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Abstract

in most cases.

In this paper, we propose a novel noise-robustness method known as weighted sub-band histogram equalization
(WS-HEQ) to improve speech recognition accuracy in noise-corrupted environments. Considering the observations
that high- and low-pass portions of the intra-frame cepstral features possess unequal importance for noise-corrupted
speech recognition, WS-HEQ is intended to reduce the high-pass components of the cepstral features. Furthermore,
we provide four types of WS-HEQ, which partially refers to the structure of spatial histogram equalization (S-HEQ). In
the experiments conducted on the Aurora-2 noisy-digit database, the presented WS-HEQ yields significant
recognition improvements relative to the Mel-scaled filter-bank cepstral coefficient (MFCC) baseline and to cepstral
histogram normalization (CHN) in various noise-corrupted situations and exhibits a behavior superior to that of S-HEQ
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1 Introduction

The performance of speech recognition systems is often
degraded due to noise in application environments. A
significant number of noise-robustness techniques have
been proposed to address the noise problem, and one
prevailing subset of these techniques is focused on reduc-
ing the statistical mismatch of speech features in the
training and testing conditions of the recognizer. Typi-
cal examples are perceptual masking [1], empirical mode
decomposition [2], optimally modified log-spectral ampli-
tude estimation [3], wavelet packet decomposition with
AR modeling [4], cepstral mean and variance normaliza-
tion (MVN) [5], cepstral histogram normalization (CHN)
[6,7], MVN with ARMA filtering (MVA) [8], higher order
cepstral moment normalization (HOCMN) [9], and tem-
poral structure normalization (TSN) [10]. In some of these
methods, the compensation is performed on each individ-
ual cepstral channel sequence of an utterance by assuming
that these channels are mostly uncorrelated [7].
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Recently, certain studies have investigated the use of
cepstral frame-based processing to compensate for the
noise effect to achieve better recognition accuracy. For
example, the work in [11] revealed that in the CHN
method, even though each cepstral channel is processed
by histogram equalization (HEQ), a significant histogram
mismatch still exists among the training and testing cep-
stral features for the low-pass filtered (LPF) and high-
pass filtered (HPF) portions of the intra-frame cepstra.
Thus, the method of spatial HEQ in [11] further per-
forms HEQ on the LPF and HPF portions to eliminate
the aforementioned mismatch for the CHN-preprocessed
cepstra. Compared with conventional CHN that processes
each individual cepstral channel, spatial HEQ (S-HEQ)
additionally takes the neighboring cepstral channels into
consideration collectively and produces superior noise
robustness. Furthermore, for a frame signal, the LPF and
HPF portions of the cepstral vector just correspond to the
logarithmic filter-bank (LFB) components at lower and
higher frequencies, respectively. However, compensation
performed directly on LPF and HPF is more helpful than
that applied to the LFB components, most likely because
the LFB components are significantly correlated [11].
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Partly inspired by S-HEQ, here we develop a novel
scheme known as the weighted S-HEQ (WS-HEQ) to
improve the recognition performance and operation effi-
ciency of S-HEQ in three directions. First, because
the LPF and HPF portions of the original or CHN-
preprocessed cepstra possess different characteristics in
noisy environments and provide unequal contributions
to the recognition accuracy, we tune the portion of HPF
produced in the original S-HEQ and show that this
adjustment can outperform S-HEQ in recognition accu-
racy. Second, we change the order of the procedures in
S-HEQ by first splitting the original intra-frame cep-
stra (not the CHN-preprocessed cepstra) into LPF and
HPE, subsequently compensating LPF and HPF individ-
ually, and finally, normalizing the full-band cepstra. This
new structure can reduce the effect of noise on the LPF
and HPF portions in the plain cepstra more directly in
comparison with S-HEQ. Finally, because S-HEQ requires
three HEQ operations, we use the simpler process of
MVN to replace any of the three HEQ processes in S-HEQ
to improve the computational efficiency. The experimen-
tal results show that some variants of WS-HEQ, which
require fewer HEQ operations, provide a similar or even
better recognition accuracy relative to S-HEQ.

The remainder of this paper is organized as follows.
Section 2 reviews S-HEQ, and the basic concept and
detailed procedures of the proposed WS-HEQ are pre-
sented in Section 3. Section 4 describes the experimental
setup, and Sections 5 and 6 contain a series of recogni-
tion experiments for WS-HEQ together with their corre-
sponding discussions. Finally, the concluding remarks are
summarized in Section 7.

2 Briefreview of S-HEQ

If we consider using the Mel-scaled filter-bank cepstral
coefficients (MFCC) as the baseline features for speech
recognition, then the cepstral feature vector stream asso-
ciated with an arbitrary utterance is represented by a
matrix C:

C={c(mn;0<m<M-1,0<n<N-1}, (1)

where m is the cepstral channel index within a frame and
n is the frame index, and M and N are the total number of
channels and frames within the utterance, respectively. In
the temporal processing methods as MVN and CHN, the
compensation is often directly performed on the individ-
ual channel stream (i.e., the sequence {c(71,n);0 < n <
N — 1} with respect to the mth channel), and therefore, all
of the channel streams of the features are treated indepen-
dently. According to the general concept that the cepstral
coefficients within a frame are mostly uncorrelated (7],
such a process is quite reasonable.

Page20f 18

Recently, a novel method known as the spatial HEQ
(S-HEQ) was suggested to decompose each frame of a
CHN-preprocessed cepstral vector into two parts, a high-
pass filtered and low-pass filtered portion (denoted here-
after as HPF and LPF), such that the temporal sequences
of HPF and LPF can be processed separately and then the
updated HPF and LPF can be combined to form the new
feature vector stream. The work in [11] shows that S-HEQ
outperforms the conventional CHN by providing better
recognition accuracy. The overall procedure of S-HEQ is
depicted in Figure 1.

3 Proposed approach: WS-HEQ

S-HEQ [11] offers additional insight into the possible
distortions left unprocessed by CHN and a method for
achieving even better noise robustness for speech fea-
tures. In this section, we further examine S-HEQ to assess
whether it can be further improved. The following two
observations can be made about S-HEQ:

1. S-HEQ divides each CHN-preprocessed cepstral
vector into HPF and LPF and subsequently treats the
temporal stream of these two parts in the same
manner (i.e., with HEQ processing). Therefore,
S-HEQ does not consider the characteristic
differences between HPF and LPF. According to [11],
the plain HPF (from the original cepstra, not the
CHN-preprocessed cepstra) is often more vulnerable
to noise and displays more mismatch than the plain
LPF, whereas S-HEQ compensates for the CHN-
preprocessed HPF and LPF directly. Additionally,
HPF and LPF possess unequal importance in speech
recognition, which will be shown later.

2. In S-HEQ, the HEQ operation is repeated up to three
times: one for the original feature stream set and the
other two for the HPF and LPF stream sets. Thus,
S-HEQ requires twice more computational effort
than the conventional CHN method, which only
processes the original stream set once via HEQ.

In this work, we design a simple experiment to evaluate
the relative importance of different sub-bands of the cep-
stral features in speech recognition. With the Aurora-2
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Figure 1 The structure of the S-HEQ algorithm.
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database [12], we select 8,440 clean utterances for the
clean-condition training task as the data used to train
the acoustic models and 8,440 noisy utterances (cor-
rupted by any of four types of noise at five signal-to-
noise ratios) originally for the multi-condition training
task as the testing data. Each utterance in the training
and testing sets is first converted into a sequence of 13-
dimensional cepstral vectors (c0, c1 to c12). The obtained
cepstra are either kept unchanged or processed by CHN.
Next, for each original/CHN-processed cepstral vector,
we obtain its ‘sub-band’ version with the following two
steps:

Step 1. Find the spectrum of the cepstral vector via
discrete Fourier transform (DFT):
Letc =[cocicy ... c12]T denote an arbitrary
cepstral vector, and its spectrum is obtained by

12
ClH =" cme B0 <k < 12. )
m=0

Due to the conjugate symmetry of {C[k] }, we only
need to retain the first seven points, which
correspond to {k%; 0 < k < 6} in normalized
frequency.

