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Abstract

A challenging open question in music classification is which music representation (i.e., audio features) and which
machine learning algorithm is appropriate for a specific music classification task. To address this challenge, given a
number of audio feature vectors for each training music recording that capture the different aspects of music
(i.e., timbre, harmony, etc.), the goal is to find a set of linear mappings from several feature spaces to the semantic
space spanned by the class indicator vectors. These mappings should reveal the common latent variables, which
characterize a given set of classes and simultaneously define a multi-class linear classifier that classifies the extracted
latent common features. Such a set of mappings is obtained, building on the notion of the maximummargin matrix
factorization, by minimizing a weighted sum of nuclear norms. Since the nuclear norm imposes rank constraints to
the learnt mappings, the proposed method is referred to as low-rank semantic mappings (LRSMs). The performance of
the LRSMs in music genre, mood, and multi-label classification is assessed by conducting extensive experiments on
seven manually annotated benchmark datasets. The reported experimental results demonstrate the superiority of the
LRSMs over the classifiers that are compared to. Furthermore, the best reported classification results are comparable
with or slightly superior to those obtained by the state-of-the-art task-specific music classification methods.

Keywords: Music classification; Music genre; Music mood; Nuclear norm minimization; Auditory representations

1 Introduction
Retail and online music stores usually index their collec-
tions by artist or album name. However, people often need
to search for music by content. For example, a search
facility is offered by emerging music-oriented recommen-
dation services, such as last.fm (http://www.last.fm/) and
Pandora (http://www.pandora.com/), where social tags
are employed as semantic descriptors of the music con-
tent. Social tags are text-based labels, provided by either
human experts or amateur users to categorize music
with respect to genre, mood, and other semantic tags.
The major drawbacks of this approach for the seman-
tic annotation of music content are (1) a newly added
music recording must be tagged manually, before it can
be retrieved [1], which is a time-consuming and expensive
process and (2) unpopular music recordings may not be
tagged at all [2]. Consequently, an accurate content-based
automatic classification of music should be exploited
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to mitigate the just mentioned drawbacks, allowing the
deployment of robust music browsing and recommenda-
tion engines.
A considerable volume of research in content-based

music classification has been conducted so far. The inter-
ested readermay refer to [2-5] for a comprehensive survey.
Most music classificationmethods focus onmusic catego-
rization with respect to genre, mood, or multiple semantic
tags. They consist mainly of two stages, namely a music
representation stage and a machine learning one. In the
first stage, the various aspects of music (i.e., the timbral,
the harmonic, the rhythmic content, etc.) are captured by
extracting either low- or mid-level features from the audio
signal. Such features include timbral texture features,
rhythmic features, pitch content, or their combinations,
yielding a bag-of-features (BOF) representation [1,2,6-18].
Furthermore, spectral, cepstral, and auditory modulation-
based features have been recently employed either in BOF
approaches or as autonomous music representations in
order to capture both the timbral and the temporal struc-
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ture of music [19-22]. At the machine learning stage,
music genre and mood classification are treated as single-
label multi-class classification problems. To this end, sup-
port vector machines (SVMs) [23], nearest-neighbor (NN)
classifiers, Gaussian mixture model-based ones [3], and
classifiers relying on sparse and low-rank representations
[24] have been employed to classify the audio features into
genre or mood classes. On the contrary, automatic music
tagging (or autotagging) is considered as a multi-label,
multi-class classification problem. A variety of algorithms
have been exploited in order to associate the tags with
the audio features. For instance, music tag prediction
may be treated as a set of binary classification problems,
where standard classifiers, such as the SVMs [12,14] or
ada-boost [25], can be applied. Furthermore, probabilis-
tic autotagging systems have been proposed, attempting
to infer the correlations or joint probabilities between the
tags and the audio features [1,9,26].
Despite the existence of many well-performing music

classification methods, it is still unclear which music
representation (i.e., audio features) and which machine
learning algorithm is appropriate for a specific music clas-
sification task. A possible explanation for the aforemen-
tioned open question is that the classes (e.g., genre, mood,
or other semantic classes) in music classification prob-
lems are related to and built on some common unknown
latent variables, which are different in each problem.
For instance, many different songs, although they share
instrumentation (i.e., have similar timbral characteristics),
convey different emotions and belong to different genres.
Furthermore, cover songs, which have the same harmonic
content with the originals, may differ in the instrumen-
tation and possibly evoke a different mood, so they are
classified into different genres. Therefore, the challenge
is to reveal the common latent features based on given
music representations, such as timbral, auditory, etc., and
to simultaneously learn the models that are appropriate
for each specific classification task.
In this paper, a novel, robust, general-purpose music

classification method is proposed to address the afore-
mentioned challenge. It is suitable for both single-label
(i.e., genre or mood classification) and multi-label (i.e.,
music tagging) multi-class classification problems, pro-
viding a systematic way to handle multiple audio features
capturing the different aspects of music. In particular,
given a number of audio feature vectors for each training
music recording, the goal is to find a set of linearmappings
from the feature spaces to the semantic space defined by
the class indicator vectors. Furthermore, these mappings
should reveal the common latent variables, which char-
acterize a given set of classes and simultaneously define
a multi-class linear classifier that classifies the extracted
latent common features. Such a model can be derived by
building on the notion of the maximum margin matrix

factorization [27]. That is, in the training phase, the set
of mappings is found by minimizing a weighted sum of
nuclear norms. To this end, an algorithm that resorts
to the alternating direction augmented Lagrange multi-
plier method [28] is derived. In the test phase, the class
indicator vector for labeling any test music recording is
obtained by multiplying each mapping matrix with the
corresponding feature vector and by summing all the
resulting vectors next. Since the nuclear norm imposes
rank constraints to the learnt mappings, the proposed
classification method is referred to as low-rank semantic
mappings (LRSMs).
The motivation behind the LRSMs arises from the

fact that uncovering hidden shared variables among
the classes facilitates the learning process [29]. To
this end, various formulations for common latent vari-
able extraction have been proposed for multi-task
learning [30], multi-class classification [31], collabora-
tive prediction [32], and multi-label classification [33].
The LRSMs differ significantly from the aforemen-
tioned methods [29-31,33] in that the extracted com-
mon latent variables come from many different (vector)
feature spaces.
The performance of the LRSMs in music genre, mood,

and multi-label classification is assessed by conduct-
ing experiments on seven manually annotated bench-
mark datasets. Both the standard evaluation protocols
for each dataset and a small sample size setting are
employed. The auditory cortical representations [34,35],
the mel-frequency cepstral coefficients [36], and the
chroma features [37] were used for music represen-
tation. In the single-label case (i.e., genre or mood
classification), the LRSMs are compared against three
well-known classifiers, namely the sparse representation-
based classifier (SRC) [38], the linear SVMs, and the
NN classifier with a cosine distance metric. Multi-
label extensions of the aforementioned classifiers, namely
the multi-label sparse representation-based classifier
(MLSRC)[39], the Rank-SVMs [40], and the multi-
label k-nearest neighbor (MLkNN) [41], as well as the
parallel factor analysis 2 (PARAFAC2)-based autotag-
ging method [42] are compared with the LRSMs in
music tagging. The reported experimental results demon-
strate the superiority of the LRSMs over the classifiers
that are compared to. Moreover, the best classification
results disclosed are comparable with or slightly supe-
rior to those obtained by the state-of-the-art music
classification systems.
To summarize, the contributions of the paper are as

follows:

• A novel method for music classification (i.e., the
LRSMs) is proposed that is able to extract the
common latent variables that are shared among all
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the classes and simultaneously learn the models that
are appropriate for each specific classification task.

