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Abstract

This article analyzes and compares influence of different types of spectral and prosodic features for Czech and
Slovak emotional speech classification based on Gaussian mixture models (GMM). Influence of initial setting of
parameters (number of mixture components and used number of iterations) for GMM training process was
analyzed, too. Subsequently, analysis was performed to find how correctness of emotion classification depends on
the number and the order of the parameters in the input feature vector and on the computation complexity.
Another test was carried out to verify the functionality of the proposed two-level architecture comprising the
gender recognizer and of the emotional speech classifier. Next tests were realized to find dependence of some
negative aspect (processing of the input speech signal with too short time duration, the gender of a speaker
incorrectly determined, etc.) on the stability of the results generated during the GMM classification process.
Evaluations and tests were realized with the speech material in the form of sentences of male and female speakers
expressing four emotional states (joy, sadness, anger, and a neutral state) in Czech and Slovak languages. In
addition, a comparative experiment using the speech data corpus in other language (German) was performed. The
mean classification error rate of the whole classifier structure achieves about 21% for all four emotions and both
genders, and the best obtained error rate was 3.5% for the sadness style of the female gender. These values are
acceptable in this first stage of development of the GMM classifier. On the other hand, the test showed the
principal importance of correct classification of the speaker gender in the first level, which has heavy influence on
the resulting recognition score of the emotion classification. This GMM classifier should be used for evaluation of
the synthetic speech quality after applied voice conversion and emotional speech style transformation.

Keywords: emotional speech recognition, GMM classifier, spectral and prosodic features of speech
1. Introduction
Speaker identification and emotional speech recognition
systems, as well as speech recognition systems, use different
types of speech features which can systematically be divided
into segmental and supra-segmental ones [1]. These in-
clude traditional features such as linear predictive coeffi-
cients, linear prediction cepstral coefficients, mel-frequency
cepstral coefficients (MFCC) [2], or unconventional ones
like perceptual linear predictive coefficients, log frequency
power coefficients [3], gammatone frequency cepstral coef-
ficients [4], or compact multiclass support vector machines
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[5]. Several spectral features [spectral centroid (SC), spec-
tral flatness measure (SFM) [6,7], spectral entropy (SE)
[8,9], etc.] are used to complement the mentioned basic
segmental features for speaker recognition [10]. Supra-
segmental features comprise statistical values of parameters
describing prosody by duration, fundamental frequency,
and energy. Included in this category is also a separate
group of features constituting the voice quality parameters:
jitter, shimmer [11], Hammarberg index [12], Liljencrants-
Fant features [13], and spectral tilt [14]. All mentioned
speech identification systems and classifiers are usually
based on statistical approach, using the discriminative or
artificial neural networks [15,16], hidden Markov models
(HMM) [17], or Gaussian mixture models (GMM) [18,19].
Spectral features like MFCC together with energy and
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prosodic parameters are most commonly used in GMM emo-
tional speech classification [20]. On the other hand, in auto-
matic speech recognition systems based on HMM approach,
the acoustic vector comprises such components as the form-
ant central frequencies and bandwidths. Relative position of
formants and formant trajectories can be used as the main
indicator for speech classification in the voiced parts [21].
We are mainly focused on voice conversion and emo-

tional speech style transformation in the text-to-speech
systems speaking in Czech and Slovak [22] for the voice
communication systems with the human–machine
(computer) interface [23], or in the communication aids
for handicapped people [24,25]. These two languages
(belonging to the Slavonic languages) are similar but dif-
ferent, therefore we can use a common speech corpus to
obtain spectral parameters, but on the phonetic and
prosody level the synthetic speech must be processed
separately. In our previous work, we performed statis-
tical analysis and comparison of emotional speech prop-
erties for the Czech and Slovak languages using basic
spectral features consisting of the first three formant po-
sitions together with their bandwidths and formant tilts,
complementary spectral features (CSF) (SC, SFM, and
SE), and prosodic parameters—fundamental frequency
(F0), microintonation, jitter, shimmer [26].
The aim of this study is to develop a simple emotional