Retain a contiguous portion of the spectral points
and transform them (together with their conjugate
symmetric parts) into a new cepstral vector via
inverse DFT. For example, if we retain the first to
fifth spectral points unchanged and set the zeroth
and the sixth spectral points to zero, then the
resulting new cepstral vector is a sub-band version
of the original cepstral vector and corresponds

approximately to the band range of [21—’;, 1%{] .

Step 2.
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The recognition accuracy rates for different cepstral fea-
tures obtained from the above sub-band processing are
shown in Figures 2a and 3a, the former being for the orig-
inal cepstra and the later being for the CHN-processed
cepstra (Please note that the testing data undergo the same
process as the training data in the recognition experiment.
Therefore, the original testing cepstra are recognized by
the acoustic models trained from the original training
cepstra, and the CHN-processed testing cepstra are rec-
ognized by the acoustic models trained from the CHN-
processed training cepstra). The vertical axis in Figures 2a
and 3a denotes the word accuracy rate, and the other
two axes indicate the initial and final spectral points,
ki and kg, of the assigned sub-band, respectively. Obvi-
ously, the CHN-processed cepstra outperform the original
cepstra in recognition results. Besides, for both types of
cepstra the full-band features are always able to achieve
the highest accuracy, and decreasing the bandwidth of
the sub-band worsens the accuracy. However, we can fur-
ther evaluate the relative importance of different spectral
points in the sub-band from the two figures using the
following equation:

1
rm=rr | 20 Rk = Rue10+ D Rim = R0 |,

" \k>m+1 k<m—1

3)

where ry,, denotes the averaged contribution of the mth
spectral points, R, s is the recognition rate using the
cepstra within the sub-band including the mth to kth
spectral points, and N, is the total number of items
in the summation of Equation 3. (The term ‘relative
importance’ and its definition shown in Equation 3
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Figure 3 Some information about the DFT-based spectrum of CHN-processed cepstra. (a) Recognition rates for the band-pass filtered

are borrowed from [13], in which a series of band-
pass filters are used to evaluate the various modula-
tion spectral components in their contribution to the
recognition accuracy.) The obtained results from the
original and the CHN-processed cepstra are shown in
Figures 2b and 3b, respectively. Note that in Equation 3,
the number of spectral points in the assigned sub-band
range is always greater than or equal to 2 because the
cepstra associated with a single spectral point quite
often result in a rather poor (even negative) recognition
accuracy.

From Figures 2b and 3b, the seven spectral points pos-
sess unequal importance in noisy speech recognition. The
middle and lower frequency points (except for the DC
point) seem to contribute more to the recognition accu-
racy than the upper points. These results suggest that
alleviating the higher frequency components in the cep-
stra more likely results in better recognition performance
in a noisy environment. Besides, comparing Figure 3b
with Figure 2b, we find that the CHN process helps
the higher frequency points to reinforce their impor-
tance in speech recognition, especially for the point at
frequency 1{)—;.

The spectrum of the cepstra in the aforementioned
evaluation experiment is created via the DFT, with the
main reason that low-pass and high-pass filters are to be
applied to the cepstra in later discussions, and we often
evaluate the effect of a filter on the processed signal in
the Fourier-based frequency domain. Also, in most cases,
the characteristics of a filter are investigated by its fre-
quency response; the Fourier transform, of its impulse
response. However, since each frame-wise cepstral vec-
tor is the truncated version of the inverse discrete cosine
transform (IDCT) of the logarithmic spectrum of the
corresponding frame, here we reconduct the preceding
evaluation experiment based on the ‘DCT-based’ spec-
trum of the original/CHN-processed cepstra. That is, in
step 1 of the experiment, we obtain the 13-point spectrum

of any arbitrary cepstral vector ¢ =[cocicy ... c12]”

via DCT:

12 157/

- + )k

ClK1= E Cym COS (11(;71132)> , 0<k <12,
m=0

(4)

and then in step 2, a contiguous portion of the DCT-
based spectral points is retained and transformed into a
new cepstral vector via IDCT.

Some differences between the DCT-based spectrum
(CIK]} in Equation 4 and DFT-based spectrum {C[k] } in
Equation 2 are as follows:

1. Unlike the DFT-based spectrum {C[k] } which is
complex-valued and conjugate symmetric, in general,
the real-valued DCT-based spectrum {CIK']} is not
symmetric in any sense. Thus, we cannot discard the
second half points of (C[K']} as we do on {C[k] }.

2. {C[K']} possesses a higher frequency resolution than
{C[k] }. Comparing Equation 4 with Equation 2, the
frequency difference between any two adjacent bins
of {C[K']} is &, while it is 2% for {C[k] }.

3. Referring to [14], the N-point DCT, (CIK']}, of a
length-N sequence {c[#n],0 < n < N — 1} (here
N = 13), can be computed via a 2N DFT of another
length-2N sequence {¢[n],0 < n < 2N — 1},
denoted by {D[k'] }, in which ¢[n] is the even
extension of c[n] satisfying ¢[n] = c[n] for
0<mn<N-—1andc[n]=x[2N — 1 — u] for
N < n < 2N — 1. {C[K']} and {D[K'] } are related by:

CIK]=05e WDk for0 <k <N—1. (5

Generally speaking, the DCT-based spectrum

{C [k’] } is more concentrated at low frequencies than
the DFT-based spectrum {C[k] }, which is well
known as the ‘energy compaction property” of DCT.
An underlying reason for this phenomenon is that
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DFT implicitly assumes the periodic extension of the
processed signal and often causes the artificial
discontinuities at the signal boundary, which adds
high frequency contents in the DFT-based spectrum.
To show this, a length-N sequence

{x[n],0 < n < N — 1} is treated by N-point DFT as
an N-periodic signal, denoted by x,[#], in which
Xe[n] = x[n] for0 <m <N —1and

Xe[n + N] = x.[n]. Thus, x.[n] is generally
discontinuous at the (original) boundary positions:

xe[0] = x[0] # %[N — 1] = x[-1], (6)

Xe[N — 1] = %[N — 1] # x[0] = x[N]. (7)

However, as mentioned earlier, the N-point DCT of
a length-N sequence {x[n] } (starting at n = 0) can be
obtained from the 2N-point DFT of the even
extension of {x[#] }, and the corresponding

2N -periodic signal, denoted by X,[#], remains
continuous at the boundary positions:

xe[0] = x[0] = X[2N — 1] = %[2N — 1] = x[-1],
(8)
Xe[2N — 1] = %[2N — 1] = ¥[0] = %.[0] = X.[2N].
)

As a result, the (N-point) DCT-based spectrum does
not contain the high frequency artifacts as the
(N-point) DFT-based spectrum, and it appears more
compact at low frequencies.

With the cepstra from the IDCT of sub-band DCT-
based spectra, the corresponding evaluation experiment
is performed to obtain the recognition accuracy rates,
which are shown in Figures 4a and 5a, and the relative
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importance of different spectral points are shown in
Figures 4b and 5b. Figure 4a,b is for the original cepstra
and Figure 5a,b is for the CHN-processed cepstra. These
two figures roughly reveal that the lower and middle
DCT-based spectral points contribute to the recognition
more than the upper ones in recognition, which some-
what coincides our observations from Figures 2a,b and
3a,b associated with the DFT-based spectra. In addition,
comparing Figure 4b with Figure 2b and Figure 5b with
Figure 3b, we find that the higher DCT-based spectral
points reveal more importance than the higher DFT-
based spectral points. which partially agrees with our
previous statement that the DFT-based spectrum contains
some artificial high frequency contents, which distort
the higher spectral points and reduce the corresponding
contribution.