• An efficient algorithm for the LRSMs is derived by
resorting to the alternating direction augmented
Lagrange multiplier method, which is suitable for
large-scale data.

• The LRSMs provide a systematic way to handle
multiple audio features for music classification.

• Extensive experiments on seven datasets demonstrate
the effectiveness of the LRSMs in music genre, mood,
and multi-label classification when the mel-frequency
cepstral coefficients (MFCCs), the chroma, and the
auditory cortical representations are employed for
music representation.

The paper is organized as follows: In Section 2, basic
notation conventions are introduced. The audio fea-
ture extraction process is briefly described in Section 3.
In Section 4, the LRSMs are detailed. Datasets and
experimental results are presented in Section 5. Conclu-
sions are drawn in Section 6.

2 Notations
Throughout the paper, matrices are denoted by uppercase
boldface letters (e.g., X,L), vectors are denoted by lower-
case boldface letters (e.g., x), and scalars appear as either
uppercase or lowercase letters (e.g.,N ,K , i,μ, ε). I denotes
the identity matrix of compatible dimensions. The ith col-
umn of X is denoted as xi. The set of real numbers is
denoted by R, while the set of nonnegative real numbers
is denoted by R+.
A variety of norms on real-valued vectors and matrices

will be used. For example, ‖x‖0 is �0 quasi-norm counting
the number of nonzero entries in x. The matrix �1 norm
is denoted by ‖X‖1 = ∑

i
∑

j |xij|. ‖X‖F =
√∑

i
∑

j x2ij =√
tr(XTX) is the Frobenius norm, where tr(.) denotes the

trace of a square matrix. The nuclear norm of X (i.e., the
sum of singular values of a matrix) is denoted by ‖X‖∗.
The �∞ norm of X, denoted by ‖X‖∞, is defined as the
element of X with the maximum absolute value.

3 Audio feature extraction
Each music recording is represented by three song-level
feature vectors, namely the auditory cortical represen-
tations [34,35], the MFCCs [36], and the chroma fea-
tures [37]. Although much more elaborated music rep-
resentations have been proposed in the literature, the
just mentioned features perform quite well in practice
[14,22-24]. Most importantly, song-level representations
are suitable for large-scale music classification prob-
lems since the space complexity for audio processing

and analysis is reduced and the database overflow is
prevented [3].

3.1 Auditory cortical representations
The auditory cortex plays a crucial role in the hearing
process since auditory sensations turn into perception
and cognition only when they are processed by the cor-
tical area. Therefore, one should focus on how audio
information is encoded in the human primary auditory
cortex in order to represent music signals in a psycho-
physiologically consistent manner [43]. The mechanical
and neural processing in the early and central stages of
the auditory system can be modeled as a two-stage pro-
cess. At the first stage, which models the cochlea, the
audio signal is converted into an auditory representation
by employing the constant-Q transform (CQT).The CQT
is a time-frequency representation, where the frequency
bins are geometrically spaced and the Q-factors (i.e., the
ratios of the center frequencies to the bandwidths) of all
bins are equal [44]. The neurons in the primary audi-
tory cortex are organized according to their selectivity in
different spectral and temporal stimuli [43]. To this end,
in the second stage, the spectral and temporal modula-
tion content of the CQT is estimated by two-dimensional
(2D) multi-resolution wavelet analysis, ranging from slow
to fast temporal rates and from narrow to broad spec-
tral scales. The analysis yields a four-dimensional (4D)
representation of time, frequency, rate, and scale that cap-
tures the slow spectral and temporal modulation content
of audio that is referred to as auditory cortical repre-
sentation [34]. Details on the mathematical formulation
of the auditory cortical representations can be found
in [34,35].
In this paper, the CQT is computed efficiently by

employing the fast implementation scheme proposed in
[44]. The audio signal is analyzed by employing 128
constant-Q filters covering eight octaves from 44.9 Hz
to 11 KHz (i.e., 16 filters per octave). The magnitude
of the CQT is compressed by raising each element of
the CQT matrix to the power of 0.1. At the second
stage, the 2D multi-resolution wavelet analysis is imple-
mented via a bank of 2D Gaussian filters with scales
∈ {0.25, 0.5, 1, 2, 4, 8} (cycles/octave) and (both positive
and negative) rates ∈ {±2,±4,±8,±16,±32} (Hz). The
choice of the just mentioned parameters is based on psy-
chophysiological evidence [34]. For each music recording,
the extracted 4D cortical representation is time-averaged,
and the 3D rate-scale-frequency cortical representation is
obtained. The overall procedure is depicted in Figure 1.
Accordingly, each music recording can be represented by
a vector x ∈ R

7,680
+ by stacking the elements of the 3D

cortical representation into a vector. The dimension of the
vectorized cortical representation comes from the prod-
uct of 128 frequency channels, 6 scales, and 10 rates. An
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Figure 1 Flow chart of auditory cortical representation extraction.

ensemble of music recordings is represented by the data
matrix X ∈ R

7,680×S
+ , where S is the number of the avail-

able recordings in each dataset. Finally, the entries of X
are post-processed as follows: Each row of X is normal-
ized to the range [ 0, 1] by subtracting from each entry the
row minimum and then by dividing it with the range (i.e.,
the difference between the row maximum and the row
minimum).

3.2 Mel-frequency cepstral coefficients
The MFCCs encode the timbral properties of the music
signal by encoding the rough shape of the log-power
spectrum on the mel-frequency scale [36]. They exhibit
the desirable property that a numerical change in the
MFCC coefficients corresponds to a perceptual change. In
this paper, MFCC extraction employs frames of 92.9-ms
duration with a hop size of 46.45 ms and a 42 band-
pass filter bank. The filters are uniformly spaced on the
mel-frequency scale. The correlation between the fre-
quency bands is reduced by applying the discrete cosine
transform along the log-energies of the bands yield-
ing a sequence of 20-dimensional MFCC vectors. By
averaging the MFCCs along the time axis, each music
recording is represented by a 20-dimensional MFCC
vector.

3.3 Chroma features
The chroma features [37] are adept in characterizing the
harmonic content of the music signal by projecting the
entire spectrum onto 12 bins representing the 12 distinct
semitones (or chroma) of amusical octave. They are calcu-
lated by employing 92.9 ms frames with a hop size of 23.22
ms as follows: First, the salience of different fundamental
frequencies in the range 80 to 640 Hz is calculated. The
linear frequency scale is transformed into a musical one
by selecting the maximum salience value in each fre-
quency range corresponding to one semitone. Finally,
the octave equivalence classes are summed over the
whole pitch range to yield a sequence of 12-dimensional
chroma vectors.
The chroma as well as the MFCCs, extracted from

an ensemble of music recordings, is post-processed as
described in subsection 3.1.