speech style classifier based on GMM approach usable for
objective evaluation of the finally produced synthetic
speech quality as an option to manually performed listening
tests. This statistical evaluation approach can be combined
with the classical one in the form of listening tests or it can
replace them. The main advantage of this system is that it
works automatically without human interaction which is a
great problem in collective realization of listening tests
(more people together—for keeping the same test condi-
tions), and the obtained results can numerically be
matched—as the objective comparison criterion. The art-
icle describes performed experiments and comparison of
GMM classification of male and female acted speech in
four emotional states (joy, sadness, anger, and a neutral
state) spoken in Czech and Slovak. This speech corpus was
primarily used for determination of spectral and prosodic
parameters for emotional speech conversion [26]. This art-
icle is also aimed to verify a functionality of the proposed
GMM emotional speech classifier structure including the
stability of the obtained results, to perform an analysis of
influence of setting of parameters for GMM training
process (number of used mixture components and used
number of iterations), and above all, to investigate the in-
fluence of different types of used speech features (spectral
and/or supra-segmental). In addition, we try to confirm
our working hypothesis that speech data corpora in the
other languages (primarily intended for emotional speech
recognition) can successfully be used for basic testing of
the designed GMM emotional speech classifier. On the
other hand, the order of parameters in the input feature
vector has minimal influence on the classification error rate
of the whole emotional speech classifier.

2. Subject and method
2.1. Short description of the developed emotional speech
classifier and its expected properties
The basic draft functional structure of our currently devel-
oped GMM emotional speech classifier consists of the two-
level architecture as it can be seen in Figure 1. In the first
step, the gender type (male/female) is recognized, and con-
sequently the emotional speech style is identified for each
of two gender classes. In both levels of the identification
process, different types of the feature vectors together with
the trained GMM models (with different number of used
mixtures) are used due to different requirements and differ-
ent statistical properties necessary for gender type classifica-
tion and emotional style recognition. Because we would like
to recognize four emotional speech styles and two basic
types of gender, we need to obtain four trained emotion
models for classification of speech pronounced by male
speakers and four models for classification of sentences
spoken by female speakers, and two summary models for
gender recognition (trained on the data of sentences pro-
nounced in all classified emotional styles). By the reason of
not knowing exactly how and which speech parameters
characterize several emotions of speech in Czech and
Slovak, we formulate six basic sets of speech parameters for
the GMM classifier. Another issue is to find the optimum
number of parameters in the feature vector for robust
GMM classification of emotions. As the first trial, the
length of the input feature vector was experimentally set to
16, as a result of compromise between lower limit of func-
tionality and computational complexity requirements.
The two-level classifier is based on the statistical ap-

proach—therefore outputs from the gender recognition or
emotion classification block are the probability values sub-
sequently evaluated in the block called the score discrimin-
ator (see Figure 1). Consequently, different values of the
score can be obtained when the same sentence is processed.
These different score values can bring about an error in
evaluation of the gender type or the emotion class. This
situation can arise from several various reasons including

– processing of the input speech signal with a short
time duration, from which only a small number of
feature vectors is obtained during the analysis,

– classification using too short input feature vector
(small number of parameters in the vector),

– application of an incorrect type of a gender model
for determination of an emotional class (e.g., using
the male model for classification of emotion
sentences uttered by a female speaker).
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Figure 1 Block diagram of the currently developed GMM emotional speech style classifier for Czech and Slovak.
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Hence, the stability tests to verifying the proper func-
tion parts of the recognizer as well as the whole classi-
fier are necessary to be performed. These tests are also
important for mapping of the mentioned negative rea-
sons of the resulting system error. In addition, we as-
sume that the choice of feature types (spectral properties
and prosodic parameters) and the method of their de-
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passed iterations. It means that it is also necessary to
judge influence of these parameters on gender recogni-
tion and emotion classification error rate. Before the
first practical use of the whole classifier, individual
function blocks as well as their cascade connection
must be tested. Subsequently, suitability of the whole
classifier for our purpose—objective tool for evaluation
of the synthetic speech quality after applied emotio-
nal style conversion in Czech and Slovak—will be
determined.
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Figure 4 Block diagram of estimation of the supra-segmental feature
2.2. Basic principles of applied classification method
The GMM can be defined as a linear combination of
multiple Gaussian probability density functions (GPDF)
of the input data vector x
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Table 1 Structure of the feature set P1

