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Abstract

significant improvement for speech segregation.

image processing

A lot of effort has been made in Computational Auditory Scene Analysis (CASA) to segregate target speech from
monaural mixtures. Based on the principle of CASA, this article proposes an improved algorithm for monaural speech
segregation. To extract the energy feature more accurately, the proposed algorithm improves the threshold selection
for response energy in initial segmentation stage. Since the resulting mask map often contains broken auditory
element groups after grouping stage, a smoothing stage is proposed based on morphological image processing.
Through the combination of erosion and dilation operations, we suppress the intrusions by removing the unwanted
particles and enhance the segregated speech by complementing the broken auditory elements. Systematic
evaluation shows that the proposed segregation algorithm improves the output signal-to-noise ratio by an average of
8.55 dB and cuts the percentage of noise residue by an average of 25.36% compared with the mixture, yielding a
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1 Introduction

While monaural speech segregation remains a challenge
to computers, the humans can distinguish and track
speech signal of interest under various noisy environ-
ments. In 1990, Bregman published his book, Auditory
Scene Analysis [1], which was the first to explain the
principles underlying the perception of complex acous-
tic mixtures systematically, inspiring the establishment of
its computational model, computational auditory scene
analysis (CASA) [2].

The CASA simulates the human auditory system, and
its processing of mixture speech is similar to human audi-
tory perception. The system is made of two main stages:
segmentation and grouping. It decomposes input signal
into sensory segments in segmentation stage and then
those segments which likely come from the same source
are grouped into “target stream” together. Since the CASA
system can solve the monaural speech separation prob-
lem, it has been improved continuously and tremendously
in recent years.
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The CASA system proposed by Brown and Cooke
employs maps of different auditory features that generated
from the output of a cochlear model for speech segrega-
tion. This system does not require a priori knowledge of
the input signal but has a few limitations. It cannot handle
sequential grouping problem effectively and often leaves
missing parts in the segregated speech [3].

Wang and Brown [2,4] proposed a CASA model to
segregate voiced speech based on oscillatory correlation,
which uses harmonicity and temporal continuity as major
grouping cues. This model is able to recover most of the
target speech, but it cannot handle the speech signal in the
high-frequency range (above 1 kHz) well.

For voiced speech segregation, Hu and Wang [5,6] pro-
posed a typical monaural CASA system which groups
the resolved and unresolved harmonics differently, using
amplitude modulation (AM) effects to improve segrega-
tion. And in [7], an improved tandem algorithm is pro-
posed for pitch estimation, which is robust to interference
and produces good estimates of both target pitch and
voiced target.

For unvoiced speech segregation, Hu—Wang system
employed a multi-scale onset and offset analysis for
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unvoiced speech segmentation, which makes both voiced
and unvoiced speeches correctly segmented in [8]. After
voiced speech removal, acoustic-phonetic features are
then used in a classification stage to distinguish unvoiced
segments from interference [9,10]. Hu and Wang [11] pro-
posed a new CASA approach for unvoiced segregation
based on spectral substraction. To further group the target
signal across time, Shao proposed a CASA system com-
prised of both simultaneous and sequential organizations
systematically in [12].

This article proposes an improved CASA system for
speech separation. After signal decomposition, response
energy feature plays an important role in initial segmen-
tation. In the previous CASA system, a constant value
is used as the threshold of the time-frequency (T-F)
unit’s respond energy. However, because the intrusion
is unknown, its distribution may vary in each channel.
Some intrusions are likely to be distributed in all chan-
nels while some may only in some certain ranges. Hence,
we label each T-F unit with proper threshold based on
the respective channel energy to extract response energy
feature, which will increase the robustness of the system
and the accuracy of the initial pitch detection results.
After further grouping and labeling the units with other
auditory features, a binary mask map is constructed.
There are usually some scattered or broken auditory
fragments in the obtained mask map, which will cause
unnecessary utterance fluctuation and degrade the qual-
ity of the resynthesized speech. However, few studies have
been concentrated on this problem so far. In [5], though
Hu-Wang system employs a smoothing stage for obtained
mask such as remove the segments that shorter than
30ms and so on, this simple post-processing method is
not able to remove the isolated segments and make up
the missing elements systematically and effectively. Math-
ematical morphological operation is of a great flexibility
and well known as an efficient method in binary image
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smoothing processing. It is widely used in various tasks
such as noise suppression, image enhancement, and image
restoration. To smooth and retrieve the mask map, this
article proposes a new smoothing method based on the
erosion/dilation operation of binary mathematical mor-
phology. This method is able to remove the residual noise
and restore the mask map while maintaining the mask
information. The experiments in Section 3 show that with
a proper smoothing extent, it generates better results than
conventional smoothing method.