4 Classification by low-rank semantic mappings
Let each music recording be represented by R types of
feature vectors of size dr , x(r) ∈ R

dr , r = 1, 2, . . . ,R.
Consequently, an ensemble of N training music record-
ings is represented by the set

{
X(1),X(2), . . . ,X(R)

}
, where

X(r) =
[
x(r)
1 , x(r)

2 , . . . , x(r)
N

]
∈ R

dr×N , r = 1, 2, . . . ,R.
The class labels of the N training samples are repre-
sented as indicator vectors forming the matrix L ∈
{0, 1}K×N , where K denotes the number of classes.
Clearly, lkn = 1 if the nth training sample belongs to the
kth class. In a multi-label setting, more than one non-
zero elements may appear in the class indicator vector
ln ∈ {0, 1}K .
These R different feature vectors characterize differ-

ent aspects of music (i.e., timbre, rhythm, harmony, etc.),
having different properties, and thus, they live in differ-
ent (vector) feature spaces. Since different feature vectors
have different intrinsic discriminative power, an intuitive
idea is to combine them in order to improve the classi-
fication performance. However, in practice, most of the
machine learning algorithms can handle only a single type
of feature vectors and thus cannot be naturally applied
to multiple features. A straightforward strategy to handle
multiple features is to concatenate all the feature vec-
tors into a single feature vector. However, the resulting
feature space is rather ad hoc and lacks physical inter-
pretation. It is more reasonable to assume that multiple
feature vectors live in a union of feature spaces, which is
what the proposed method actually does in a principled
way. Leveraging information contained in multiple fea-
tures can dramatically improve the learning performance
as indicated by the recent results in multi-view learning
[30,45].
Given a set of (possibly few) training samples along with

the associated class indicator vectors, the goal is to learn
R mappings M(r) ∈ R

K×dr from the feature spaces Rdr ,
r = 1, 2, . . . ,R, to the label space {0, 1}K , having a general-
ization ability and appropriately utilizing the cross-feature
information, so that

L =
R∑

r=1
M(r) X(r). (1)
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As discussed in Section 1, themappingsM ∈ R
K×dr , r =

1, 2, . . . ,R, should be able to (1) reveal the common latent
variables across the classes and (2) predict simultaneously
the class memberships based on these latent variables. To
do this, we seek for C(r) ∈ R

K×pr and F ∈ R
pr×dr , such

that M(r) = C(r)F(r) ∈ R
K×dr , r = 1, 2, . . . ,R. In this

formulation, the rows of F(r) reveal the pr latent features
(variables), and the rows of C(r) are the weights predicting
the classes. Clearly, the number of pr common latent vari-
ables and the matrices C(r), F(r) are unknown and need to
be jointly estimated.
Since the dimensionality of the R latent feature spaces

(i.e., pr) is unknown, inspired by maximummargin matrix
factorization [27], we can allow the unknown matrices
C(r) to have an unbounded number of columns and F(r),
r = 1, 2, . . . ,R to have an unbounded number of rows.
Here, the matrices C(r) and F(r) are required to be low-
norm. This constraint is mandatory because otherwise
the resulting linear transform induced by applying first
F(r) and then C(r) would degenerate to a single trans-
form. Accordingly, the unknown matrices are obtained by
solving the following minimization problem:

argmin
{C(r),F(r)|Rr=1}

R∑
r=1

λr
2

(
‖C(r)‖2F + ‖F(r)‖2F

)

+ 1
2
‖L −

R∑
r=1

C(r)F(r)X(r)‖2F ,
(2)

where λr , r = 1, 2, . . . ,R, are regularization param-
eters and the least squares loss function 1

2‖L −∑R
r=1 C(r)F(r)X(r)‖2F measures the labeling approximation

error. It is worth mentioning that the least squares loss
function is comparable to other loss functions, such as
the hinge loss employed in SVMs [46], since it has been
proved to be (universally) Fisher consistent [47]. This
property along with the fact that it leads into the formula-
tion of a tractable optimization problem motivated us to
adopt the least squares loss here. By Lemma 1 in [27], it is
known that

λr‖M(r)‖∗ = argmin
M(r)=F(r)C(r)

λr
2

(
‖C(r)‖2F + ‖F(r)‖2F

)
. (3)

Thus, based on (3), the optimization problem (2) can be
rewritten as

argmin
{M(r)|Rr=1}

R∑
r=1

λr‖M(r)‖∗ + 1
2
‖L −

R∑
r=1

M(r)X(r)‖2F . (4)

Therefore, the mappingsM(r), r = 1, 2, . . .R, are obtained
by minimizing the weighted sum of their nuclear norms
and the labeling approximation error, that is, the nuclear
norm-regularized least squares labeling approximation
error. Since the nuclear norm is the convex envelope of
the rank function [48], the derived mappings between the

feature spaces and the semantic space spanned by the
class indicator matrix L are low-rank as well. This jus-
tifies why the solution of (4) yields low-rank semantic
mappings (LRSMs). The LRSMs are strongly related and
share the same motivations with the methods in [31] and
[32], which have been proposed for multi-class classifi-
cation and prediction, respectively. In both methods, the
nuclear norm-regularized loss is minimized in order to
infer relationships between the label vectors and feature
vectors. The two key differences between the methods in
[31] and [32] and the LRSMs are (1) the LRSMs are able
to adequately handle multiple features, drawn from differ-
ent feature spaces, and (2) the least squares loss function is
employed instead of hinge loss, resulting into formulation
(4) which can be efficiently solved for large-scale data.
Problem (4) is solved as follows: By introducing the aux-

iliary variables W(r), r = 1, 2, . . . ,R, (4) is equivalent
to

argmin
{M(r),W(r)|Rr=1}

R∑
r=1

λr‖W(r)‖∗ + 1
2
‖L −

R∑
r=1

M(r)X(r)‖2F

s.t. M(r) = W(r), r = 1, 2, . . . ,R, (5)

which can be solved by employing the alternating direc-
tion augmented Lagrange multiplier (ADALM) method,
which is a simple, but powerful, algorithm that is well
suited to large-scale optimization problems [28,49]. That
is, by minimizing the augmented Lagrange function [28],

L
(
W(1),W(2), . . .W(R),M(1),M(2), . . . ,M(R),�(1),

�(2), . . . ,�(R)
)

=
R∑

r=1
λr‖W(r)‖∗ + 1

2
‖L −

R∑
r=1

M(r)X(r)‖2F

+
R∑

r=1
tr

(
�(r)T

(
M(r) − W(r)

))
+ ζ

2

R∑
r=1

‖M(r) − W(r)‖2F ,

(6)

where �(r), r = 1, 2, . . . ,R, are the Lagrange multi-
pliers and ζ > 0 is a penalty parameter. By applying
the ADALM, (6) is minimized with respect to
each variable in an alternating fashion, and finally,
the Lagrange multipliers are updated at each iter-
ation. If only W(1) is varying and all the other
variables are kept fixed, we simplify (6) writing
L (W(1)) instead of L

(
W(1),W(2), . . . ,W(R),M(1),M(2), . . . ,

M(R),�(1),�(2), . . . ,�(R)
)
. Let t denote the iteration

index. Given W(r)
[t] ,M

(r)
[t] , r = 1, 2, . . .R, and ζ[t], the
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iterative scheme of ADALM for (6) reads as follows:
W(r)

[t+1] = argmin
W(r)

[t]

L
(
W(r)

[t]

)

= argmin
W(r)

[t]

λr‖W(r)
[t] ‖∗ + tr

(
�

(r)T
[t]

(
M(r)

[t] − W(r)
[t]

))

+ ζ[t]
2

‖M(r)
[t] − W(r)

[t] ‖2F

= argmin
W(r)

[t]

λr
ζ[t]

‖W(r)
[t] ‖∗ + 1

2
‖W(r)

[t] −
(
M(r)

[t] + �
(r)
[t]

ζ[t]

)
‖2F .