In light of the aforementioned discussions, we devel-
oped a novel method known as the WS-HEQ to enhance
the speech features in noise robustness. The initial con-
cept of WS-HEQ is to apply a weighting factor to the HPF
portion in S-HEQ (as shown in Figure 1) to reduce the
intra-frame higher frequency components, and we fur-
ther provide several variations on the presented WS-HEQ.
First, according to the order of the HEQ processing for the
full-band cepstra and sub-band cepstra, we describe two
structures:

Structure I. HEQ first operates on the plain
(intra-frame) full-band cepstra and
subsequently on the sub-band cepstra.
HEQ first operates on the plain
(intra-frame) sub-band cepstra and
subsequently on the full-band cepstra.

Structure II.

Please note that in the above two structures, the two sub-
band cepstral portions, LPF and HPF, are obtained with

®
=)

3
S

o

@S
8
)
<

50.74 Y T8 3.69
46.58 4642 \, 49.92 5157 5151
N 46.4 4636 4851 4817
4169 4325 44413

N
=)

Recognition accuracy(%)
£
o

oo

filtered cepstra. (b) The contribution of each individual spectral point.

[
1)

13.70

[
5

14.64
11.37

10.55
9.64
8.47 8.52
7.19
538
4.77 as9 +97
I I I I i
o I
o 1 2 3 4 s 6 7 8 9 10 11 12

Normalized frequency (unit : nt/13)

(b)

-
N~

I
o

S @

Contribution to individual DCT point (%)
N ©

Figure 4 Some information about the DCT-based spectrum of cepstra without CHN processing. (a) Recognition rates for the band-pass




Hung and Fan EURASIP Journal on Audio, Speech, and Music Processing 2013, 2013:29

http://asmp.eurasipjournals.com/content/2013/1/29

Page 6 of 18

-
o
S

@
=]

6.36
59.1359'86

@
=]

49.01

'
=)

Recognition accuracy(%)

cepstra. (b) The contribution of each individual spectral point.

53.1 49.79

Figure 5 Some information about the DCT-based spectrum of CHN-processed cepstra. (a) Recognition rates for the band-pass filtered

14.46
13.91

12.85
12 11.33
10.57 l0.68 1051
10
e 878
k 6.14
6
4.63
295
12 I 1.58

. -

o 1 2 3 4 5 6 7 8 9 10 12

11

a

Contribution to individual DCT point (%)
N ©

Normalized frequency (unit : ©/13)

(b)

simple two-point FIR filters operating on the full-band
cepstra [11]:

c(m,n) + c(m — 1,n)

LPF:c),(m, n) = 5 , (10
HPE: ¢, 0, 1) — c(m,n) — ;(m -1, n), (11)

where cj,(m,n) and ¢y, (m, n) denote the low-pass and
high-pass filtered parts of the nth cepstral frame.

Next, according to different treatments (i.e., the com-
pensation methods, HEQ, and MVN) of LPF and HPF in
Equations 10 and 11, each structure of WS-HEQ has the
following four types of variations:

Type 1:¢j, = HEQ[cy,] , ¢ = «HEQ(cy] , (12)
Type 2:¢j, = MVNI(cy,], ¢y = «HEQ]cpp] (13)
Type 3:511, = HEQ[Clp] , 51,,1, = OlMVN[Chp] , (14)
Type 4:¢j, = MVN(cy,], ¢y = aMVN(cy,], (15)

where HEQ[:] and MVN[:] denote the operators of the
HEQ and MVN processes, respectively; ¢, and ¢y, are the
updated LPF and HPF, respectively (we omit the indices

(m, n) for simplicity); and the parameter « with a range of
[0, 1] is the scaling factor selected specifically for the HPF
component. The flowcharts of the various structures and
types of WS-HEQ are depicted in Figure 6a,b.

For clarity, in the following discussions, the term “WS-
HEQ’ is written with an additional subscript of ‘T’ or ‘IT,
and a superscript of ‘(1), “(2)’, “(3)’, or ‘(4)’ to identify dif-
ferent structures and different processing schemes for LPF
and HPF in the presented WS-HEQ method. For example,
WS-HEQS ) indicates that the WS-HEQ method applying
the second structure shown in Figure 6b and uses HEQ
and MVN for the LPF and HPF portions, respectively.
Additional discussions on the various forms of WS-HEQ
are given:

1. Because the HEQ operation is nonlinear, \X/S—HEQI(I1 )
with @ = 1.0 (no attenuation for HPF) as shown in
Equation 12 in which HEQ is first performed on the
sub-band cepstra and subsequently on the full-band
cepstra, is different from S-HEQ (equivalent to
\X/S—HEQF) with & = 1.0) shown in Figure 1, in

heq
p

X'— HEQ
LPF
*~ MVN
Chcq
c—{ HEQ
heq
P of HEQ
HPF /Y
*~ MVN

(a)

Figure 6 The flowcharts of two structures of WS-HEQ. (a) Structure | and (b) structure |I.

Cip
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which the full-band cepstra are HEQ-processed in
advance.

2. In the first type of WS-HEQyy, (viz. WS-HEQ{!"),
both LPF and HPF (of the original MFCC) are
processed by HEQ. The resulting new HPF is
attenuated by a factor of « and then combined with
the new LPF to form the full-band cepstra, which are
further processed by HEQ in the final stage.
Therefore, \X/S—HEQfI1 ) requires three HEQ
operations, the same as S-HEQ, demonstrating that
S-HEQ and \X/S—HEQS ) are similar in computational
complexity.

3. The other three types of WS-HEQ as shown in
Equations 13 to 15 differ from the first type in that
they compensate either or both of the LPF and HPF
portions via MVN instead of HEQ. MVN can be
implemented more efficiently than HEQ because
MVN involves only the operations of addition and
multiplication, whereas a sorting algorithm is
required in HEQ. We expect that the cost savings of
HEQ on HPF/LPF will not affect the prospective
recognition accuracy.

4 Experimental setup

The performance of our proposed WS-HEQ scheme is
examined in two databases. One is the Aurora-2 database
[12] corresponding to a connected English-digit recog-
nition task, and the other is a subset of the TCC-300
database [15] for the recognition of 408 Chinese sylla-
bles. Briefly speaking, we conduct more comprehensive
experiments with the Aurora-2 database for analysis and
comparison upon the various forms of the presented WS-
HEQ together with some other robustness algorithms,
and a smaller number of experiments conducted on the
subset of the TCC database are simply to examine if
the presented WS-HEQ can be extended to work well
in a median-size vocabulary recognition task which is
more complicated than Aurora-2. Furthermore, in order
to avoid the ambiguity and confusion in discussion, the
remainder of this section and Section 5 are specially
for the Aurora-2 evaluation task, while the detailed dis-
cussions about the TCC-300 subset task will given in
Section 6.

As for the Aurora-2 database, the test data consist of
4,004 utterances, and three different subsets are defined
for the recognition experiments: test sets A and B are
both affected by four types of noise, and test set C is
affected by two types. Each noise instance is artificially
added to the clean speech signal at seven SNR levels (rang-
ing from 20 to —5 dB). The signals in test sets A and B
are filtered with a G.712 filter, and those in Set C are fil-
tered with an MIRS filter. In the ‘clean-condition training,
multi-condition testing’ evaluation task defined in [12],
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the training data consist of 8,440 noise-free clean utter-
ances filtered with a G.712 filter. Thus, compared with the
training data, test sets A and B are distorted by additive
noise, and test set C is affected by additive noise and a
channel mismatch.

In the experiments, each utterance in the clean train-
ing set and the three testing sets is first converted to a
13-dimensional MFCC (c0, c1 to ¢12) sequence. Next, the
MECC features are processed by either S-HEQ [11] or the
various forms of WS-HEQ noted in Section 3. In addi-
tion, the selected target distribution of the HEQ operation
applied to any of the full-band, LPF, and HPF cepstra is
the standard normal (Gaussian), with a zero mean and
unity variance. (Please note that, given the full-band cep-
stral sequences being standard normal and approximately
mutually uncorrelated, the corresponding LPF and HPF
via the operations in Equations 10 and 11 are also standard
normal. Similarly, if the HPF and LPF are both stan-
dard normal and approximately mutually uncorrelated,
then the corresponding full-band cepstra are normally
distributed with a zero mean and a variance of less than 1
since we scale down the HPF portion.)