The rest of the article is organized as follows. Section 2
gives an overview of the proposed system model and a
detailed presentation of each component in this model. In
Section 3, the proposed system is evaluated and compared
with Hu—Wang tandem system [7]. Finally, conclusion is
presented in Section 4.

2 System description

Figure 1 illustrates the proposed speech separation model,
which is a multi-stage system, where initial segmenta-
tion module is improved and the smoothing module
for auditory element mask based on the morphological
image processing is added to CASA speech segregation
system.

2.1 Auditory periphery processing
In the first stage, auditory periphery is modeled by a
128-channel gammatone filterbanks and a simulation of
neuromechanical transduction by inner hair cells [5]. The
input speech passes through the auditory periphery model
and is decomposed into the T-F domain. Each unit in this
domain is called a T-F unit #cm, corresponding to a certain
filter channel ¢ at a certain time frame m.

Gammatone filters are derived from psychophysical
observations of the auditory periphery and this filterbank
is a standard model of cochlear filtering [2]. Its center
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Figure 1 Block diagram of the proposed speech separation system. The modules in the dashed box are the proposed system where it has
been improved.
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frequencies are quasi-logarithmically spaced from 80 to
5000 Hz. The impulse response of gammatone filter is

_ g1 exp(—2nbt) cos(2nft) t >0
g0 = { 0 else

where [ = 4 is the center frequency of the filter and b is the
equivalent rectangular bandwidth which increases with f.

The response of each gammatone filter is further pro-
cessed by Meddis et al. [13] model of inner hair cells. Its
output represents the firing rate of an auditory nerve fiber.

In the high-frequency range, a filterbank channel con-
tains multiple harmonics, leading to AM problem and
changing the correlogram. However, it is proven that the
envelope correlogram shows fluctuation at the fundamen-
tal frequency of dominant pitch though the response in
high-frequency range is strongly amplitude modulated, so
it is an appropriate feature in high-frequency range for
CASA system. Therefore, we use a low-pass FIR filter to
extract the response envelope feature of each channel [5].
The output /(c, n) is divided into 20-ms time frames with
10-ms time shift in each channel.

1)

2.2 Feature extraction
In the second stage, we extract the auditory features from
the filter response as follows.

(1) Correlogram: A correlogram constructed by the
autocorrelation of hair cell response %(c, n) in the
T-F domain is given by:

N,—1
Ayle,m,t) = NL Z h(c, mT — n)h(c, mT —n —1) (2)

¢ n=0

where c is the order of the channel and m is the time
frame and N is the number of samples in a frame of
20 ms. 7 refers to time delay, T €[ 0, 12.5 ms], where
the maximum delay is corresponding to 80 Hz.
The envelope correlogram is constructed by
computing the autocorrelations of the response
envelope.

(2) Cross-channel correlation: Cross-channel
correlation between adjacent filter channels indicates

whether the filters respond to the same target. Cy is
calculated as follows.
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Here, L is the sampling number corresponding to the
maximum time lag and A 1 denotes Ay normalized
to zero mean and unity variance.

The envelope of cross-channel correlation indicates
the similarity between the envelopes of AM patterns
in the high-frequency range, which is computed by
the envelope correlogram.

(3) Response energy: When t = 0, the correlogram
A(c, m, 0) represents the response energy of the input
signal.

(4) Onset/oftset detection: Onsets and offsets
correspond to sudden intensity changes, reflecting
boundaries of auditory events [12]. This feature
provides useful cues for unvoiced speech
segmentation. Here, we employ an
onset/offset-based segmentation method proposed
by Hu and Wang [8]. It consists of three stages:
smoothing, onset/offset front matching and
multi-scale integration, as shown in Figure 2.

Onset/offset detection yields a set of segments, usually
containing voiced, unvoiced speech, and interference.

2.3 Initial segmentation

Segmentation stage comprises two parts, namely voiced
and unvoiced. Unvoiced segmentation is based on
onset/offset analysis as mentioned in Section 2.2 while
voiced segmentation is mainly based on the extracted
features such as response energy and cross-channel
correlation.

Since the response energy of the T-F units dominated by
the target speech is stronger than those dominated by the
background noise, the estimated target units are initially
labeled based on the response energy feature A(c, m,0)
and the cross-channel correlation feature C(c, m) as fol-
lows [5]:

{A(C, m, 0) > O, (@)

C(c,m) > 0c

Here, O¢ is constant, chosen to be 0.985[4].
On, is the threshold for the effective target energy.