(7)

M(r)
[t+1] = argmin

M(r)
[t]

L
(
M(r)

[t] )

= argmin
M(r)

[t]

1
2
‖L −

R∑
r=1

M(r)
[t]X

(r)‖2F

+ tr
(
�

(r)T
[t]

(
M(r)

[t] − W(r)
[t+1]

))
+ ζ[t]

2
‖M(r)

[t] − W(r)
[t+1]‖2F .

(8)

�
(r)
[t+1]=�

(r)
[t] +ζ[t]

(
M(r)

[t+1]−W(r)
[t+1]

)
, r = 1, 2, . . . ,R.

(9)

The solution of (7) is obtained in closed form via
the singular value thresholding operator defined for any
matrix Q as [50]: Dτ [Q]= USτVT with Q = U�VT

being the singular value decomposition and Sτ [ q]=
sgn(q)max(|q| − τ , 0) being the shrinkage operator [51].
The shrinkage operator can be extended to matrices
by applying it element-wise. Consequently, W(r)

[t+1] =
D λr

ζ[t]

[
M(r)

[t] + �
(r)
[t]

ζ[t]

]
. Problem (8) is an unconstrained least

squares problem, which admits a unique closed-form
solution, as is indicated in Algorithm 1 summarizing the
ADALMmethod for the minimization of (5). The conver-
gence of Algorithm 1 is just a special case of that of the
generic ADALM [28,49].
The set of the low-rank semantic matrices{
M(1),M(2), . . . ,M(R)

}
, obtained by Algorithm 1, captures

the semantic relationships between the label space and
the R audio feature spaces. In music classification, the
semantic relationships are expected to propagate from the
R feature spaces to the label vector space. Therefore, a test
music recording can be labeled as follows: Let x̂(r) ∈ R

dr ,
r = 1, 2, . . . ,R, be a set of feature vectors extracted from
the test music recording and l ∈ {0, 1}K be the class indi-
cator vector of this recording. First, the intermediate class
indicator vector l̂ ∈ R

K is obtained by

l̂ =
R∑

r=1
M(r) x(r). (10)

Algorithm 1 Solving (5) by the ADALMmethod
Input: Training data

{
X(1),X(2), . . . ,X(R)

}
, the class indi-

cator matrix L, and the regularization parameters λr ,
r = 1, 2, . . . ,R.
Output: The set of the low-rank semantic matrices{
M(1),M(2), . . . ,M(R)

}
.

1: Initialize: Set M(r)
[0], W

(r)
[0], and �

(r)
[0], r = 1, 2, . . . ,R, to

zero matrices of compatible dimensions, ζ[0] = 10−6,
t = 0, ρ = 1.1, ε = 10−8.

2: while not converged do
3: for r = 1 → R do
4: Fix the other variables, and updateW(r)

[t+1] by

5: W(r)
[t+1] ← D λr

ζ[t]

[
M(r)

[t] + �
(r)
[t]

ζ[t]

]
.

6: Fix the other variables, and updateM(r)
[t+1] by

7: T ← ∑R
r′=1,r′ 	=r M

(r′)
[t] X

(r′).

8: M(r)
[t+1] ←

(
LX(r)T − TX(r)T + ζ[t]W(r)

[t+1] − �
(r)T
[t]

)
9:

(
X(r)X(r)T + ζ[t]I

)−1.
10: Update the Lagrange multipliers by
11: �

(r)
[t+1] ← �

(r)
[t] + ζ[t]

(
M(r)

[t+1] − W(r)
[t+1]

)
.

12:
13: end for
14: Update ζ[t+1] by ζ[t+1] ← min(ρ · ζ[t], 106).
15:
16: for r = 1 → R do
17: Check convergence conditions
18: ‖M(r)

[t+1] − W(r)
[t+1]‖∞ < ε.

19: end for
20: t ← t + 1.
21: end while

The (final) class indicator vector (i.e., l) has ‖l‖0 = v <

K , containing 1 in the positions, which are associated with
the v largest values in l̂. Clearly, for single-label multi-class
classification, v = 1.

4.1 Computational complexity
The dominant cost for each iteration in Algorithm 1 is the
computation of the singular value thresholding operator
(i.e., step 4), that is, the calculation of the singular vec-

tors of M(r)
[t] + �

(r)
[t]

ζ[t]
whose corresponding singular values

are larger than the threshold λr
ζ[t]

. Thus, the complexity of
each iteration is O(R · d · N2).
Since the computational cost of the LRSMs depends

highly on the dimensionality of feature spaces, dimen-
sionality reduction methods can be applied. For compu-
tational tractability, dimensionality reduction via random
projections is considered. Let the true low dimensionality
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of the data be denoted by z. Following [52], a random
projectionmatrix, drawn from a normal zero-mean distri-
bution, provides with high probability a stable embedding
[53] with the dimensionality of the projection d′

r selected
as the minimum value such that d′

r > 2z log(7, 680/d′
r).

Roughly speaking, a stable embedding approximately pre-
serves the Euclidean distances between all vectors in the
original space in the feature space of reduced dimensions.
In this paper, we propose to estimate z by robust principal
component analysis [51] on the high-dimensional training
data (e.g., X(r)). That is, the principal component pursuit
is solved:

argmin
L(r),S(r)

‖
(r)‖∗ + λ‖�(r)‖1 s.t. X(r) = 
(r) + �(r).

(11)

Then, z is the rank of the outlier-free data matrix 
(r)

[51] and corresponds to the number of its non-zero singu-
lar values.