The resulting 13 new features, in addition to their first-
and second-order derivatives, are the components of the
final 39-dimensional feature vector. With the new fea-
ture vectors in the clean training set, the hidden Markov
models (HMMs) for each digit and for silence are trained
with the scripts provided by the Aurora-2 CD set [16].
Each HMM digit contains 16 states, with three Gaussian
mixtures per state.

In particular, the 8,440 noisy utterances (corrupted by
four types of noise at five signal-to-noise ratios) originally
for the multi-condition training task [12], which has been
mentioned earlier in Section 3, are served as the develop-
ment set here in order to obtain an appropriate selection
of the scaling factor « for the HPF portion in Equations 12
to 15. The value of « is varied from 0.0 to 1.0 with an inter-
val of 0.1 in each form of WS-HEQ, and then the one that
achieves the optimal recognition accuracy for the devel-
opment set is chosen for the corresponding WS-HEQ in
practice. The selected values of o for different forms of
WS-HEQ are listed in Table 1.

Table 1 Scaling factor « for each type of WS-HEQ

Structure | Structure ll
Method Optimal « Method Optimal «
ws-HeQ!” 06 ws-HEQ” 06
WS-HEQ 06 WS-HEQ[?” 06
WS-HEQ? 05 WS-HEQ” 07
WSs-HEQ™ 0.7 Ws-HEQ(? 06

It gives the optimal recognition accuracy for each WS-HEQ variant in the
development set as to the Aurora-2 database.
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Table 2 The recognition accuracy results (%) of the MFCC baseline, CHN, S-HEQ, and WS-HEQ with structure |

Method SetA SetB Set C Average RR
MFCC 59.24 56.37 67.53 59.75 -
CHN 79.28 81.53 79.98 80.32 51.11
M o = 1.0(S-HEQ) 81.56 84.51 80.78 82.58 56.73
WS-HEQ
a =06 83.36 85.37 83.89 84.27 60.92
o) a=10 80.88 83.64 80.46 81.90 55.04
WS-HEQ
a=06 82.29 83.22 82.82 82.76 57.16
3 a=10 79.66 82,51 79.33 80.73 52.13
WS-HEQ,
a=05 83.57 85.15 83.93 84.27 60.92
@ a=10 80.20 82.82 80.18 8124 53.39
WS-HEQ
a =07 82.88 84.70 82.78 83.59 59.23

They are for different test sets while averaged over five SNR conditions (20 to 0 dB) as to the Aurora-2 database. RR (%) is the relative error rate reduction compared

with the MFCC baseline.

5 Experimental results and discussions for the
Aurora-2 task
5.1 Recognition accuracy
The presented WS-HEQ is evaluated in terms of recog-
nition accuracy. Tables 2 and 3 show the individual set
recognition accuracy rates averaged over five SNR condi-
tions (0 to 20 dB, with a 5-dB interval) for the MFCC base-
line, CHN, S-HEQ (equivalent to WS-HEQ!" with & =
1.0), and various forms of the presented WS-HEQ, while
Table 4 further lists the recognition accuracy rates for each
individual SNR situations but averaged over ten noise sit-
uations. In addition, Figure 7 depicts the overall averaged
word error rates achieved by several methods, including
MVA, HOCMN, TSN, CHN, S-HEQ, WS-HEQ" (« =
0.6), and \X/S—HEQh1 ) (¢ = 0.6). From Tables 2,3,4 and
Figure 7, we have the following findings:

1. Compared with the MFCC baseline, all of the
HEQ-related methods provide very similar accuracy

rates for the clean situation, and they are able to
provide significant improvement in recognition
accuracy for various noise-corrupted situations,
showing that HEQ is quite helpful for speech features
in terms of noise robustness.

2. S-HEQ (WS—HEQ;D with & = 1.0) outperforms
CHN by around 2.3% in the averaged accuracy, and
thus, further manipulation of the mismatch in LPF
and HPF with two extra HEQ operations can benefit
the recognition performance.

3. \X/S—HEQh1 ) witha = 1.0 produces results similar to
those of S-HEQ), and thus, the proposed structure II
(shown in Figure 6b) performs quite well.
Additionally, provided that no attenuation exists for
HPF by setting @ = 1.0, using structure II in the
other three types of WS-HEQ, i.e., \X/S—HEQ;I2 ),
WS-HEQ!?, and WS-HEQ!" as shown in
Equations 13 to 15, outperforms the respective

Table 3 The recognition accuracy results (%) of the MFCC baseline, CHN, and WS-HEQ with structure

Method SetA SetB Set C Average RR
MFCC 59.24 56.37 67.53 59.75 -
CHN 79.28 81.53 79.98 80.32 5111
M a=10 81.75 84.61 80.81 82.70 57.03
WS-HEQ B
a=06 84.13 86.16 84.39 84.99 62.71
@ a=10 82.59 84.93 82.03 8341 58.79
WS-HEQ|
a =06 83.54 85.75 83.83 84.48 61.44
3 a=10 80.55 83.99 79.80 81.77 54.72
WS-HEQ!
a =07 83.25 85.10 83.50 84.04 60.35
@ a=10 80.83 83.44 80.37 81.78 54.73
WS-HEQ!
a=06 82.30 83.45 82.90 82.88 5747

They are for different test sets while averaged over five SNR conditions (20 to 0 dB) as to the Aurora-2 database. RR (%) is the relative error rate reduction compared

with the MFCC baseline.
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Table 4 The recognition accuracy results (%) of the MFCC baseline, CHN, and eight forms of WS-HEQ

Method Clean 20dB 15dB 10dB 5dB 0dB —5dB
MFCC 99.12 9533 86.62 65.93 36.01 14.86 8.16
CHN 98.97 96.30 93.89 88.48 74.81 48.10 19.94
m o = 1.0 (S-HEQ) 99.02 97.24 94.99 90.09 77.88 52.73 22.68
WS-HEQ,
a =06 98.99 97.60 95.72 91.54 80.62 55.87 23.26
@ a=10 99.02 97.34 95.14 90.10 77.38 4957 18.40
WS-HEQ,
a=06 99.09 97.68 95.64 91.30 79.23 4997 17.69
) a=10 98.96 96.89 94.45 89.02 7555 47.78 17.26
WS-HEQ,
a=05 98.99 97.51 95.71 91.59 80.59 55.95 23.88
@ a=10 98.93 97.20 95.01 89.75 76.57 47.68 16.92
WS-HEQ,
a =07 99.07 97.87 96.18 91.98 79.99 51.94 19.83
o a=10 98.84 96.86 94.61 89.76 78.00 54.30 2491
WS-HEQ,
a =06 99.05 97.53 95.75 91.99 81.35 58.35 26.98
@ a=10 98.87 9741 95.50 91.15 79.06 53.96 22.29
WS-HEQ,
a=06 99.04 97.60 95.70 91.68 80.83 56.61 2445
3 a=10 98.89 96.76 94.29 88.97 7642 5244 23.69
WS-HEQ|
a=07 99.05 97.87 95.98 91.86 80.62 53.88 20.51
@ a=10 98.92 97.13 94.84 90.07 76.92 49.96 19.89
WS-HEQ|
a =06 98.96 97.49 95.54 91.17 79.00 51.23 1937

They are for different SNR cases while averaged over ten noise situations as to the Aurora-2 database.

methods under structure L. In particular, \X/S-HEQ%2 )

behaves better than \X/S—HEQS ), whereas
WS—HEQ%Z) behaves worse than \X/S-HEQ?),
revealing that applying structure II can make
WS-HEQ less costly in computation and can obtain
improved recognition results simultaneously.
Reducing the HPF component by setting the factor «
as less than 1.0 as in Table 1 significantly improves
the recognition accuracy, regardless of the different
structures and types of WS-HEQ. \X/S—HEQh1 ) gives
an averaged accuracy of 84.99%, which is optimal
among all of the methods and corresponds to error

reduction rates of 62.71%, 23.73%, and 13.83%
relative to the MFCC baseline, CHN, and S-HEQ,
respectively. These results support the
aforementioned observations that HPF is more
extensively contaminated by noise and that lo wering
HPF is beneficial.