-1 In this article, the intrusions for the speech segrega-
Cy(c,m) = Z Ap(c,m, T)Ay(c+1,m,t) (3) tion experiment are of a great variety. The distribution
=0 of the intrusion’s energy is quite uncertain. It may be
h(n) . Onset/offset Multiscale output
——  Smoothing > . . —>
Front Matching Integration

Figure 2 Block diagram of the onset/offset detection.
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distributed around the whole channels or in a certain
range, mostly in the high-frequency range. Conventional
constant threshold is not able to extract the target energy
while removing the intrusion efficiently. This would affect
the initial dominant pitch detection results. To obtain
more accurate energy extraction results, the energy is
extracted based on its own characteristic distribution fea-
ture in the proposed algorithm. Different thresholds are
calculated for different frequency channels. Here, 6y, is
defined as the threshold of channel ¢ and calculated based
on the average energy of channel c as follows:

L, M
OH, = oo ZIA(C, m, 0) (5)
m=

Here, M is the total number of the frames in a single
channel. « is constant and decides the value of the thresh-
old. if « is set too high, the threshold would be too low to
remove the interference especially in the high-frequency
range. If it is set too low, the threshold would be too high
to preserve the target energy in all channels. Thus, it has
to seek the balance between target energy preserving and
intrusion energy removing. By experiments, it is found
that « = 1.2 is an appropriate value. The experiment
results are presented in Section 3 for details.

The proposed energy threshold selection method often
produces better results than the conventional constant
threshold as it can remove more interference units, espe-
cially the non-speech ones. Figure 3 illustrates an example
of the female speech and crowd noise with music mixture
labeled by conventional threshold and proposed method,
whose intrusion energy is distributed in all channels. Sim-
ilar to Figure 3, the response energy-labeling example
of the speech and white noise mixture, whose intrusion
energy is mainly distributed in high-frequency ranges, is
shown in Figure 4.

From Figures 3 and 4, it can be inferred that for many
kinds of intrusions, the proposed method can remove
more units dominated by the interference than the con-
ventional threshold selection method, which will increase
the accuracy of the initial pitch detection and the robust-
ness of the system.

After initial labeling, those selected neighboring T-F
units which likely come from the target speech are merged
into segments [5].

2.4 Pitch tracking
Pitch detection and tracking in complex environment has
proven to be very challenging in CASA system. In this
article, we apply a tandem method for pitch tracking and
reestimation proposed by Hu and Wang [7,14].

The tandem algorithm can track several pitch con-
tours and handle multi-talker problem. First, an initial
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Figure 3 The energy-labeled mask for the speech and crowd
noise with music mixture. (a) Cochleagram of a female utterance
showing the energy of each T-F units. The brighter pixel indicates
stronger energy. (b) Ideal binary mask, which is computed by target
and intrusion before mixing. (c) Cochleagram of the mixture. (d) The
mask labeled by the conventional threshold. (e) The mask labeled by
the proposed threshold selection method.

Frequen

pitch estimation needs to be complemented. After initial
segmentation, the labeled units which have strong energy
and high cross-channel correlation are likely from the tar-
get speech and considered to be active units. The initial
estimated pitch should be supported and calculated by the



Yu et al. EURASIP Journal on Audio, Speech, and Music Processing 2013, 2013:2

http://asmp.eurasipjournals.com/content/2013/1/2

04 08 12 16 2 24
Time (s)

04 08 12 16 2
Time (s)

Figure 4 The energy-labeled mask for the speech and white
noise mixture. (a) Cochleagram of a female utterance showing the
energy of each T-F units. (b) Ideal binary mask. (¢) Cochleagram of
the mixture. (d) The mask labeled by the conventional threshold.

(e) The mask labeled by the proposed threshold selection method.

active units. Let Lo(c, m) be the labeled mask after initial
segmentation and Hy be the hypothesis that u.p, is tar-
get dominant, the estimated target pitch is calculated as
follows:

75,1(m) = argmax ) _ Lo(¢,m) - sgn(P(Holrem (1)) = 6p) ()
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where
1, x>0
sgn(x) =430, x=0 7)
-1, x<0

and Op is set to be 0.75 [7,9].
rem (T) is a six-dimensional feature vector for each T-F
units, defined as follows:

A(c,m, 1)

int(}_’(c, m)T)

rem(z) = ZXZ ;im(f(c’ e ®
int(fg(c, m)T)

fe(e,m)T — int(fp(c, m)T)

Here, A(c, m, ) denotes the autocorrelation and f (c, m)
denotes the estimated average instantaneous frequency
features calculated from the response of each T-F unit
Ucm- The function int(x) returns the nearest integer. The
first three features are extracted from the filter responses
and the last three from the response envelopes [7,14].