5 Experimental evaluation
5.1 Datasets and evaluation procedure
The performance of the LRSMs inmusic genre, mood, and
multi-label music classification is assessed by conduct-
ing experiments on seven manually annotated benchmark
datasets for which the audio files are publicly available.
In particular, the GTZAN [17], ISMIR, Homburg [54],
Unique [16], and 1517-Artists [16] datasets are employed
for music genre classification, the MTV dataset [15] for
music mood classification, and the CAL500 dataset [1]
for music tagging. Brief descriptions of these datasets are
provided next.
The GTZAN (http://marsyas.info/download/data_sets)

consists of 10 genre classes, namely blues, classical, coun-
try, disco, hip-hop, jazz, metal, pop, reggae, and rock. Each
genre class contains 100 excerpts of 30-s duration.
The ISMIR (http://ismir2004.ismir.net/ISMIR_Contest.

html) comes from the ISMIR 2004 Genre classification
contest and contains 1, 458 full music recordings dis-
tributed over six genre classes as follows: classical (640),
electronic (229), jazz-blues (52), metal-punk (90), rock-
pop (203), and world (244), where the number within
parentheses refers to the number of recordings which
belong to each genre class. Therefore, 43.9% of the music
recordings belong to the classical genre.
The Homburg (http://www-ai.cs.uni-dortmund.de/

audio.html) contains 1, 886 music excerpts of 10-s length
by 1, 463 different artists. These excerpts are unequally
distributed over nine genres, namely alternative, blues,
electronic, folk-country, funk/soul/RnB, jazz, pop,
rap/hip-hop, and rock. The largest class is the rap/hip-
hop genre containing 26.72% of the music excerpts, while

the funk/soul/RnB is the smallest one containing 2.49% of
the music excerpts.
The 1517-Artists (http://www.seyerlehner.info/index.

php?p=1_3_Download) consists of 3, 180 full-length
music recordings from 1, 517 different artists, down-
loaded free from download.com. The 190 most popular
songs, according to the number of total listenings, were
selected for each of the 19 genres, i.e., alternative/punk,
blues, children’s, classical, comedy/spoken, country, easy
listening/vocal, electronic, folk, hip-hop, jazz, latin, new
age, RnB/soul, reggae, religious, rock/pop, soundtracks,
and world. In this dataset, the music recordings are dis-
tributed almost uniformly over the genre classes.
TheUnique (http://www.seyerlehner.info/index.php?p=

1_3_Download) consist of 3, 115 music excerpts of pop-
ular and well-known songs, distributed over 14 genres,
namely blues, classic, country, dance, electronica, hip-
hop, jazz, reggae, rock, schlager (i.e., music hits),
soul/RnB, folk, world, and spoken. Each excerpt has 30-
s duration. The class distribution is skewed. That is, the
smallest class (i.e., spoken music) accounts for 0.83%, and
the largest class (i.e., classic) for 24.59% of the available
music excerpts.
The MTV (http://www.openaudio.eu/) contains 195

full-music recordings with a total duration of 14.2 h from
the MTV Europe Most Wanted Top Ten of 20 years (1981
to 2000), covering a wide variety of popular music gen-
res. The ground truth was obtained by five annotators
(Rater A to Rater E, four males and one female), who were
asked to make a forced binary decision according to the
two dimensions in Thayer’s mood plane [55] (i.e., assign-
ing either +1 or −1 for arousal and valence, respectively)
according their mood perception.
The CAL500 (http://cosmal.ucsd.edu/cal/) is a corpus

of 500 recordings of Western popular music, each of
which has been manually annotated by at least three
human annotators, who employ a vocabulary of 174 tags.
The tags used in CAL500 dataset annotation span six
semantic categories, namely instrumentation, vocal char-
acteristics, genres, emotions, acoustic quality of the song,
and usage terms (e.g., ‘I would like to listen this song
while driving’) [1].
Each music recording in the aforementioned datasets

was represented by three song-level feature vectors,
namely the 20-dimensional MFCCs, the 12-dimensional
chroma features, and the auditory cortical representa-
tions of reduced dimensions. The dimensionality of the
cortical features was reduced via random projections as
described in Section 4. In particular, the dimensions of
the cortical features after random projections are 1, 570
for the GTZAN, 1, 391 for the ISMIR, 2, 261 for the Hom-
burg, 2, 842 for the 1517-Artists, 2, 868 for the Unique,
518 for the MTV, and 935 for the CAL500 dataset,
respectively.

http://marsyas.info/download/data_sets
http://ismir2004.ismir.net/ISMIR_Contest.html
http://ismir2004.ismir.net/ISMIR_Contest.html
http://www-ai.cs.uni-dortmund.de/audio.html
http://www-ai.cs.uni-dortmund.de/audio.html
http://www.seyerlehner.info/index.php?p=1_3_Download
http://www.seyerlehner.info/index.php?p=1_3_Download
http://www.seyerlehner.info/index.php?p=1_3_Download
http://www.seyerlehner.info/index.php?p=1_3_Download
http://www.openaudio.eu/
http://cosmal.ucsd.edu/cal/
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Two sets of experiments in music classification were
conducted. First, to be able to compare the perfor-
mance of the LRSMs with that of the state-of-the-
art music classification methods, standard evaluation
protocols were applied to the seven datasets. In particu-
lar, following [16,17,20,22,56,57], stratified 10-fold cross-
validation was applied to the GTZAN dataset. According
to [15,16,54], the same protocol was also applied to the
Homburg, Unique, 1517-Artists, and MTV datasets. The
experiments on the ISMIR 2004 Genre dataset were con-
ducted according to the ISMIR 2004 Audio Description
Contest protocol. The protocol defines training and eval-
uation sets, which consist of 729 audio files each. The
experiments on music tagging were conducted following
the experimental procedure defined in [26]. That is, 78
tags, which have been employed to annotate at least 50
music recordings in the CAL500 dataset, were used in the
experiments by applying fivefold cross-validation.
Fu et al. [3] indicated that the main challenge for future

music information retrieval systems is to be able to train

the music classification systems for large-scale datasets
from few labeled data. This situation is very common in
practice since the number of annotated music recordings
per class is often limited [3]. To this end, the performance
of the LRSMs in music classification given a few training
music recordings is investigated in the second set of exper-
iments. In this small-sample size setting, only 10% of the
available recordings were used as the training set and the
remaining 90% for the test in all, but the CAL500, datasets.
The experiments were repeated 10 times. In music tag-
ging, 20% of the recordings in the CAL500 were used as
the training set and the remaining 80% for the test. This
experiment was repeated five times.
The LRSMs are compared against three well-known

classifiers, namely the SRC [38], the linear SVMsa, and the
NN classifier with a cosine distance metric in music genre
and mood classification, by applying the aforementioned
experimental procedures. In music tagging, the LRSMs
are compared against the multi-label variants of the afore-
mentioned single-label classifiers, namely the MLSRC

Table 1 Music genre classification accuracies for the GTZAN, ISMIR, Homburg, 1517-Artists, and Unique datasets

Method Features GTZAN ISMIR Homburg 1517-Artists Unique

LRSMs Fusion cmc 87.00 (2.62) 82.99 62.40 (3.65) 54.91 (2.54) 72.90 (1.26)

Fusion cm 86.80 (2.85) 82.30 62.29 (4.04) 54.74 (2.68) 72.84 (1.11)

Cortical 85.50 (2.79) 81.62 61.71 (4.02) 54.43 (2.58) 72.35 (1.05)

MFCCs 50.60 (5.35) 59.08 43.26 (2.30) 23.45 (1.96) 54.60 (1.87)