Among the four types of WS-HEQ listed in
Equations 12 to 15, by assigning « as less than 1.0,
WS-HEQW, which requires three HEQ operations,
displays the best behavior, regardless of the selected
structure. However, the two types that require only
two HEQ operations (i.e., WS-HEQ® and
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Figure 7 Overall word error rate (%) averaged over all noise types and levels achieved by different noise-robustness methods.
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WS-HEQ®) perform quite similarly to WS-HEQ™
when structure II is used. Finally, WS-HEQ®
performs worse than the other three types, possibly
because it applies only one HEQ operation. Even so,
WS-HEQ{* and WS-HEQ{{” with @ = 0.6 can
behave very close to S-HEQ (WS—HEQ%I) with

o = 1.0).

6. The presented \X/S—HEQﬁ1 ) with @ = 0.6 behaves
better in the overall averaged word error rate when
compared with several well-known noise-robustness
methods: TSN, HOCMN, MVA, CHN, and S-HEQ.
The absolute error rate reduction of \X/S—I-[EQh1 )

with & = 0.6 relative to the MFCC baseline is as high

as 25.24%.

Taking a step further, among the methods used for
comparison, MVA and TSN explicitly applies a temporal
filter, and in most cases, the used filter is low pass so

Table 5 The recognition accuracy results (%) achieved by
the combination of MVA and WS-HEQ
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as to perform a ‘temporal’ smoothing on the cepstral
time series. In contrast, the presented WS-HEQ lowers
HPF (the high-pass filtered portion) of each cepstral vec-
tor and is analogous to a ‘spatial’ smoothing operation.
Such an observation leads to the idea of combining either
MVA or TSN with WS-HEQ in order to achieve a two-
dimensional smoothing. To realize this idea, the cepstra
are first processed with any of the eight forms of WS-
HEQ and then further compensated by MVA or TSN.
The obtained recognition results are shown in Tables 5
and 6, in which the applied WS-HEQ uses the scaling
factor o listed in Table 1. As we look into the results
shown in Tables 5 and 6, it can be found that the pairing
of WS-HEQ and MVA/TSN consistently achieves bet-
ter performance than the individual component method,
regardless of the various forms of WS-HEQ. For exam-

ple, the method ‘WS—HEQ%ID +TSN’ obtains the aver-
aged accuracy of 86.25%, better than TSN (81.39%) and

Table 6 The recognition accuracy results (%) achieved by
the combination of TSN and WS-HEQ

Method SetA SetB Set C Average Method Set A Set B Set C Average
MVA 7815 7917 7912 78.75 TSN 8086 8239 8046 81.39
ws-HEQ("” 8336 8537 8389 84.27 ws-HEQ("” 8336 8537 8389 84.27
WS-HEQ" +MVA 8495 8560 8497 8521 WS-HEQ"+TSN 8532 8677 8501 85.84
WS-HEQ™” 8229 8322 8282 8276 WS-HEQ!” 8229 8322 8282 8276
WS-HEQ'” +MVA 8534 8580 8569 85.63 WS-HEQ!® +TSN 8506 8621 8475 85.46
Ws-HEQ® 8357 8515 8393 8427 WSs-HEQ® 8357 8515 8393 8427
WS-HEQ® +MVA 8484 8559 8538 8525 WS-HEQ® +TSN 8535 8654 8515 8578
ws-HEQ™ 8288 8470 8278 83.59 Ws-HEQ™ 8288 8470 8278 83.59
WS-HEQ™ +MVA 8462 8570 8490 85.11 WS-HEQ!™ +TSN 8441 8581 8396 84.88
ws-HEQ( 8413 8616 8439 8499 ws-HEQ{" 8413 8616 8439 84.99
WS-HEQ{" +MVA 8508 8643 8540 85.69 WS-HEQ"+TSN 8559 8741 8526 86.25
Ws-HEQ!” 8354 8575 8383 84.48 WS-HEQ!” 8354 8575 8383 84.48
WS-HEQ” +MVA 8581 8669 8617 86.23 WS-HEQ(” +TSN 8577 8708 8534 8621
WS-HEQ!” 8325 8510 8350 84.04 WS-HEQ(” 8325 8510 8350 84.04
WS-HEQ +MVA 8418 8569 8448 8484 WS-HEQ( +TSN 8468 8675 8425 8542
ws-HEQ(" 8230 8345 8290 8288 Ws-HEQ!" 8230 8345 8290 8288
WS-HEQ( +MVA 8514 8541 8587 85.40 WS-HEQ{"+TSN 8459 8532 8459 84.88

They are for different test sets while averaged over five SNR conditions (20 to
0 dB) as to the Aurora-2 database. The scaling factor « listed in Table 1 is
adopted for each WS-HEQ.

They are for different test sets while averaged over five SNR conditions (20 to
0 dB) as to the Aurora-2 database. The scaling factor « listed in Table 1 is
adopted for each WS-HEQ.
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WS—HEQS ) (84.99%). These results indicate that the joint
spatial-temporal smoothing can provide the cepstral fea-
tures with better noise robustness in comparison with
either spatial smoothing or temporal smoothing in iso-
lation. In particular, different forms of WS-HEQ behave
very similar and can give around 85% in averaged accu-
racy when TSN/MVA is integrated, implying that when
employing TSN/MVA as a post-processing technique,
simpler versions of WS-HEQ, such as WS- HEQ(4)
WS- HEQII , are relatively more appropriate in practlcal
applications due to their high recognition performance
and relatively low computation complexity in comparison
with S-HEQ, WS-HEQ!"”, and WS-HEQ{!.

5.2 The influence of the parameter « in WS-HEQ

As stated previously, the parameter « in WS-HEQ
determines the degree of attenuation for the HPF por-
tion of the processed cepstra. Here, we would like to

investigate how the value of o in WS-HEQ influences
the recognition accuracy of the test sets. For simplicity,
we vary the parameter o from 0.0 to 1.0 in two types
of WS-HEQ: WS-HEQ\" and WS-HEQ{!, and the cor-
responding recognition accuracy rates averaged over all
noise types and levels in three test sets are shown in
Figure 8a,b. These two figures reveal that

1. Lowering the HPF part by tuning « from 1.0 to 0.4 in
both WS- HEQ(I) and WS- HEQ(I) achieves better
results consistently relative to these two WS-HEQ
methods using « = 1.0. However, further reducing
the HPF part can ruin the recognition accuracy,
which implies that the HPF part also contains
information helpful for recognition.

