as:

P = o 1210, (25 22)] o 12
(2)

where NFFT is the FFT length, f; is the sampling rate,
and f; is the reference frequency corresponding to a note
in the standard tuning system.

Our goal is to reduce the music signal in a beat to a
chroma-based feature vector. To accomplish this, each
beat-based frame (usually several hundreds of ms long)
is first subdivided into equal-length non-overlapping
subframes (512 samples in our implementation); then a
12-dimensional chroma feature is calculated from each
subframe, and all of them in the same beat are averaged
to get the final feature vector. In chroma calculation, the
frequency range is selected as 64 to 4,096 Hz covering
six octaves from note C2 to B7. The reason is twofold.
On one hand, most tonal instruments and vocals fall
into this frequency band while much percussive noise
produced by base drums, cymbals, and snare drums are
filtered out accordingly, and the chroma calculation is

chroma bins

30
time/beat

Figure 3 Chroma-by-beat representation of a 15-s music signal. Red color means stronger energy, and light blue means weaker energy.

40 50
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greatly facilitated. On the other hand, middle frequency
coefficients are usually less susceptible to various dis-
tortions than high-frequency coefficients and hence
increase the robustness. Figure 3 shows an example of
the chroma-by-beat representation of a 15-s long music
signal.

3.3 Secured robust hashing

First, the chroma features are normalized so that all the
components of a feature vector lie in between 0 and 1.
Let p(i) be the normalized chroma vector of the ith beat-
based frame, non-uniform scalar quantization is then
performed to get p(i) as below:

j=1,2,...,12,

(3)

where p(i,j) and p(i, j) are the jth element of p(i) and
p(i) respectively, floor(x) denotes the largest integer less
than or equal to x. Quantization of the feature values is
not only necessary to reduce the data bits but also to
increase the feature robustness against small disturbance.
Next, each p(i,j) is converted from an integer into the
form of three binary bits p(i,j) = [b2b1bo), , thus p(i)
comprises 36 bits and is denoted as /(i) hereafter.

In order to enhance the security of authentication, we
adopt a two-layer encryption mechanism. In the first
layer, we perform scrambling to 36 binary bits associated
with each beat-based frame. Specifically, according to a
secret key ki, a random sequence R = (ry, ra,..., I'sg) iS
generated and rearranged so that r,; < 1y < ... <ru36. In
the light of Equation 4, the encrypted hash code /,(i) of
the ith frame is obtained by rearranging the sequence of
hi1(i)'s elements. Without the correct key, it would be
very difficult for an attacker to forge the encrypted data.

ha(if) = ha (i, ) (4)

In the second layer, we have to avoid the vulnerability
under vector quantization attack [20]. If the hash codes
are all frame-wise independent, it would be possible for
a hacker to make false authentication by substituting
some small parts of the original music with other
perceptually similar ones. Due to the high repeatability
of music signals, this is always possible to be done that
in some local regions, the hash values are kept almost
unchanged even if the content has been substantially
modified. To thwart this attack, an effective way is to
make the hash code of one frame dependent not only on
itself but also on its neighborhood. In this paper, we
associate each beat-based frame with its two direct
neighbors. By using another secret key k, to randomly
select 14 bits from each neighbor in terms of Equation
5, a 64-bit chroma-based binary hash /(i) is ultimately

.~ [ floor(p(i,j) x 10),0<p(i,j) < 0.7
pij) = { 7, 0.7§p(£,j)s1
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formed to represent the ith beat-based authentication
unit, as follows:

hy(i,j), 1<j<36
Iy (i-1, ¢136) , 36 < j <50) )
hoy (i + 1,61;5()),50 <]’S647
Sc1 <582 <...58:14

h(ivj) =

where the random sequence S = (s, So,...,514) IS gene-
rated by key k. Finally, 4(-) for all beats of a music piece
and secret keys k; and k, are stored in a credible data
center for future verification.

4. Verification stage

This stage is aimed to verify the authenticity and integrity
of a dubious music, namely, to check whether it has been
maliciously modified during the transmission. Because
time-domain distortions like TSM or jittering may occur
before verification, the beat sequence of the susceptible
music and that of its original version registered in the
authentication center are not guaranteed to be the same.
Therefore, beat alignment is firstly performed by virtue of
dynamic time warping. Next, the chroma-based robust
hash of the received music is calculated and compared
with its original data stored in the authentication center.
By using fuzzy logic, we calculate the hash difference's
confidence belonging to acceptable operations and mali-
cious modifications, respectively, thereby make the final
decision of authentication.