P(Hp|rem(t)) for each channel is computed by a pre-
trained multi-layer perceptron. The corpus used for train-
ing consists of 100 utterances selected from TIMIT
database and 100 intrusions of a great variety [7]. With the
obtained pitch estimates, the mask for ts (71), denoted as
L1(c, m), is reestimated as

L P(Holrem (s, 0.5
Li(c,m) = o elieOV (151 (m))) > o

The tandem algorithm is able to handle multiple pitch
estimation and tracking problem. If the mixture contains
other utterances, after extracting the first target pitch
7s,1(m), the units which do not support ts,; (772) are used
to extract the second pitch ts(m) as follows:

Ts2(m) = argmax Z Ly (c,m) - sgn(P(Ho|rem (7)) — 6p)
C
(10)
where Ly (¢, m) is the mask for t55(m), calculated as

L, P(Holrem(ts,1(m))) < 60p and Lo(c,m) =1

Lale,m) = {0, else
(11)

Similarly, after extracting the second pitch 755 (m), the
mask Ly (c, m) is reestimated as

1, P(Holrem(ts2(m))) > 0.5

12
0, else (12)

Ly(c,m) = {
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After the pitch estimation, pitch contours are gener-
ated based on the temporal continuity. The differences
between the pitch periods of the same speech at the
consecutive frames m — 1,m, and m + 1 should be
all less than 20% of themselves. Meanwhile, their asso-
ciated masks should also have good temporal continu-
ity. After this pitch tracking with the above constraints,
the remaining isolated pitch estimates are considered
unreliable and set to 0, indicating no pitch at these
frames [7,9,14].

The pitch contours and their associated masks are both
reestimated iteratively. The tandem algorithm estimates
the pitch and segregates the voiced speech jointly [11].

2.5 Grouping and unit labeling
In this stage, the T-F units are grouped into streams and
labeled as target or background based on the extracted
feature. To obtain the final target stream, both voiced and
unvoiced segregations are needed [12]. Hence, a binary
mask map is constructed finally.

1. If the interference is non-speech, voiced speech
segregation is performed by tandem algorithm first
[7]. Then an unvoiced speech segregation algorithm
proposed by Hu and Wang [10,15] is used in this
article. The extracted segments by onset/offset
analysis usually contain both voiced, unvoiced speech
and interference. To extract the unvoiced segments,
the segments that are overlapped with the voiced
segments need to be removed first. Then, the
unvoiced segments are distinguished from
interference based on the classification of
acoustic-phonetic features. The extracted unvoiced
segments are subsequently merged with the target
streams to generate final outputs.

2. Ifintrusion is another speech, after simultaneous
grouping based on the detected pitch contours, a
sequential grouping for organizing the target
utterance based on speaker characteristics is required
[16]. According to Shao and Wang, to ensure the
homogeneity of each segment, if dominant pitch
values of neighboring frames change abruptly, it is
considered that a speaker change occurs and the
segment may be split into two shorter one. To group
the segments, the speaker models are needed to be
pre-trained. The data used for training and testing
come from TIMIT database. The speaker set consists
of 30 talkers (15 males and 15 females). The speakers
are modeled as 64-mixture Gaussian mixture models
and trained using the Gammatone frequency cepstral
coeflicients [12]. With the pre-trained speaker
models, the segments are grouped into two speaker
streams by searching for the optimal hypothesis
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based on the speaker characteristics. A binary mask
for voiced segments is labeled regarding whether the
current belongs to the same speaker as the previous
segments based on the likelihood of pitch dynamic
feature. Unvoiced segments grouped based on the
already detected speakers with the organized streams
[12,16].

After the above steps in grouping and unit labeling, a
binary mask map is obtained.

2.6 Smoothing

There are some discrete fragments or missing segments
in the mask map we have obtained, which will cause
unnecessary fluctuation in the segregated speech. In pre-
vious CASA systems, little attention has been paid to this
problem. In our system, missing auditory elements are
complemented and unwanted particles are pruned while
the original target segments being maintained in a novel
and systematic way.

Though the mask map is a two-dimensional T-F rep-
resentation of audio signal, it is also a binary image
and viewed as a bi-valued function of 1 and 0. In this
binary mask image, the discrete fragments less than a
certain threshold is likely to be the residual noise while
the broken auditory elements with narrow gaps indicate
the discontinuous speech in the resynthesized speech. So,
the problem of speech enhancement becomes the image
restoration. In this way, we can use the image processing
technique to improve the quality of the segregated speech
signal.

2.6.1 Morphological image processing

Mathematical morphology is often used in binary image
processing for pre- or post processing, such as morpho-
logical filtering, thinning, and pruning [17]. The language
and theory of the mathematical morphology often present
a dual view of binary images. It is an effective way to
remove the noise while retaining the information details
in binary image.

With proper morphological image processing opera-
tions, we can suppress the intrusions by removing the
unwanted particles and enhance the segregated speech
by complementing the broken auditory segments in the
obtained mask.

The operations of dilation and erosion are fundamental
to morphological image processing. The unwanted parti-
cles can be pruned and the broken auditory elements can
be complemented in the mask map by combining the two
operations properly.