2. The optimal accuracy for \X/S-HEQ?) and

WS- HEQ(I) occurs when « is assigned to 0.5 and 0.6,
respectively, while the results from the development

Table 7 Recognition accuracy results (%) of WS-HEQl(” using the optimal scaling factor « (in parentheses)

SNR SetA SetB SetC
Subway Babble Car Exhibition  Restaurant Street Airport Train MIRS subway  MIRS street

Clean  99.14(0.5)  99.06 (0.5) 9896(0.9)  99.04(0.9) 99.14 (0.5) 99.06 (0.5) 9896 (0.9) 99.04 (0.9) 99.14 (0.6) 99.21(1.0)
20dB  96.87(04) 9761(08) 9851(1.0) 9741(0.5) 97.73(0.7) 98.07 (0.5) 9827(0.7) 9790 (0.6) 97.33(0.5) 97.91 (0.5)
15dB 9469 (04) 9577(06) 96.87(06) 94.79(0.5) 95.70(0.7) 9646 (0.5) 9699 (1.0) 96.51(0.5) 94.87 (0.4) 96.43 (0.7)
10dB 89.84(04) 9138(06) 9293(0.7) 8957(04) 91.74(0.8) 92.53(06) 93.89(0.8) 93.58(0.6) 90.24 (0.4) 92.08 (0.5)
5dB 79.80(03) 79.66(06) 8211(05)  7890(04) 80.32(0.7) 81.17(0.5) 8461(0.7) 8291(0.5) 80.29 (0.2) 81.17(0.5)
0dB 5769(03) 5000(06) 5541(0.7) 5742(04) 55.30(0.7) 56.77 (0.5) 62.69(0.7) 58.04(0.7) 58.12(0.3) 56.77 (0.4)
—5dB  2674(04) 20.16(1.0) 20.16(0.0) 2885(0.0) 23.76(1.0) 2476 (04) 2765(1.00 21.97(1.0) 26.71(0.1) 24.15(0.2)

This is with respect to each noise type and level (SNR) as to the Aurora-2 database.
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SNR Set A SetB Set C
Subway Babble Car Exhibition  Restaurant Street Airport Train MIRS subway  MIRS street

Clean 99.36 (0.7)  99.06 (0.8)  99.05 (0.8) 99.11 (0.4) 99.36 (0.7) 99.06 (0.8)  99.05(0.8)  99.11 (0.4) 99.17 (0.7) 99.15 (0.4)
20dB 96.56 (0.7)  97.52(06) 98.12(0.8) 96.98 (0.8) 97.54(0.7) 9794 (0.8) 9842(0.5) 9836(0.8) 96.96 (0.4) 97.76 (0.8)
15dB 94.60(04) 9571(0.7) 97.17(0.7) 94.60 (0.5) 95.52 (0.6) 96.55(0.6) 96.90(06) 97.25(0.8) 94.41 (0.6) 96.28 (0.6)
10dB 89.65(0.5) 92.14(0.6) 93.83(0.7) 89.48 (0.5) 91.83(0.7) 93.05(0.6) 9472(0.8) 94.32(0.6) 89.75 (0.4) 92.62 (0.6)
5dB 79.89(0.5) 80.11(06) 84.28(0.8) 78.22 (0.5) 80.07 (0.7) 82.56 (0.5) 8551(0.8) 84.33(0.6) 79.83 (04) 81.65 (0.6)
0dB 5827(04) 5342(0.7) 61.65(0.7) 57.27 (04) 56.77 (0.7) 5892 (05) 6549(0.7) 61.65(0.8) 57.72(04) 58.74 (0.6)
—5dB  2843(05) 2276(0.8) 28.81(0.9) 3048 (0.4) 25.85(0.9) 27.33(06) 3126(09) 29.28(0.9) 29.60 (0.5) 2742 (0.8)

This is with respect to each noise type and level (SNR) as to the Aurora-2 database.

set suggest the parameter « to be 0.6 for these two
WS-HEQ methods (as shown in Table 1). However,
WS-HEQ;D with & = 0.6 gives the recognition rate
of 84.27%, very close to the optimal one (84.32%).
Therefore, it assures us that the development set can
help to determine the nearly optimal parameter in
the test sets.

3. The performance of WS-HEQ%D and \X/S-HEQfI1 ) is
not very sensitive to the parameter o, which is based
on the observation that the accuracy difference is
below 1.0% provided the value of « is within the
range [0.4,0.7].

Next, we explore the best possible recognition results
for each testing situation achieved by WS-HEQ with
various assignments of the scaling parameter «. Please
note that, in the preceding experiments the scaling param-
eter o in WS-HEQ is determined by the development set
and then uniformly applied to the every test set. Here,
we would like to investigate whether the optimal choice
of o (which gives rise to the highest recognition accu-
racy) depends on the noise type and level (viz. the SNR)
of the testing utterances. To do this, we vary the value
of o from 0.0 to 1.0 with an interval of 0.1 in each
form of WS-HEQ to process the features in the train-
ing and testing sets and then perform the experiment.
The optimal recognition accuracy rate and the associ-
ated o with respect to each noise type and level in the
testing set achieved by WS—HEQ%D and \X/S—HEQﬁ1 ) are
respectively shown in Tables 7 and 8. Some contents
of the tables together with the data obtained from the
other six forms of WS-HEQ (which are not listed here
due to their huge amount) are further summarized in

Table 9 The recognition accuracy results (%) of various
forms of WS-HEQ for different test sets

Method SetA SetB Set C Average
«=06 8336 8537 8389 8427
ws-HEQ("
Optimale 838 8556 8452 8467
«=06 8229 8322 8282 8276
Ws-HEQ?
Optimala 8304 8408 8332 8351
=05 8357 8515 893 8427
Ws-HEQ®
Optimala 8386 8546 8443 8462
«=07 8288 8470 8278 8359
Ws-HEQ™
Optimale 8352 848 8385 84.12
=06 8413 8616 8439 84.99
Ws-HEQ("
Optimala 8447 8639 8457 8526
«=06 8354 8575 8383 8448
WS-HEQ[”
Optimala 8425 8604 8452 85.02
=07 825 810 8350 84.04
Ws-HEQ
Optimale 8384 8585 8405 84.69
«=06 8230 8345 8290 8288
Ws-HEQ!"
Optimale 8292 8418 8317 8347

These results are obtained by using (1) the scaling factor « listed in Table 1 (2) the
scaling factor « that achieves the optimal recognition accuracy with respect to

the individual noise type and level (SNR), both of which are for different Test Sets
while averaged over 5 SNR conditions (20 dB to 0 dB) as to the Aurora-2 database.
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Tables 9 and 10, which also contain a portion of the data
in Tables 2 and 3 for the purpose of comparison. Observ-
ing these tables, we find that the value of the factor «
that achieves the optimal recognition accuracy indeed
depends on the noise type and level of the utterances.
However, there seems no general rule for selecting a better
a with respect to any specific noise situation. Further-
more, as seen in Table 9, in most cases, the accuracy rates
obtained with the optimal « associated with the individ-
ual noise situation are very close to the accuracy rates
using a fixed o which gets the optimal results for the
development set. The maximum difference between the
above two types of accuracy rates is 0.75%, which occurs
at the method of WS—HEQ?). As a result, we can roughly
conclude that using the « recommended by the develop-
ment set suffices to provide WS-HEQ with nearly optimal
performance.

5.3 The feature distortion reduced by WS-HEQ
Apart from the recognition performance, in this subsec-
tion, we evaluate WS-HEQ in the capacity of reducing the
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feature distortion caused by noise. The incoherent feature
distortion [7] defined by

_ k(XK | - | X[k]1)?
| X[k] 2

(16)

is measured for the feature streams processed by the
noise-robustness method, where X[k] and X[k] denote the
DFT of the noise-free clean feature stream and its noise-
corrupted counterpart, respectively. Figure 9 depicts the
feature distortion associated with any cepstral channel at
the SNR of 10 dB, averaged over the 1,001 utterances in
test set A of the Aurora-2 database, with respect to the
feature streams processed by any of S-HEQ, \X/S—HEQil)
0.6, and WS-HEQ!” with « = 0.6. From

Figure 9, two observations are made: first, WS—HEQ%I)
with @ = 0.6 results in smaller distortions than S-HEQ
irrespective of the cepstral channel, implying that to lower
the HPF portion of the cepstra can further reduce the

with ¢ =

Table 10 The recognition accuracy results (%) of various forms of WS-HEQ at different SNRs