4.1 Beat alignment

During the course of transmission, the original music
signal might experience various acceptable signal disto-
rtions or malicious cropping, adding, replacing, etc.
Therefore, at the verification end, the received music will
not be segmented into exactly the same set of beats as
the original ones in most cases. That is, let B = {B;|i = 1,
2,..N} and B ={B;|j=1,2,..,N'} denote the seg-
mented beat sets of the original and the dubious music,
generally speaking B=B. Since chroma-based feature and
derived robust hash are calculated in a frame-wise
manner, the beat alignment must be first performed to
regain synchronization. Differently from [16], where a
sophisticated beat normalization procedure composed of
identifying the average beat period, locating each beat,
and rescaling to the average beat period is used to
recover the synchronization before watermark detection,
we utilize dynamic time wrapping [21] to resynchronize
possibly distorted beats.

It is known that DTW is an effective technique for
measuring the similarity between two sequences which
may vary in time or speed. Herein, it is applied to find
the optimal matching between the original and the
distorted beat sequences, using normalized Hamming
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distance of chroma feature per frame as the similarity
metric. Ideally, the beat-pair map will be bijective and
move along the main diagonal line of the DTW simila-
rity matrix. However, due to the various acceptable and
malicious operations during transmission, it is worth
noting that a frame in the test music might be mapped
to more than one frame in the original version and vice
versa. In other words, some singular points that deviate
from the diagonal trajectory will appear. For example,
the yellow circle marked in Figure 4b gives an illustra-
tion that a specific Bj is mapped to both B; and B;,;. In
such cases, the average distance between a frame and its
multiple mapped ones will be adopted.

4.2 Measures for fuzzy authentication

In the literature, most audio authentication algorithms
make the final decision by comparing the distance, such
as Hamming distance and Euclidean distance, between
the hashes of the received and the original audio with a
preset threshold. The main flaw of such measures is that
they only reflect the global effect of errors while ignore
the temporal distribution along the time axis. A mali-
cious tampering and an acceptable signal processing
often give rise to pretty much the same errors on the
whole, whereas the former errors are generally located
in a few small regions and the latter ones are evenly
distributed in a much wider range (see Figure 5c,e for
illustration). To solve this problem, we first introduce
the concepts of possibly modified point (PMP), dense
point (DP), and sparse point (SP), then based on which
three statistical and temporal measures adapted from
similar concepts of [22] in image authentication are
redefined to characterize the error distribution and to
differentiate acceptable operations from malicious
manipulations.
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4.2.1 Possibly modified points
As stated before, each beat-based frame of music signal
is deemed as an authentication unit. For the ith beat, let

64 .
diff (i) = 6%LjZ:1h(i,j)69 h(i,j) be the normalized Hamming

distance or bit error rate (BER) between the original hash
h(i) and the extracted hash /(i), where j means the jth bit
of h(i). Then we define a set D = {diff(i)|diff(i) € [0, 1],
1 < i < N'} to represent the beat-wise BERs between two
hash sequences extracted from the original and the
dubious music. A subset of points in D are identified as
possibly modified points (PMPs) if their values are bigger
than a threshold 7, and their indexes in D are recorded in
another array pos:

PMP = {diff()|diff(i) > T, 1<i<N'} (6)

POS = {pos(j)|diff (pos(j)) = PMP(j),j = 1,2,...,PMP}.

(7)

The threshold T is set as Equation 8, with acceptable
and malicious operations both considered. Since the
initial threshold T, is an experimentally determined
value and set as 6/64 = 9.375% ~ 10%, it can be roughly
used to judge if malicious tampering has occurred. It is
our observation that in most cases when malicious mo-
difications occur, some locally continuous elements in
set D are usually much bigger than T} like in Figure 5e;
while when acceptable operations come up, most (if not
all) elements are much smaller than 7, and spread in a
wide range like in Figure 5c. Therefore, after coarsely
classifying the two cases, more appropriate thresholds

Original Audio

.
3
original music

(a)

original music; (b) corresponding DTW representation of (a).

Figure 4 Beat mapping between the original and the dubious music. (a) One beat in the test music is mapped into two beats of the

modified music

(b)
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for malicious and admissible operations are defined as
below:

L [ max(PMP) x 0.5, max(PMP) > T
| median(PMP), max(PMP) < T

(8)

4.2.2 Dense points and sparse points

For a particular point i in PMD, it is defined as a dense
point (DP) if at least one of its eight neighbors in the
region Ng(i) = [i - 4,i - 1] u [i + 1, i + 4] is a PMP.
Otherwise, it is called a sparse point (SP).