(1) Dilation: Dilation is an operation that “grows” and
“thickens” objects in a binary image. The specific
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manner and extent of this thicken is controlled by a
shape referred to as a structuring element.
Let B be the structuring element and A be the mask,
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structuring element. The erosion of A by B, denoted
A © B, is defined as follows

we define some basic operations first.
B is the reflection of set B, defined as

B={clc=—b, forb e B}

(B) is the translation of set B by point z = (z1,22),

defined as

(B), = {c|c = b+ z, forb € B}

Based on the above definitions, the dilation of A by

B, denoted A @ B, is defined as follows

A®B={z|(B),NA # 0}

where @ is the empty set.

(2) Erosion: Erosion is an operation that “shrinks” or
“thins” objects in a binary image. As in dilation, the
manner and extent of shrinking is controlled by a

AOSB={z|(B),NA° =@} (16)
where A€ is the complement of set A [17].

2.6.2 Mask smoothing based on morphological image
processing

In this stage, we complement the missing auditory ele-

ments and prune the unwanted particles by combining

dilation and erosion operations.

Each marked T-F unit is considered as an active element.
All the active elements are considered as having simi-
lar periodicity patterns. The structuring element defines
the smoothing extent of the resulting mask. For time
dimension, since the actual speech segments should be no
shorter than 30 ms [5], the target speech segments should
last for two frames as each frame representing 20 ms with
10 ms time shift. For frequency dimension, since the seg-
ments that cross less than three channels are considered
to be edge elements [18], the target segments should cross
three channels at least. Thus, the segments less than two
frames or does not cross three channels should be pruned
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Figure 5 An illustrative example of pruning the mask. (a) The original mask A. (b) The mask A’ after pruning.
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Figure 6 Result of complementing the mask. (a) The mask A" before complementing. (b) The final mask C after complementing.

by morphological image processing. Similarly, the gaps no the small isolated particles and obtain the resulting

larger than the same size should be complemented, too. mask A" [17]:

Hence, the structuring element are selected to be a 3 x 2

mask. Here, we perform the smoothing operation with the

following structuring element: Figure 5 illustrates the original mask A and the mask
A’ after pruning.
From Figure 5, it can be seen that the isolated
segments which unlikely arise from target speech are
removed successfully.

(2) Complementing: We complement the broken
auditory elements in the low-frequency range (below
1 kHz) after pruning based on the morphological
image processing. We apply A" with dilation by B
and followed by erosion. This operation will fill the
discontinuous gaps of the target speech [17]. The
resulting mask C in the low-frequency is obtained
after complementing step:

A =(A6B @B (18)

(17)

o]
Il
—
— =

With this proper size of structuring element, the opera-
tion can remove the unwanted particles and complement
the broken auditory element while maintaining the origi-
nal target segments. The smoothing operation rules take
the form as follows:

(1) Pruning: To suppress the synthesized noise, pruning o
stage is used to remove the isolated particles and Clow = (1o, ®B) S B (19)
smooth the spurious salience of the segments in the In many situations, there will be some residual
obtained mask. We apply erosion of the mask A by interference energy distributed in the high-frequency
the structuring element B and followed dilation of range. If complementing is applied in the

the result by B. After these operations, we remove high-frequency range, unnecessary noise may be also
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Figure 7 Segregation illustration. (@) The waveform of the original female utterance. (b) The waveform of the mixture. (¢) The waveform of the
resynthesized speech by the tandem system. (d) The waveform of the resynthesized speech by the proposed CASA system.

1.6 2 24

brought in the segregated speech. Therefore, we only
complement the mask map to recover the broken
auditory elements in the low-frequency range [18].
The comparison for complementing results is
presented in Section 3 for details.

Figure 6a shows an example of mask A" while Figure 6b
shows the final mask results C after complementing. It
can be seen that the auditory element groups are compen-
sated so that there are no missing parts between speech
elements after complementing stage.

Through morphological image processing smoothing,
the likely residual noise is removed and the discontinuous
target speech is complemented, so the mask map and the
segregated speech are both enhanced.

2.7 Speech resynthesis

After smoothing stage, this algorithm resynthesizes the
segregated speech from input mixture and the final mask
C with an inverse filter of the gammatone filterbank [12].

Figure 7 illustrates the segregated result for the speech
of a female utterance and the alarm clock mixture.
Figure 7a shows the waveform of the original female utter-
ance and Figure 7b of the mixture. The resynthesized
speech by the tandem system and the proposed CASA
system are shown in Figure 7c,d respectively.

As shown in Figure 7, the waveform of segregated
speech by the proposed system is more closer to the origi-
nal one for that it extracts more exact energy and retrieves
the auditory mask map.