Method Clean 20dB 15dB 10dB 5dB 0dB —5dB
w-HEQ™ a=06 98.99 97.60 95.72 9154 80.62 55.87 23.26
! Optimal « 99.08 97.76 95.91 91.78 81.09 56.82 24.29
WS HEQ(Z) a =06 99.09 97.68 95.64 91.30 79.23 4997 17.69
: Optimal « 99.10 97.86 95.94 91.66 79.87 5222 19.62
Ws-HEQ®) a=05 98.99 97.51 95.71 91.59 80.59 55.95 23.88
! Optimal « 99.08 97.67 95.88 91.81 81.03 56.69 24.64
Ws-HEQ® a=07 99.07 97.87 96.18 91.98 79.99 51.94 19.83
: Optimal « 99.10 97.87 96.23 92.14 80.51 53.86 23.00
WS HEQ“) a =06 99.05 97.53 95.75 91.99 81.35 5835 26.98
! Optimal « 99.15 97.62 95.90 92.14 81.65 58.99 28.12
W-HEQ® a=06 99.04 97.60 95.70 91.68 80.83 56.61 2445
! Optimal a 99.13 97.80 96.09 92.15 81.44 56.68 24.40
WS HEQ(S) a =07 99.05 97.87 95.98 91.86 80.62 53.88 20.51
! Optimal « 99.13 97.51 95.68 91.66 80.94 57.64 27.09
WS HEQW a =06 98.96 97.49 95.54 91.17 79.00 51.23 1937
! Optimal « 99.08 97.58 95.69 9130 7941 53.39 21.84

These results are obtained using (1) the scaling factor « listed in Table 1 (2) the scaling factor « that achieves the optimal recognition accuracy with respect to the
individual noise type and level (SNR), both of which are for different SNR conditions while averaged over ten noise types as to the Aurora-2 database.
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Figure 9 Feature distortion averaged over the 1,001 utterances of test set A. It is achieved by S-HEQ, WS-H EQ‘(”(a = 0.6),and

WS—HEQﬁ”(a = 0.6). The DFT size used in Equation 16 is set to 512.

effect of noise; second, by setting the parameter « to
0.6, the distortions provided by \X/S-HEQS ) are slightly

smaller than those by \X/S—HEQ?) for most of the cepstral

channels, which agrees with the finding that \X/S-HEQh1 )

slightly outperforms WS—HEQ%D in recognition accuracy.

5.4 The effect of lowering HPF in different schemes

In order to further examine the effect of attenuating HPF
in recognition accuracy, here we additionally design three
schemes to process the cepstra in training and testing sets:

Scheme 1. The original (full-band) cepstra is split into
LPF and HPF, and then the HPF portion is
scaled by a factor «. Finally, the original LPF
and the attenuated HPF are combined to
constitute the new cepstra. This scheme is
to remove all three HEQ processes in
WS-HEQ" or WS-HEQY shown in
Figure 6a,b, and its flowchart is depicted in
Figure 10a.

The original (full-band) cepstra is
preprocessed by HEQ, and then the

Scheme 2.

HEQ-preprocessed cepstra is split into LPF
and HPF. We scale LPF by a factor « and
finally combine LPF and attenuated HPF to
obtain the new cepstra. This scheme is to
remove the two HEQ processes for LPF and
HPF in \X/S—HEQI(D shown in Figure 6a, and
its flowchart is depicted in Figure 10b.

The original cepstra is split into LPF and
HPF, and then the HPF portion is tuned
with the scaling factor o. Next, we combine
LPF and attenuated HPF to obtain the
full-band cepstra, which are further
post-processed by HEQ to obtain the new
cepstra. This scheme is to remove the two
HEQ processes for LPF and HPF in
\)(/S—HEQh1 ) shown in Figure 6b, and its
flowchart is depicted in Figure 10c.

Scheme 3.

The scaling factor « in the above three schemes is var-
ied from 0.6 to 1.4 with an interval of 0.2. Please note
that the case with @ > 1 corresponds to amplifying HPF
and thus reducing the proportion of LPF in the overall
cepstra. The recognition results for the three schemes are

(b)

Figure 10 Flowcharts of three schemes defined in defined in Section 5.4. (a) Scheme 1. (b) Scheme 2. (¢) Scheme 3.
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shown in Table 11. From this table, we have the following
observations:

1. At the clean noise-free case in all three schemes, the
recognition accuracy remains as high as around 99%
nearly irrespective of the varied scaling factor «,
which implies that neither lowering nor raising the
HPF portion of the cepstra can significantly influence
the recognition performance. The possible
explanation for this result is that the back-end
acoustic modeling with HMMs compensates well for
the variation of the front-end speech features.

2. From the results for scheme 1, reducing HPF (using
a < 1) without pre- or post-processing with HEQ
produces degraded performance under
noise-corrupted situations compared with the case
using « = 1, which disagrees with the results for
various forms of WS-HEQ as shown in the preceding
sub-sections. Under the same situations, setting
a > 1 to amplify HPF (and thus to reduce the
proportion of LPF) cannot improve the accuracy,
either. Therefore, the relative importance of LPF and
HPF in noise-corrupted cepstra discussed in
Section 3 cannot be reflected in recognition accuracy
when there is no noise-robust processing such as
HEQ. In other words, merely emphasizing LPF or
HPF fails to result in more noise-robust cepstra and
produces worse recognition accuracy.

3. Different from the results for scheme 1, the results
associated with schemes 2 and 3 show that when the
cepstra are pre- or post-processed by HEQ, reducing
the HPF part by setting @ < 1 can promote the
recognition accuracy under noise-corrupted
situations (except for the case of —5-dB SNR). On
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the other hand, the cases corresponding to o > 1in
which HPF is raised produce worse results. The
underlying reason is probably that the noise effect of
HPF is relatively difficult to alleviate, and simply
lowering HPF can benefit HEQ to give better
performance. Similar situations can be also found in
Tables 2 and 3 by comparing the results of
WS-HEQ!®, Ws-HEQ"®, WS-HEQ'” and
WS-HEQ with @ = 1. WS-HEQ!” and
\X/S—HEQﬁz) outperform \X/S—HEQ;?’) and
\X/S-HEQh3 ), respectively, indicating a stronger
normalization strategy like HEQ is required to
compensate the distortion in HPF, while a relatively
simple MVN process suffices to improve LPF well.
Furthermore, comparing Table 11 with Tables 2
and 3 we find that the effect of lowering HPF in
recognition accuracy appears a lot more significant
when we further compensate the sub-band cepstra
(viz. HPF and LPF) by HEQ/MVN, again in
agreement with the statements about S-HEQ [11]
that additionally normalizing HPF and LPF can
reduce the environmental mismatch caused by noise.

6 The experiment on the TCC-300 Mandarin
dataset

Besides the evaluation on the Aurora-2 dataset as
described in the previous two sections, here the recog-
nition experiments with the presented WS-HEQ are fur-
ther carried out in another dataset, the eleventh group
of the TCC-300 microphone speech database from the
Association for Computational Linguistics and Chinese
Language Processing in Taiwan [15]. This dataset includes
7,009 Mandarin character strings uttered by 50 male
and 50 female adult speakers. The corresponding read

Table 11 The recognition accuracy results (%) of the three schemes defined in Section 5.4

SNR The scaling factor o
0.6 0.8 1.0 1.2 14
Scheme 1 (MFCC) Clean 99.08 99.16 99.12 99.14 99.09
20~0dB 52.84 59.15 59.75 59.42 56.48
—5dB 6.13 767 8.16 770 6.87
Scheme 2 (pre-HEQ) clean 98.95 99.00 98.97 98.92 99.00
20~0dB 81.84 8141 80.32 80.16 80.04
—5dB 17.58 17.27 19.94 15.12 14.39
Scheme 3 (post-HEQ) clean 98.97 99.00 98.97 98.99 98.84
20~0dB 81.19 80.42 80.32 79.72 79.35
—5dB 16.73 14.62 19.94 14.05 18.34