4.2.3 Statistical and temporal measures
First, based on the above concepts, we herein define
three statistical and temporal measures that exhibit dis-
tinct properties under admissible and malicious opera-
tions for latter authenticity judgment.

Average distortion
The average distortion of a dubious music signal is mea-
sured by the mean BER of all PMPs.

Uniformity degree

The uniformity degree aims at assessing the uniformity of
modifications to the original music at the time axis. Let
DIS = {dis(j)|dis(j) = pos(j + 1) — pos(j),j = 1,2, ..., PMP - 1}
denote all the beat intervals between every two adjacent
PMPs, uniformity degree (UD) which is defined as the
standard variance of DIS and calculated as below,

R T A
N > <d1s(1)—Nd‘ Zdls(})) ] . (10

is 527

where Ny, = DIS=PMP -1 is the length of set DIS.
Obviously, larger UD indicates uneven distribution of
the PMPs which is more likely caused by malicious
operations, whereas smaller UD means a relatively even
distribution that is more possibly induced by acceptable
processing.

Maximum connected area size
A connected area is made up of a group of consecutive
dense points (DPs), with its size defined as the total

L
I = number of points included. Of all the connected areas

AD =— PMP(j 9 ’ ’
LPmP; ") ) maximum connected area size (MC) denotes the

where L., = PMP is the length of set PMP. Average
distortion describes the degree of modification to the ori-
ginal music's content. Malicious manipulations typically
result in larger average distortion (AD), while acceptable
operations result in a smaller one.

maximum size. In general, the MC values caused by
malicious manipulations are much larger than those
caused by acceptable operations, because in the former
case affected points tend to tightly concentrate around
some local areas while in the latter, circumstance tend to
scatteredly spread out on the time axis.
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4.3 Content authenticity verification

Multimedia authentication is by nature a gradually
changed procedure, without an unambiguous boundary
between authentic and inauthentic status [2]. Although
each of the above three measures exhibits certain potential
to differentiate malicious manipulations from acceptable
ones, we here combine them together to further reinforce
this ability. In accordance with the intrinsic fuzziness of
music content authentication, fuzzy classification [23] on
the combination is performed to judge whether the
received music has been maliciously modified or not. For
the purpose of parameter tuning, a small dataset com-
posed of 16 pop songs are collected. For each song, 54
content-preserving operations and 20 malicious modifica-
tions are performed. Altogether, 1,184 distorted copies are
used for training.

4.3.1 Membership function selection
In a fuzzy set, a membership degree between 0 and 1 is
assigned to each element according to its fitness to cer-
tain criterion. The mathematical relationship is modeled
by a membership function. On the basis of the above
three metrics AD, UD, and MC, it can be qualitatively
concluded that when they tend to be small (large), the
possibility that acceptable (malicious) modifications have
occurred increases. Therefore, we need to choose a suit-
able membership function for each metric so that given
a specific value it can be quantitatively described to what
extent it is deemed as small or large.

For the AD, an informal agreement is that it should
have an upper bound th, of 20%. Namely, if AD is bigger
than 0.2, the membership considered as large (small)
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small (large) should be 1 (0). Besides, when AD is bet-
ween th; and th,, the membership degree is approxi-
mately linearly changed based on our observation.
Therefore, in accordance with these requirements, a
trapezoidal membership function is chosen to model AD
as shown in Equations 11 and 12):

1,0<AD<th;

(AD — thg), thy < AD<th,
0,AD > th,

1

Xas(AD) = th, ~th,

(11)
0,0<AD<th;

(AD—thl), th; < AD<th, s
1,AD > th2

1

Xa(AD) = thy—th,

(12)

where X54(AD) and X, (AD) are, respectively, the mem-
bership degree that AD is deemed as small or large. The
parameter th; defines the threshold below which AD is
completely small and th, defines the threshold above
which AD is completely large. In our experiment, they
are set to 0.04 and 0.2, respectively. The shapes of these
two membership functions are shown in the top sub-
graph of Figure 6.

In regard to UD, the increase of its value monotonic-
ally makes its membership degree of being large (small)
go up (down) without absolute upper bound and lower
bound. Therefore, using conventional sigmoidal mem-
bership function of Equations 13 and 14) to depict UD
will be an appropriate choice.