3 Evaluation and comparison

To validate the effectiveness of the proposed method, we
evaluate the speech segregation results. The database con-
sists of a set of 170 mixtures, which are obtained by mixing
utterances with 17 intrusions at different SNR levels. The
original utterances (ten sentences spoken by five male
speakers and five female speakers) are randomly selected
from the TIMIT database. The sampling frequency is
16 kHz. The added 17 different intrusions are as follows:
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N1, white noise; N2, rock music; N3, siren; N4,telephone;
N5, electric fan; N6, alarm clock; N7, traffic noise; N8,
bird chirp with water flow; N9, wind noise; N10, rain;
N11, cocktail party; N12, crowd noise at a playground;
N13, crowd noise with music; N14, crowd noise with
clap; N15, babble noise; N16, male speech; N17, female
speech. In N16 and N17 cases, the target utterance is
much stronger than the interference. These intrusions are
of a considerable variety and used to test CASA systems
[7,9].

3.1 Selection of «

First, we present the experiment results for the selection
of & in initial segmentation. Here, average signal-to-noise
ratio (SNR) gain over the conventional threshold method
is employed as the criterion for the selection of «. SNR is
an objective and straightforward criterion to measure the
performance of the algorithm, which is calculated as

S 2
SNR = 10logg 2"

—_— 20
(S(n) — So(m))* 20

1.4
[___]Complementing in full-frequency range
1oL I Complementing in low—frequency range
1k
o
S
T o
(2]
c
©
(O]
o
z
]

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 Ni15 N16 N17
Intrusion type

Figure 9 The SNR gain S’ results of complementing. The comparison of SNR gain results S¢” between complementing in full-frequency range

and low-frequency range is presented.
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-2 1 1 1 1 1 1 1 1

N1 N2 N3 N4 N5 N6 N7 N8

various intrusions when threshold selection method is applied.

N9 N10 N11 N12 N13 N14 Ni15 Ni16 Ni17

Intrusion type

Figure 10 Segregation results when threshold selection is applied. SNR results for segregated speech and mixtures for a corpus of speech and

where So(n) is the original speech and g(n) is the segre-
gated speech.

The average SNR gain over the conventional method,
denoted as Sg, is calculated as follows

Se=S8pr—Sc (21)

where Sp is the average SNR result generated by the pro-
posed threshold selection method and Sc is the result
generated by the conventional constant threshold.

Figure 8 shows the Sg results at different values of «
from 0.8 to 1.8 through experiments with various intru-
sions. It can be seen that when o = 1.2, Sg exhibits a peak
of 0.42 dB, so ¢ = 1.2 is appropriate in our method.

3.2 Comparison of complementing

Similar to the selection of «, in smoothing stage, to
compare the results between complementing in the full-
frequency and the low-frequency range, the average SNR
gain over the conventional smoothing method, denoted
as Sg/, is used as the criterion. Here, S’ is calculated as
follows

S¢'=Sp' =S¢ (22)

where Sp’ is the average SNR result after complementing
by morphological image processing and S¢’ is the result
generated by conventional smoothing method.

Figure 9 shows Sg’ results of complementing in full-
frequency and low-frequency range, respectively. Each

column in the figure represents the average Sg’ value
of ten utterances. As shown in Figure 9, in most noise
conditions, it has a better SNR improvement to comple-
ment the mask only in the low-frequency rather than the
full-frequency range.

Table 1 SNR results when threshold selection is applied

Intrusion Mixture Hu-Wang Threshold
tandem system selection

N1 4.88 13.98 14.35

N2 4.29 892 9.54

N3 —0.20 13.16 13.20

N4 495 13.07 13.24

N5 427 9.73 9.69

N6 —0.85 12.56 12.93

N7 0.30 6.22 7.06

N8 3.97 11.31 12.27

N9 033 7.86 8.36

N10 4.25 12.08 1261

N11 4.04 10.81 11.14
N12 —0.86 10.89 1132
N13 3.69 9.79 10.75
N14 267 8.34 9.12

N15 1.36 7.63 7.84

N16 10.69 1537 15.39
N17 441 10.26 10.31
Average 3.07 10.70 11.12
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3.3 System evaluation

Since two novel techniques are proposed in this arti-
cle, the evaluation for the proposed system is provided
separately as follows.

Figure 10 shows the segregation results when proposed
threshold selection stage is applied. The columns in the
figure represent the average SNR value of ten mixtures in
the test database and segregated speech by conventional
and proposed threshold selection method, respectively.
The comparison among the results of the tandem sys-
tem and the proposed method for speech separation is
presented in Table 1.

Figure 11 and Table 2 show the segregation results
when morphological image processing smoothing stage is
applied.

The final segregation results are shown in Figure 12
and Table 3. As shown in the above tables, we can
see that the proposed method improves the SNR by
8.55dB on average for all noise conditions, whereas
the tandem system improves by 7.63 dB compared with
no processing case. It is proven that the proposed
model performs better than the tandem system in SNR
improvement.