Chroma 17.6 (4.03) 43.90 26.93 (1.39) 9.77 (1.13) 24.71 (1.87)

SRC Fusion cmc 84.40 (2.27) 82.85 59.64 (3.24) 53.08 (2.83) 72.61 (1.18)

Fusion cm 84.40 (2.71) 80.50 58.10 (4.15) 50.78 (2.41) 71.97 (1.85)

Cortical 84.10 (3.04) 79.97 57.52 (3.98) 50.72 (2.61) 67.48 (1.14)

MFCCs 63.60 (5.01) 70.50 38.10 (2.74) 30.12 (1.87) 56.59 (1.06)

Chroma 36.80 (5.67) 47.73 26.61 (2.58) 17.01 (1.31) 31.20 (2.94)

SVMs Fusion cmc 86.80 (2.82) 82.99 62.61 (3.22) 53.30 (3.19) 75.15 (1.48)

Fusion cm 86.40 (2.98) 73.93 61.07 (3.32) 53.08 (3.38) 73.54 (1.87)

Cortical 86.00 (2.83) 73.79 60.92 (2.83) 53.71 (3.18) 68.89 (2.22)

MFCCs 54.90 (3.14) 52.67 43.95 (2.05) 26.16 (2.96) 53.22 (1.06)

Chroma 16.90 (4.02) 48.42 34.99 (1.96) 12.16 (2.27) 39.87 (2.67)

NN Fusion cmc 81.40 (3.20) 78.64 50.26 (4.21) 44.87 (2.21) 64.68 (2.31)

Fusion cm 81.10 (3.31) 79.02 50.21 (3.48) 44.90 (2.43) 64.68 (2.31)

Cortical 80.70 (3.26) 79.69 49.78 (2.98) 44.84 (2.55) 64.43 (2.57)

MFCCs 57.60 (5.05) 67.76 29.79 (3.13) 26.57 (1.84) 48.82 (2.17)

Chroma 34.10 (4.67) 42.24 23.64 (1.93) 14.40 (1.80) 25.32 (2.96)

[20] 90.60 [20] 86.83 [16] 61.20 [16] 41.10 [16] 72.00

[22] 84.30 [10] 83.50 [60] 57.81 [61] 35.00

[56] 82.50 [22] 83.15 [61] 55.30

[16] 82.00 [62] 82.30 [54] 53.23

[57] 77.20

The numbers within the parentheses indicate the standard deviations obtained by 10-fold cross-validation. The best results are indicated in italics.
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Table 2 Music mood classification accuracies for theMTV dataset

Method Features Rater A Rater B Rater C Rater D Rater E Overall

Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence

LRSMs Fusion
cmc

76.42
(10.79)

66.02
(10.45)

81.55
(7.73)

63.57
(8.42)

70.21
(10.48)

57.28
(12.01)

66.71
(5.72)

69.21
(7.97)

70.26
(8.92)

61.55
(4.72)

73.03
(1.97)

63.53
(2.61)

Fusion
cm

76.42
(10.79)

66.02
(10.45)

81.55
(7.73)

63.57
(8.41)

70.21
(10.48)

57.28
(12.01)

66.71
(5.72)

69.21
(7.97)

70.26
(8.92)

61.55
(4.72)

73.03
(1.97)

63.53
(2.61)

Cortical 76.42
(10.79)

66.52
(10.77)

81.52
(7.27)

63.57
(8.41)

69.68
(10.12)

57.28
(12.01)

66.18
(4.61)

68.15
(9.09)

70.26
(8.92)

61.55
(4.72)

72.72
(2.34)

63.42
(2.63)

MFCCs 69.76
(8.51)

62.15
(7.39)

68.15
(8.84)

66.07
(10.65)

64.21
(13.52)

60.92
(11.43)

64.57
(6.38)

57.52
(16.75)

63.65
(6.09)

54.84
(13.72)

66.07
(2.82)

60.30
(3.13)

Chroma 59.55
(11.61)

62.15
(7.39)

58.39
(8.45)

66.07
(10.65)

53.84
(16.36)

60.92
(11.43)

57.55
(12.58)

55.47
(15.96)

59.02
(6.87)

55.34
(14.22)

57.67
(3.51)

59.99
(3.14)

SRC Fusion
cmc

77.39
(12.01)

59.97
(7.74)

79.92
(7.67)

64.00
(10.62)

70.28
(10.40)

58.92
(12.11)

64.15
(7.39)

65.02
(12.59)

63.00
(10.25)

56.36
(8.89)

70.95
(1.86)

60.85
(1.96)

Fusion
cm

74.78
(11.37)

59.97
(8.17)

77.28
(9.49)

63.00
(8.26)

69.28
(10.88)

62.50
(12.70)

65.65
(7.22)

62.89
(13.73)

62.00
(10.81)

54.23
(9.72)

69.08
(1.59)

60.52
(2.43)

Cortical 75.36
(9.91)

60.52
(6.35)

77.81
(8.37)

65.02
(10.26)

68.73
(11.63)

58.94
(10.14)

62.10
(6.03)

65.55
(12.14)

63.53
(11.39)

57.86
(7.62)

69.51
(2.16)

61.58
(2.18)

MFCCs 53.81
(11.11)

59.55
(10.24)

60.97
(7.68)

62.47
(12.71)

64.15
(13.71)

57.94
(9.30)

53.86
(7.80)

58.36
(8.60)

63.13
(6.32)

46.13
(13.43)

59.18
(2.86)

56.84
(2.00)

Chroma 54.63
(14.75)

53.31
(7.50)

53.73
(11.93)

61.65
(11.65)

50.26
(9.08)

48.60
(9.71)

55.97
(9.81)

56.00
(9.22)

53.91
(9.22)

48.55
(12.05)

53.70
(2.28)

53.62
(1.76)

SVMs Fusion
cmc

76.39
(12.71)

61.52
(10.01)

78.97
(7.04)

66.07
(10.65)

68.23
(9.90)

56.28
(13.23)

61.05
(8.19)

65.02
(9.55)

69.84
(12.41)

58.42
(13.71)

70.90
(2.37)

61.46
(1.81)

Fusion
cm

73.36
(12.59)

61.52
(10.01)

78.47
(6.74)

66.07
(10.65)

67.73
(9.71)

56.26
(13.54)

61.05
(8.19)

65.02
(9.55)

70.34
(13.17)

56.86
(12.52)

70.59
(2.62)

61.15
(1.61)

Cortical 75.36
(12.59)

61.00
(10.27)

78.97
(7.04)

66.07
(10.65)

68.26
(9.25)

56.26
(13.54)

61.07
(7.33)

64.02
(8.24)

69.84
(14.09)

56.86
(14.14)

70.70
(2.99)

60.84
(2.31)

MFCCs 57.07
(15.30)

62.15
(7.39)

57.47
(13.08)

66.07
(10.65)

56.42
(10.93)

60.92
(11.42)

57.63
(10.93)

55.47
(15.96)

46.57
(11.54)

55.34
(14.22)

55.03
(2.41)

59.99
(3.14)

Chroma 57.07
(15.30)

62.15
(7.39)

57.47
(13.08)