. 1
should be 1 (0). On the other hand, due to unavoidable Xys(UD) = 1- ——— (13)
. . 1+ e*“(UD*ﬂ)
interference from the environment, a lower bound th;
which is a little bigger than 0 should also be set. If AD is Xu(UD) = 1 (14)
smaller than th;, the membership degree considered as 1+ e~a(UD-§)
N
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3 05 /'/ -
5 o
i<} 0 1 J 1 1 I | 1 1 1
0 0.1 02 03 0.4 0.5 06 0.7 08 09 1
2 1— T T AP T T —
5 small = )/__g[ge_,/——’_’——
S osf g -
-
§ sk =
£ o | | | 1 I
0 10 20 30 40 50 60
= g st = UID T — ————dege———
5 T
é 05 . /// -
I} (!J__,—/—’/ = —
E g—— 1 I 1 1 P
0 20 40 60 80 100 120
MC
Figure 6 Membership functions. Membership functions for the average distortion (AD), the uniformity degree (UD), and the maximum
connected area size (MQ).
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Table 1 Eight fuzzy classes combined from the three
measures

Class Measure Class Measure

AD, UD, MC AD, UD, MC
G As Us Ms Cs Al Us Ms
G As Us M Ce Al Us MI
G As Ul Ms G Al ul Ms
@ As ul M (@ Al ul MI

As, Us, and Ms mean that AD, UD, and MC are small; Al, Ul, and MI mean that
AD, UD, and MC are large.

where Xy (UD) and X;;(UD) mean the membership
degree that UD is small or large individually.  is an
average UD value acquired from a set of training signals
modified by both acceptable and malicious manipula-
tions and & controls the changing speed especially at the
point UD = B, they are experimentally set to 25 and 0.08
in our implementation. Shapes of these two membership
functions are shown in the middle subgraph of Figure 6.

With respect to MC, we observed from experiment
that when it increases (decreases), the membership
degree of being large (small) also becomes larger
continuously and smoothly. Since this is a gradually
changed procedure, we select commonly used Gaussian
membership function defined in Equations 15 and 16 to
model MC.

1, MC<u,
XMS(MC) = 7(MC—;¢1)2 (15)
e w2 MC >,
1,MCz=u,
XMl(MC) = (M)’ s (16)
e 20 MC <u,

where X3 s(MC) and Xyp(MC) are the membership
degrees that MC is small or large respectively, with y; =
5, ty = 105, and ¢* = (45 — p1)*/8In2 in experiment. The
shapes of these two membership functions are shown in
the bottom subgraph of Figure 6.

4.3.2 Authenticity verification
After introducing fuzziness to the three measures as
above, a specific value is no longer definitely treated as
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large or small but simultaneously belongs to both states
with distinct membership degree. The combination of
the three fuzzy measures falls into eight fuzzy classes
listed in Table 1. Given an arbitrary measure vector m =
(ml1, m2, m3) = (AD, UD, MC), its membership degree
pertaining to a particular class C; is calculated as follows,
according to the theory of fuzzy classification:

3
Xc,(m) = § wiXc,(m),i=1,2,...,8, (17)
j=1

j=

where Xc;(m) means the membership degree of m
belonging to class C;, Xc;(m) is the membership degree
that m; fits the status denoted as C; according to
Equations 11 to 16), and w = [0.3, 0.45, 0.25] is an
empirical weight vector that describes the relative
significance of each measure. Experiments show that
Xc,(m) > Xc¢,(m) > ... > Xc,(m) for acceptable mani-
pulations and, on the contrary, Xc, (m) < Xc,(m) < ...
< X¢,(m) for malicious ones. In light of such regularity,
the degree of authenticity (D,) and that of inauthenticity
(D,,) are derived as follows:

8
Dy = wyXc,(m),wy = [1,0.9,0.5,0.2,0.2,0.1,0,0]

(18)

8
D, = Z wnXc,(m), w, = [0,0,0.5,0.8,0.8,0.8,0.9, 1],
(19)

where w, and w,, are experimentally determined weight
vectors assigned to each class depending on its contribution
to the authentication result. The final decision measure and
rules are defined in Equations 20 and 21. If authRatio > 1,
the dubious music is judged as authentic and otherwise
inauthentic. Note that authRatio is also a measure with
fuzziness. Namely, in case 1 bigger authRatio means higher
confidence to the authenticity, while in case 2 smaller
authRatio brings more reliability to inauthenticity.