Despite its common use, SNR criterion does not pro-
vide much information about how different the seg-
regated speech is from the original one. Here, we
employ two complementary error measures to evalu-
ate the performance by comparing the resynthesized
speech from estimated mask with ideal binary mask
(IBM) [5]:
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(1) The percentage of energy loss Pgy:
Y et

Pr. = > 12(n)

(23)

Here, e; is the signal presenting in the original
speech but missing from the segregated one. I(n) is
the speech resynthesized from the IBM. To obtain ej,
we construct a new mask by labeling the T-F units
which is active in IBM but inactive in final target
stream. e; is the waveform resynthesized from the
mixture and the mask.

The percentage of noise residue Pnr:

Y exn)
PR = 02y

(2)

(24)

Here, ey is the energy presenting in the segregated
signal but not existing in the original one. O(n) is the
segregated speech obtained by CASA system. Similar
to e1, a new mask is constructed by labeling the T-F
units which is inactive in IBM but active in final
target stream. e is the waveform resynthesized from
the mixture and the mask.

The two criteria provide a better reflection about the
difference between original and segregated speech. The
better the performance is, the lower Prp, and Pnr will be,
and vice versa. The results of the energy loss and noise

T
I \Vixture
[ JHuwang Tandem System
[ Proposed Morphological Image Processing

o
I

2 I I I I I I I

1
N1 N2 N3 N4 N5 N6 N7 N8

N9 N10 N11 N12 N13 N14 Ni15 Ni16 Ni17

Intrusion type

Figure 11 Segregation results when morphological image processing is applied. SNR results for segregated speech and mixtures for a corpus
of speech and various intrusions when morphological image processing is applied.
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Table 2 SNR results when morphological image processing  Table 3 The final SNR results
is applied Intrusion Mixture Hu-Wang Proposed
Intrusion Mixture Hu-Wang Morphological tandem system system
tandem system image N1 488 13.98 14.88
processing ’ ' ’

N2 4.29 892 10.08
N1 4.88 13.98 1443

N3 —0.20 13.16 13.72
N2 4.29 892 9.80

N4 4.95 13.07 13.46
N3 —0.20 13.16 13.51

N5 4.27 9.73 10.18
N4 4.95 13.07 13.18

N6 —0.85 12.56 13.37
N5 4.27 9.73 10.27

N7 0.30 6.22 713
N6 —0.85 12.56 13.29

N8 3.97 11.31 12.64
N7 0.30 6.22 6.98

N9 033 7.86 8.98
N8 397 11.31 12.30

N10 4.25 12.08 1345
N9 033 7.86 8.94

NT11 4.04 10.81 11.62
N10 4.25 12.08 13.11

N12 —0.86 10.89 12.01
N11 4.04 10.81 11.22

N13 3.69 9.79 10.94
N12 —0.86 10.89 11.65

N14 267 8.34 9.27
N13 3.69 9.79 10.53

N15 1.36 7.63 9.09
N14 267 8.34 9.05

N16 10.69 1537 15.56
N15 1.36 7.63 8.94

N17 441 10.26 11.15
N16 10.69 1537 15.58

Average 3.07 10.70 11.62
N17 441 10.26 10.74
Average 3.07 10.70 11.38

improved both Pg and Pnr compared with the tandem

residue are shown in Tables 4, 5, and 6. Since the mixture  system by 1.43 and 1.08%, respectively.

contains all the original speech information, the Pgy, of the The criteria we have used above such as SNR, Pgp,
mixture is 0. and Pnr, do not always reflect the objective speech qual-

From the final results, it can be seen that the pro- ity of the segregated speech. To evaluate the segregated
posed system has cut Pyr of the mixture by 25.36%. It has  speech quality further, we use the perceptual evaluation

T T T
I Vixture
[ JHuwang Tandem System
I Proposed System B

SNR (dB)

1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N1t Ni2 N13 N14 Ni5 Ni16 N17
Intrusion type

Figure 12 Final segregation results. Final SNR results for segregated speech and mixtures for a corpus of speech and various intrusions.
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Table 4 The Pg. and PR results when threshold selection

is applied
Intrusion Threshold selection Hu-Wang tandem Mixture
system

Pe(%)  Pnr(%) Pe(%)  Pnr(%) PNR(%)
N1 3.28 2.21 3.34 246 27.11
N2 4.89 5.17 4.76 6.08 29.50
N3 6.11 5.50 6.24 5.62 40.56
N4 3.01 547 3.03 5.82 22.01
N5 2.58 1.23 2.39 1.64 9.77
N6 4.77 2.08 4.65 217 46.31
N7 6.04 6.15 6.19 6.63 36.51
N8 6.95 1.14 7.07 323 1843
N9 720 4.98 749 5.21 2946
N10 3.80 0.56 3.84 0.58 1.77
N11 5.85 228 6.38 3.02 20.73
N12 449 3.23 4.67 3.71 76.79
N13 4.35 2.93 5.09 3.12 13.76
N14 5.95 4.27 6.03 4.80 23.16
N15 4.16 4.60 418 578 26.84
N16 2.24 2.72 2.03 2.89 6.64
N17 6.08 6.20 6.37 6.94 43.07
Average 4.81 3.57 493 410 28.38