66.07
(10.65)

56.42
(10.93)

60.92
(11.42)

57.63
(10.93)

55.47
(15.96)

46.57
(11.54)

55.34
(14.22)

55.03
(2.41)

59.99
(3.14)

NN Fusion
cmc

65.63
(5.86)

51.28
(8.03)

66.57
(11.73)

57.31
(7.92)

58.55
(11.15)

57.84
(9.27)

61.55
(6.43)

54.73
(13.50)

63.52
(9.98)

52.81
(6.72)

63.16
(2.57)

54.80
(2.49)

Fusion
cm

66.68
(6.35)

52.34
(8.11)

68.15
(8.74)

60.39
(9.84)

59.57
(10.87)

57.36
(9.20)

62.05
(6.90)

55.26
(9.72)

61
(10.03)

52.23
(8.07)

63.49
(1.84)

55.52
(0.81)
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Table 2 Music mood classification accuracies for theMTV dataset continued

Cortical 64.60
(7.07)

53.42
(9.29)

69.71
(10.16)

62.47
(7.69)

60.60
(9.96)

58.47
(7.39)

61.00
(7.03)

56.68
(12.02)

62.60
(10.30)

50.21
(7.97)

63.60
(1.60)

56.25
(1.82)

MFCCs 58.97
(9.24)

57.31
(10.20)

59.39
(6.70)

55.86
(11.66)

57.52
(15.61)

54.31
(8.52)

52.97
(14.82)

57.84
(11.71)

62.47
(10.14)

47.63
(11.52)

58.26
(3.60)

54.59
(1.30)

Chroma 56.65
(15.01)

49.21
(10.93)

54.78
(14.22)

57.02
(11.39)

47.73
(9.08)

49.73
(5.72)

54.92
(8.53)

55.42
(9.81)

53.39
(9.55)

46.60
(11.32)

53.50
(2.68)

51.6
(2.26)

[15] 71.80 62.10 71.30 70.80 74.40 63.10 66.70 68.70 69.90 60.50 71.80 60.50

The numbers within the parentheses indicate the standard deviations obtained by 10-fold cross-validation. The best results are indicated in italics.
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[39], the Rank-SVMs [40], the MLkNN [41], as well as the
well-performing PARAFAC2-based autotagging method
[42]. The number of neighbors used in the MLkNN was
set to 15. The sparse coefficients in the SRC and MLSRC
are estimated by the LASSOb [58].
The performance in music genre and mood classifica-

tion is assessed by reporting the classification accuracy.
Three metrics, namely the mean per-tag precision, the
mean per-tag recall, and the F1 score, are used in order
to assess the performance of autotagging. These metrics
are defined as follows [1]: Per-tag precision is defined as
the fraction of music recordings annotated by any method
with label w that are actually labeled with tag w. Per-
tag recall is defined as the fraction of music recordings

actually labeled with tag w that the method annotates
with label w. The F1 score is the harmonic mean of pre-
cision and recall. That is, F1 = 2 · precision·recall

precision+recall yields a
scalar measure of overall annotation performance. If a tag
is never selected for annotation, then following [1,26], the
corresponding precision (that otherwise would be unde-
fined) is set to the tag prior to the training set, which
equals the performance of a random classifier. In the
music tagging experiments, the length of the class indica-
tor vector returned by the LRSMs as well as the MLSRC,
the Rank-SVMs, the MLkNN, and the PARAFAC2-based
autotagging method was set to 10 as in [1,26]. That is,
each test music recording is annotated with 10 tags.
The parameters in the LRSMs have been estimated by

Table 3 Music tagging performance on the CAL500 dataset by applying fivefold cross-validation

Method Features Precision Recall F1 score

LRSMs Fusion cmc 0.504 0.202 0.289

Fusion cm 0.504 0.202 0.289

Cortical 0.500 0.203 0.288

MFCCs 0.379 0.167 0.232

Chroma 0.277 0.130 0.174

MLSRC Fusion cmc 0.458 0.184 0.263

Fusion cm 0.466 0.186 0.266

Cortical 0.476 0.186 0.267

MFCCs 0.384 0.162 0.228

Chroma 0.355 0.151 0.212

Rank-SVMs Fusion cmc 0.469 0.209 0.289

Fusion cm 0.477 0.209 0.291

Cortical 0.472 0.208 0.288

MFCCs 0.313 0.140 0.194

Chroma 0.287 0.128 0.177

MLkNN Fusion cmc 0.404 0.173 0.243

Fusion cm 0.398 0.173 0.241

Cortical 0.404 0.173 0.242

MFCCs 0.338 0.156 0.213

Chroma 0.305 0.138 0.190

PARAFAC2 Fusion cmc 0.483 0.196 0.279

Fusion cm 0.480 0.197 0.279

Cortical 0.472 0.208 0.288

MFCCs 0.304 0.136 0.188

Chroma 0.289 0.130 0.179

[63] 0.480 0.260 0.340

[26] 0.490 0.230 0.260

[9] as evaluated in [26] 0.410 0.240 0.250

[12] as evaluated in [26] 0.380 0.240 0.250

[64] as evaluated in [26] 0.370 0.170 0.200

The best results are indicated in italics.
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Table 4 Music classification results on various datasets obtained by employing a few labeledmusic recordings

Method Features Music Genre Music Mood: MTV

GTZAN ISMIR Homburg 1517-Artists Unique Arousal Valence

LRSMs Fusion cmc 72.02 (1.97) 74.05 (1.69) 57.02 (0.44) 41.03 (1.45) 68.68 (0.52) 62.76 (1.57) 56.28 (1.18)

Fusion cm 71.73 (1.79) 73.28 (1.47) 57.02 (0.44) 41.03 (1.45) 68.55 (0.66) 62.76 (1.57) 57.74 (1.42)

SRC Fusion cmc 69.91 (1.57) 72.36 (1.69) 53.63 (0.62) 35.92 (0.85) 67.83 (1.11) 60.29 (1.68) 58.19 (2.00)

Fusion cm 68.33 (2.21) 72.33 (1.30) 53.48 (0.83) 35.82 (0.89 ) 67.70 (1.19) 60.46 (1.40) 58.25 (2.33)

SVMs Fusion cmc 70.84 (1.41) 72.55 (1.43) 55.39 (0.86) 37.83 (1.10) 69.85 (0.68) 55.24 (0.88) 57.81 (1.17)

Fusion cm 70.33 (1.53) 64.78 (0.86 ) 55.43 (0.78) 37.60 (1.00 ) 69.46 (0.66) 55.12 (0.87) 57.88 (1.79)

NN Fusion cmc 63.01 (3.18) 71.07 (1.34) 45.02 (1.19) 29.95 (1.52) 59.49 (1.49) 59.14 (1.77) 55.43 (1.21)

Fusion cm 61.63 (3.11) 70.89 (1.10 ) 44.84 (1.34) 29.76 (1.42 ) 59.41 (1.47) 59.10 (1.47) 55.42 (1.59)

The best results are indicated in italics.

employing the method in [59]. That is, for each training
set, a validation set (disjoint from the test set) was ran-
domly selected and used next for tuning the parameters
(i.e., λr , r = 1, 2, . . . ,R).