Table 2 Average authentication results under acceptable audio manipulations

Manipulation authRatio Result Manipulation (kbps) authRatio Result
LP (8 kH2) 14584 v MP3 (128) 14563 v
LP (4 kH2) 1.4496 v MP3 (96) 14550 v
RS (22,050) 14023 v MP3 (64) 1.4506 v
RS (16,000) 1.3876 v MP3 (48) 1.4450 v
- - - MP3 (32) 14396 v

LP means low-pass filtering; RS means resampling.
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Table 3 Average authentication results under time-domain desynchronization distortions

Manipulation authRatio Result Manipulation authRatio Result
TSM (—1%) 1.4588 v TSM (+1%) 1.4640 v
TSM (=2%) 14505 v TSM (+2%) 1.4645 v
TSM (—=3%) 14468 v TSM (+3%) 14578 v
TSM (—4%) 1.4398 v TSM (+4%) 14524 v
TSM (=5%) 1.4460 v TSM (+5%) 1.4482 v
TSM (—6%) 14354 v TSM (+6%) 14465 v
TSM (=7%) 14268 v TSM (+7%) 14324 v
TSM (-8%) 14324 v TSM (+8%) 14285 v
TSM (=9%) 14205 v TSM (+9%) 14263 v
TSM (—10%) 14154 v TSM (+10%) 14186 v
TSM (=11%) 14106 v TSM (+11%) 14120 v
TSM (=12%) 14045 v TSM (+12%) 14082 v
TSM (=13%) 1.3940 v TSM (+13%) 14002 v
TSM (—=14%) 1.3768 v TSM (+14%) 1.3967 v
TSM (=15%) 1.3428 v TSM (+15%) 1.3658 v
TSM (—16%) 13198 v TSM (+16%) 13218 v
TSM (=17%) 1.2956 v TSM (+17%) 13145 v
TSM (=18%) 13014 v TSM (+18%) 1.3025 v
TSM (—19%) 1.2543 v TSM (+19%) 1.2845 v
TSM (=20%) 1.2745 v TSM (+20%) 1.2649 v
Jittering (1/2,000) 14527 v Jittering (1/500) 14393 v
Jittering (1/1,500) 1.4546 v Jittering (1/100) 14420 v
Jittering (1/1,000) 14488 v - - -

TSM means time-scale modification.

D
authRatio = -2 (20)
Dy,
Case 1 : authRatio > 1=authentication passed
Case 2 : authRatio < 1=>authentication failed
(21)

4.4 Tamper localization

If a music signal is judged as inauthentic, all authentication
units in the set of B = {B,|diff(j)>T, j=1,2,...,N'} are
marked as tampered regions. Remember that in the proced-
ure of robust hashing, each beat is associated with its two
near neighbors. In light of Equation 5, the tampered regions
are located in the current beat B; only when the different
bits between the original hash /(i) and the extracted hash h
(i) are within the first 36 bits; otherwise, the possibly tam-
pered regions will actually be extended to B ;-1 and/or B i1
ie., three beats (generally 1 ~ 2 s) in the worst case.

5. Experimental results
In this section, we perform robustness and fragility
experiments to investigate this algorithm's capability of

differentiating admissible operations from malicious
modifications. The test dataset is composed of 344
Chinese popular songs (the 16 songs for training are not
included), and their 25,456 legitimately and maliciously
modified copies are used for testing the authentication
performance. Each music piece is WAVE format, 2 to 5
min long, 44.1 kHz sampled, 16 bits/sample quantized,
and monophonic. The audio editing and manipulating
tools are Adobe Audition (Adobe Systems Inc., San Jose,
CA, USA) and Gold Wave (GoldWave Inc., St. John's,
Newfoundland and Labrador, Canada).

5.1 Authentication tests and false statistics
As this algorithm is aimed at music content-based soft
authentication, we first check its authentication results

Table 4 Average authentication results under malicious
manipulations

Manipulation authRatio Result
Cropping 0.8598 X
Adding 0.8402 X
Replacing 0.8554 X




Li et al. EURASIP Journal on Audio, Speech, and Music Processing 2013, 2013:11

http://asmp.eurasipjournals.com/content/2013/1/11

Page 12 of 13

-

Authentication Confidences under Manipulations
16
14 Mwm ‘4\_-_-_-/’-.—.-.-1 —
17 \
g =
=]
© | -1
& os
-
=]
© 06
0.4
0.2
0
%‘&%@@Q‘,{’-"QA‘,&&Q @Q a\\ ‘g\\ o\o\ o\\ o\\ Oqa\ \lu\o ¢ ng\b\ $\ Qo‘n\ \‘f\e\ \ﬁ\o\ \,33’\"\ \;g\a\ & u\\ g\\ ’@a\ﬂ\ & 6\\\9,@\ S \6{,},\&
S X > o
ARSI S5 ,\:,w“ S S N N c;é & N /\%@ /\%@ «L’@ / c’@ Rt
Ny
Manipulations
Figure 7 Average authentication results under acceptable and malicious manipulations.