Table 5 The Pg. and Pypg results when morphological

image processing is applied

Intrusion !Vlorphological. Hu-Wang tandem Mixture
image processing system
PeL(%)  Pnr(%)  PeL(%)  Pr(%) PNR(%)

N1 2.98 2.08 3.34 246 27.11
N2 4.96 5.05 4.76 6.08 29.50
N3 5.81 4.06 6.24 562 40.56
N4 264 491 3.03 5.82 2201
N5 1.89 1.07 2.39 1.64 9.77
N6 1.98 1.92 4.65 217 46.31
N7 5.70 528 6.19 6.63 36.51
N8 6.19 0.88 7.07 323 1843
N9 432 4.87 749 521 29.46
N10 255 0.56 3.84 0.58 1.77
N11 401 2.89 6.38 3.02 20.73
N12 2.05 298 4.67 3.71 76.79
N13 443 244 5.09 3.12 13.76
N14 4.81 3.95 6.03 4.80 23.16
N15 3.79 4.46 4.18 578 26.84
N16 1.66 1.94 2.03 2.89 6.64
N17 3.70 6.33 6.37 6.94 43.07
Average 373 327 493 4.10 28.38

Table 6 The final Pg. and Pyp results
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Intrusion Proposed Hu-Wang tandem Mixture
system
PeL(%)  Pnr(%)  Pec(%)  Pnr(%) PnR(%)

N1 2.77 194 3.34 246 27.11
N2 5.03 3.95 4.76 6.08 29.50
N3 592 4.08 6.24 562 40.56
N4 2.11 4.73 3.03 582 22.01
N5 1.93 1.01 2.39 1.64 9.77
N6 1.70 1.88 4.65 217 46.31
N7 521 6.23 6.19 6.63 36.51
N8 5.77 0.69 7.07 323 1843
N9 395 4.72 749 5.21 2946
N10 2.06 042 3.84 0.58 11.77
N11 3.22 1.89 6.38 3.02 20.73
N12 2.01 2.19 4.67 3.71 76.79
N13 3.14 2.25 5.09 3.12 13.76
N14 4.96 3.62 6.03 4.80 23.16
N15 383 372 4.18 5.78 26.84
N16 1.84 1.87 2.03 2.89 6.64
N17 4.06 6.10 6.37 6.94 43.07
Average 3.50 3.02 493 4.10 28.38
Table 7 The PESQ results
Intrusion Hu-Wang Threshold Morphological Proposed

tandem selection image system

system processing
N1 2340 2376 2382 2391
N2 1.675 1.806 1.739 1.746
N3 2.282 2304 2311 2.309
N4 2233 2239 2.340 2.376
N5 1.808 1.821 1.885 1915
N6 1.834 1.852 1.921 1.934
N7 1.587 1.603 1.642 1.663
N8 1.725 1.682 1.746 1.752
N9 1.529 1.545 1.550 1.563
N10 1.583 1.596 1614 1618
N11 1.673 1.680 1.774 1.803
N12 1.607 1.642 1.768 1.745
N13 1438 1.445 1.465 1.488
N14 1.626 1.693 1.702 1.723
N15 1451 1.462 1.483 1.499
N16 1.705 1.643 1.719 1.708
N17 1623 1.625 1.634 1.632
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of speech quality (PESQ) criterion further for compari-
son. This evaluation method has been proposed by the
International Telecommunication Union (ITU) under the
recommendation P.862 [19]. The higher values of PESQ
mean better performance. As shown in Table 7, the supe-
riority of the proposed method compared to that of the
Hu-Wang tandem system is illustrated. It can be seen
that the threshold selection has a better performance
in PESQ improvement than the conventional threshold
under most intrusion conditions except N8 and N16 while
morphological image processing smoothing increases the
criterion under all conditions.

From the experiment results by different criteria, it is
proven that the proposed model has a better performance.

4 Conclusions

This article concentrates on the improvement for the ini-
tial segmentation and smoothing stage in CASA system.
We set different thresholds in each channel to label the
T-F units based on the response energy feature due to
the unknown distribution of the intrusions while the tan-
dem system uses constant threshold. As CASA system
performs speech segregation based on the various fea-
tures, it always produces broken auditory elements in the
mask, which leads to the missing portions of the segre-
gated signal. To solve this problem, morphological image
processing is introduced to the smoothing stage for com-
plementing and pruning the mask map. We evaluated
the separation performance of the proposed system and
compared it with the Hu-Wang tandem system for the
speech segregation tasks with artificially mixed speech
data. The comparison shows that the proposed method
has a better performance by improving the average SNR
and PESQ while cutting the energy loss and noise residue
rate effectively.
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