They are for the clean condition, the average of five SNR conditions (20, 15, 10, 5, and 0 dB), and the —5 dB SNR condition but averaged over the ten noise types as to

the Aurora-2 database.
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speaking-style speech signals were recorded with a micro-
phone at the sampling rate of 16 kHz. The Mandarin
characters included in the utterances of this dataset
correspond to 408 different Mandarin syllables. In the
experiment, the syllable recognition is performed on this
dataset without any language model or grammar con-
straint at the back end so that the recognition perfor-
mance can be more related to the used front-end acoustic
features. As a result, in comparison with the 11-digit
recognition on the Aurora-2 telephone-band dataset in
the previous sections, here we conduct a more compli-
cated task of medium-vocabulary recognition (408 sylla-
bles) on the broad-band speech data. Among the 7,009
Mandarin utterances in the TCC-300 subset, 6,509 strings
are selected in acoustic model training, while the other
500 are in testing. The utterances in the training set are
kept noise-free, while the utterances in the testing set are
artificially added with noise at four SNR levels (20, 15, 5,
and 0 dB) to produce noise-corrupted speech data. The
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noise types include white (broad-band) and pink (narrow-
band), both taken from the NOISEX 92 database [17].
These utterances for training and testing are first con-
verted into 13-dimensional MFCCs (c0, ¢1 — c12), and
then processed by various kinds of noise-robustness algo-
rithms. Similar to the feature parameter settings for the
Aurora-2 database, the resulting 13 new features plus their
first- and second-order derivatives constitute the finally
used 39-dimensional feature vector.

As for the acoustic modeling, we train the HMMs
of INITIAL and FINAL units, which corresponds
to the semi-syllables in Mandarin Chinese. In most
cases, a Mandarin Chinese syllable can be split into
INITIAL/FINAL parts analogous to the consonant/vowel
pair in English. There are totally 112 right-context-
dependent INITIAL HMMs and 38 context-independent
FINAL HMMs to be trained. Each INITIAL HMM con-
sists of five states and eight Gaussian mixtures per state,
while each FINAL HMM contains ten states and eight

Table 12 Recognition accuracy results (%) of WS-HEQ for different SNR conditions at white noise environment

Method Clean 20dB 15dB 10dB 5dB Average
MFCC 76.38 30.08 14.72 6.23 352 13.64
CHN 76.52 5522 4356 30.90 18.84 3713
M a=10 77.15 56.48 46.81 33.05 19.40 3894
WS-HEQ
a=06 76.94 59.28 4981 36.80 2274 42.16
(2) a=10 77.50 56.30 47.62 33.75 19.82 39.37
WS-HEQ
a =06 76.07 59.63 49.88 36.73 23.74 42.50
3) a=10 77.08 55.92 4494 32.09 19.36 38.08
WS-HEQ
a =06 76.84 58.68 4844 36.22 23.11 4161
@ a=10 76.91 54.71 45.29 32.02 19.22 37.81
WS-HEQ
oa =06 76.59 58.14 48.95 35.89 23.11 41.52
M a=10 77.96 56.88 4746 33.82 20.94 39.78
WS-HEQ,
oa =06 76.54 59.75 49.79 36.89 23.72 42.54
o a=10 77.31 57.79 4783 3391 20.85 40.10
WS-HEQ]
a =06 76.33 59.86 49.72 37.24 2437 42.80
3) a=10 77.92 57.18 46.36 33.70 20.64 3947
WS-HEQ,
oa =06 77.01 59.98 49.11 36.26 23.53 4222
@ a=10 77.10 57.11 46.46 3440 20.90 39.72
WS-HEQ,
a =06 77.24 60.07 4991 36.85 23.65 4262

These recognition accuracy results (%) of the MFCC baseline, CHN, and eight forms of WS-HEQ are for different SNR conditions at the white noise environment as to

the subset of the TCC database.



Hung and Fan EURASIP Journal on Audio, Speech, and Music Processing 2013, 2013:29

http://asmp.eurasipjournals.com/content/2013/1/29

Gaussian mixtures per state. The HMM for each of the 408
Mandarin syllables is then constructed by concatenating
the associated INITIAL and FINAL HMMs.

Tables 12 and 13 list the syllable recognition accu-
racy rates of the MFCC baseline and the various robust-
ness methods including CHN, S-HEQ (equivalent to
WS—HEQF) with « = 1.0), and seven forms of the
presented WS-HEQ for the white and pink noise envi-
ronments, respectively. The scaling parameter « in WS-
HEQ is set to 0.6, which is not optimized but just to
clarify whether lowering HPF can give rise to perfor-
mance improvement. From these two tables, we have the
following findings:

1. Due to the simple free-syllable decoding framework
in the recognition procedure, the recognition
accuracy of MFCC baseline features at the clean
noise-free condition is just around 75%. Besides, the
noise robustness methods used here result in similar
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or even better performance compared with the
MEFCC baseline when the testing utterances contain
no noise.

. Both types of noise degrade the performance of

MECC seriously as the SNR gets worse, while CHN
and all of the other HEQ-related algorithms benefit
the recognition accuracy significantly. In particular,
the various forms of WS-HEQ with o =1
outperforms CHN, indicating that additionally
processing LPF and HPF with HEQ or MVN can
further enhance CHN to produce better results.

. Reducing the scaling factor « from 1.0 to 0.6 in the

eight forms of WS-HEQ consistently brings about
better results by significant margins in all
noise-corrupted situations. This result reconfirms
the capability of the presented HPF lowering
operation in boosting noise robustness of
CHN-processed features. Furthermore, when « is set
to 0.6, the performance difference among various

Table 13 Recognition accuracy results (%) of WS-HEQ for different SNR condition at the pink noise environment

Method Clean 20dB 15dB 10dB 5dB Average
MFCC 76.38 59.44 44.24 22.34 5.85 32.97
CHN 76.52 61.40 52.71 38.06 24.30 44.12
m a=10 7715 62.83 53.96 39.62 25.09 45.38
WS-HEQ,
a =06 76.94 6348 54.99 40.76 27.10 46.58
@ a=10 77.50 63.62 54.45 39.79 2591 45.94
WS-HEQ,
a=06 76.07 63.11 55.22 4035 26.94 4641
3 a=10 77.08 6138 51.89 38.06 2444 43.94
WS-HEQ
a=06 76.84 62.55 54.34 40.60 26.61 46.03
@ a=10 76.91 62.38 53.15 3843 23.81 4444
WS-HEQ,
a =06 76.59 63.15 54.50 40.14 26.14 45.98
o a=10 77.96 63.04 54.15 39.83 2563 45.66
WS-HEQ,
a=06 76.54 63.62 55.27 41.51 26.84 46.81
@ a=10 77.31 63.27 54.24 39.65 25.75 4573
WS-HEQ,
a =06 76.33 62.62 55.29 40.81 26.82 46.39
@ a=10 77.92 62.50 53.19 39.86 24.98 45.13
WS-HEQ,
a=06 77.01 6348 54.90 41.02 27.08 46.62
@ a=10 77.10 62.55 52.80 38.18 24.91 4461
WS-HEQ]
a=06 7724 63.13 54.52 40.88 2691 46.36

These recognition accuracy results (%) of the MFCC baseline, CHN, and eight forms of WS-HEQ are for different SNR conditions at the pink noise environment as to the

subset of the TCC database.
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forms of WS-HEQ becomes relatively small in
comparison with that under the condition of & = 1.0.

7 Conclusions

In this paper, we explored the relative importance of dif-
ferent frequency components of the intra-frame speech
features and subsequently presented a novel algorithm,
WS-HEQ, to improve noisy speech recognition. WS-HEQ
mainly reduces the intra-frame high-pass filtered com-
ponent of the speech features, which appears more vul-
nerable to noise. Compared with the well-known S-HEQ
method, WS-HEQ can achieve superior recognition accu-
racy, higher computational efficiency, or both. In future
work, we will pursue new filter structures for obtaining
the LPF and HPF components for WS-HEQ to achieve
better results. Additionally, we will investigate how to
tune the intra-frame speech features more flexibly in the
corresponding DFT or DCT domains for further noise
reduction.
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