under various acceptable audio operations. As stated
above, authRatio is adopted as the authentication
measure in accordance with the aforementioned fuzzy
classification methodology. If it is bigger than 1, the
algorithm is said to be able to sustain certain admissible
operations. The average results performed on the above
test dataset are summarized in Tables 2 and 3. It can be
seen that in virtue of the power of beat segmentation/
alignment and invariant chroma features, this algorithm
is robust enough under common content-preserving
distortions, like MP3 lossy compression, resampling, and
low-pass filtering, and time-domain desynchronization
distortions like time-scale modification and jittering. In
most cases under the above admissible manipulations,
authentication are correctly passed with average
authRatios higher than 1.2543, namely, only the percep-
tual quality is degraded and the semantic meaning is
preserved.

Specifically, for MP3 lossy compression, resampling,
low-pass filtering, and jittering, the authentication confi-
dences are rather high (slightly fluctuating around 1.4)
and stable, which means that these operations can be
correctly classified as admissible so that the authen-
tication successfully passes with high confidence. With
regard to time-scale modifications, the authentication
confidences decline from around 1.46 to 1.25 when
scaled from 1% to 20%. It shows that slight TSMs are
definitely deemed as admissible so that the authentica-
tion passes with high confidence, while more serious
TSMs gradually move towards the boundary between
admissible and malicious with smaller and smaller confi-
dences. This phenomenon verifies the fuzzy nature of

audio authentication, namely, it is a gradually changed
procedure rather than a sharp transition between legit-
imate and malicious modifications.

To test the fragility of this algorithm under malicious
operations, we investigate the performance under three
typical content-changing manipulations, i.e., cropping,
adding, and replacing. The authentication results
performed on the test dataset are averaged and shown in
Table 4; the most malicious modifications are correctly
judged as inauthentic with average authRatio lower than
0.86. The overall results are combined together and
illustrated in Figure 7. It can be clearly seen that on
average, authRatios are above 1 for acceptable manipula-
tions and below 1 for malicious operations.

In a practical authentication system, two important
false statistics must be taken into consideration. The first
is the false positive rate, which is the rate of considering
a music signal as authentic when it has been maliciously
modified. The second is the false negative rate, which is
defined as the rate of judging a piece of music as in-
authentic when it has actually undergone content-
preserving operations. Below, we adopt confusion matrix
to demonstrate the overall system performance (see
Table 5). In the 18,576 admissible operations, 82 of them
are falsely judged as malicious so the authentication fails,

Table 5 Confusion matrix of the false statistics

Confusion matrix Predicted
Malicious Admissible
Actual Malicious a=6,854 b=26
Admissible c=82 d = 18,494
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thus the false negative rate is 0.0044; in the 6,880 mali-
cious modifications, 26 of them are falsely judged as
admissible so the authentication passes, therefore, the
false positive rate is 0.0038. It can be seen from the
matrix that the authentication system is able to make
distinction between admissible operations and malicious
modifications pretty well.

At present, it is difficult to quantitatively compare this
algorithm with other audio authentication methods. One
reason is that different algorithms use different test
datasets and evaluation measures. The other is that since
authentication experiments are indeed a rather subjec-
tive test, malicious tampering that might occur in reality
are inexhaustible and can only be exemplified in an
article.

Conclusions

In this paper, we propose an algorithm on music content
authentication which has been somewhat ignored by the
research community. By integrating beat-based segmenta-
tion, mid-level chroma feature, and fuzzy authentication,
we obtain high robustness against acceptable operations
and fragility under malicious modifications at the same
time. Results are given in the form of authenticity degree
to fit the intrinsic fuzzy nature. Overall, beat-based seg-
mentation is a radical step for music authentication.
Therefore, the proposed method is only suitable for music
genres with perceptible rhythm, e.g., pop and rock, but
does not work with classical music. A more precise beat
mapping mechanism has to be designed in the future.
This will not only further improve the robustness under
admissible operations and the classification precision of
malicious modifications but also be a solution for frag-
ment authentication of audio that has never been scarcely
touched in the research community.
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