5.2 Experimental results
In Tables 1, 2, and 3, the experimental results in music
genre, mood, and multi-label classification are summa-
rized, respectively. These results have been obtained by
applying the standard protocol defined for each dataset.
In Tables 4 and 5, music classification results are reported,
when a small training set is employed. Each classifier
is applied to the auditory cortical representations (corti-
cal features) of reduced dimensions, the 20-dimensional
MFCCs, the 12-dimensional chroma features, the lin-
ear combination of cortical features and MFCCs (fusion
cm, i.e., R = 2), and the linear combination of all the
aforementioned features (fusion cmc, i.e., R = 3). Apart
from the proposed LRSMs, the other competitive classi-
fiers handle the fusion of multiple audio features in an
ad hoc manner. That is, an augmented feature vector is

constructed by stacking the cortical features on the top
of the 20-dimensional MFCCs and the 12-dimensional
chroma features. In the last rows of Tables 1, 2, and 3, the
figures ofmerit for the top performingmusic classification
methods are included for comparison purposes.
By inspecting Table 1, the best music genre classifica-

tion accuracy has been obtained by the LRSMs in four out
five datasets, when all the features have been exploited for
music representation. Comparable performance has been
achieved by the combination of cortical features and the
MFCCs. This is not the case for the Unique dataset, where
the SVMs achieve the best classification accuracy when
employing the fusion of the cortical features, the MFCCs,
and the chroma features. Furthermore, the LRSMs out-
perform all the classifiers being compared to when they
are applied to cortical features. The MFCCs are classified
more accurately by the SRC or the SVMs than the LRSMs.
This is because theMFCCs and the chroma features have a
low dimensionality and the LRSMs are not able to extract
the appropriate common latent features the genre classes
are built on. The best classification accuracy obtained by

Table 5 Music classification results on the CAL500 dataset obtained by employing a few labeledmusic recordings

Method Features Music Tagging: CAL500

Precision Recall F1score

LRSMs Fusion cmc 0.480 0.191 0.273

Fusion cm 0.480 0.191 0.273

MLSRC Fusion cmc 0.467 0.178 0.257

Fusion cm 0.467 0.178 0.257

Rank-SVMs Fusion cmc 0.433 0.181 0.255

Fusion cm 0.435 0.182 0.257

MLkNN Fusion cmc 0.331 0.151 0.208

Fusion cm 0.331 0.149 0.205

PARAFAC2 Fusion cmc 0.460 0.187 0.266

Fusion cm 0.462 0.188 0.267

The best results are indicated in italics.



Panagakis and Kotropoulos EURASIP Journal on Audio, Speech, andMusic Processing 2013, 2013:13 Page 13 of 15
http://asmp.eurasipjournals.com/content/2013/1/13

the LRSMs on all datasets ranks high compared to that
obtained by the majority of music genre classification
techniques, as listed in last rows of Table 1. In particu-
lar, for the Homburg, 1517-Artists, and Unique datasets,
the best accuracy achieved by the LRSMs outperforms
that obtained by the state-of-the-art music classification
methods. Regarding to the GTZAN and ISMIR datasets,
it is worth mentioning that the results reported in [20]
have been obtained by applying feature aggregation on the
combination of four elaborated audio features.
Schuller et al. argued that the two dimensions in

Thayer’s moodmodel, namely the arousal and the valence,
are independent of each other [15]. Therefore, mood clas-
sification can be reasonably done independently in each
dimension, as presented in Table 2. That is, each classifier
makes binary decisions between excitation and calmness
on the arousal scale as well as negativity and positivity in
the valence dimension, respectively. Both overall and per-
rater music mood classification accuracies are reported.
The overall accuracies are the mean accuracies over all
raters for all songs in the dataset. The LRSMs outperform
the classifiers that are compared to when the cortical fea-
tures and their fusion with the MFCCs and the chroma
features are employed for music representation, yielding
higher classification accuracies than those reported in the
row entry NONLYR in Tables twelve and thirteen [15]
when only audio features are employed. It is seen that the
inclusion of the chroma features does not alter the mea-
sured figures of merit. Accordingly, the chroma features
could be omitted without any performance deterioration.
It is worth mentioning that substantial improvements in
the classification accuracy are reported when audio fea-
tures are combined with lyric features [15]. The overall
accuracy achieved by the LRSMs in valence and arousal is
considered satisfactory, considering the inherent ambigu-
ity in the mood assignments and the realistic nature of the
MTV dataset.
The results reported in Table 3 indicate that in music

tagging, the LRSMs outperform theMLSRC, theMLkNN,
and the PARAFAC2 with respect to per-tag precision,
per-tag recall, and F1 score for all the music represen-
tations employed. The Rank-SVMs yield the best tag-
ging performance with respect to the F1 score and the
recall. The cortical features seem to be more appro-
priate for music annotation than the MFCCs, no mat-
ter which annotation method is employed. Although
the LRSMs achieve top performance against the state-
of-the-art methods with respect to per-tag precision,
the reported recall is much smaller compared to that
published for the majority of music tagging meth-
ods (last five rows in Table 3). This result is due
to the song-level features employed here, which fail
to capture the temporal information with some tags
(e.g., instrumentation). In contrast, the well-performing

autotagging method with respect to recall, which is
reported in Table 3, employs sequences of audio features
for music representation.
In Tables 4 and 5, music classification results, by

applying a small-sample size setting, are summarized.
These results have been obtained by employing either
the fusion of the cortical features, the MFCCs, and the
chroma features or the fusion of the former two audio
representations. Clearly, the LRSMs outperform all the
classifiers they are compared to in most music classifi-
cation tasks. The only exceptions are the prediction of
valence on the MTV dataset, where the best classifica-
tion accuracy is achieved by the SRC, and the music
genre classification accuracy on the Unique dataset, where
the top performance is achieved by the SVMs. Given
the relatively small number of training music record-
ings, the results in Tables 4 and 5 are quite acceptable,
indicating that the LRSMs are an appealing method for
music classification in real-world conditions.

6 Conclusions
The LRSMs have been proposed as a general-purpose
music classification method. Given a number of music
representations, the LRSMs are able to extract the appro-
priate features for each specific music classification task,
yielding higher performance than the methods they are
compared to. Furthermore, the best classification results
obtained by the LRSMs either meet or slightly outper-
form those obtained by the state-of-the-art methods for
music genre, mood, and multi-label music classification.
The superiority of the auditory cortical representations
has been demonstrated over the conventional MFCCs and
chroma features in the three music classification tasks
studied as well. Finally, the LRSMs yield high music clas-
sification performance when a small number of training
recordings is employed. This result highlights the poten-
tial of the proposed method for practical music informa-
tion retrieval systems.

Endnotes
a The LIBSVM was used in the experiments (http://www.
csie.ntu.edu.tw/~cjlin/libsvm/).
b The SPGL1 Matlab solver was used in the implementa-
tion of the SRC and the MLSRC (http://www.cs.ubc.ca/~
mpf/spgl1/).
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