Number Name Type Frame Value

1 F0 Supra-segmental Voiced Median

2 F0 Supra-segmental Voiced Std

3 F0DIFF Supra-segmental Voiced Median

4 F0DIFF Supra-segmental Voiced Std

5 F0DIFF Supra-segmental Voiced Rel. max

6 F0DIFF Supra-segmental Voiced Rel. min

7 F0ZCR Supra-segmental Voiced Median

8 F0ZCR Supra-segmental Voiced Std

9 F0ZCR Supra-segmental Voiced Rel. max

10 F0ZCR Supra-segmental Voiced Rel. min

11 Jitter Supra-segmental Voiced Median

12 Jitter Supra-segmental Voiced Std

13 Jitter Supra-segmental Voiced Rel. max

14 Shimmer Supra-segmental All Median

15 Shimmer Supra-segmental All Std

16 Shimmer Supra-segmental All Rel. max

Table 3 Structure of the feature set P3

Number Name Type Frame Value

1 HNR Complementary spectral Voiced Mean

2 HNR Complementary spectral Voiced Std

3 HNR Complementary spectral Voiced Rel. max

4 SC Complementary spectral Voiced Mean

5 SC Complementary spectral Voiced Std

6 SFM Complementary spectral Voiced Mean

7 SFM Complementary spectral Voiced Std

8 SE Complementary spectral All Mean

9 SE Complementary spectral All Std

10 F0 Supra-segmental Voiced Median

11 F0 Supra-segmental Voiced Std

12 F0DIFF Supra-segmental Voiced Rel. max

13 Jitter Supra-segmental Voiced Median

14 Shimmer Supra-segmental All Max

15 Shimmer Supra-segmental All Median

16 Shimmer Supra-segmental All Rel. max
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where Pk(x) is the GPDF (expressed with the help of d
as the dimension of the GPDF, Σ is the covariance
matrix, and μ is the vector of mean values), K is the num-
ber of these distribution functions, and αk are the
weighting parameters. For GMM creation it is necessary
to determine the covariance matrix Σ, the vector of mean
values μ, and the weighting parameters αk from the input
training data. Using the expectation-maximization (EM)
Table 2 Structure of the feature set P2

Number Name Type

1 Spectral envelope Basic spe

2 Spectral envelope Basic spe

3 SC Complem

4 Spectral spread Basic spe

5 SFM Complem

6 Spectral decrease Basic spe

7 F0 Supra-se

8 F0 Supra-se

9 F0DIFF Supra-se

10 F0DIFF Supra-se

11 F0ZCR Supra-se

12 F0ZCR Supra-se

13 Jitter Supra-se

14 Jitter Supra-se

15 Shimmer Supra-se

16 Shimmer Supra-se
iteration algorithm the maximum likelihood function of
GMM is defined as follows:

logL Θð jxÞ ¼ log
YM
m¼1

XK
k¼1

αkPk xmð jΘkÞ; ð2Þ

where Pk( ) are the GPDFs, K is the number of these func-
tions in a mixture, M is the number of trained vectors, αk
Frame Value
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entary spectral Voiced Min
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Table 4 Structure of the feature set P4

Number Name Type Frame Value

1 F12 position ratio Basic spectral Voiced Mean

2 F12 position ratio Basic spectral Voiced Std

3 F12 formant tilt Basic spectral Voiced Min

4 HNR Complementary spectral Voiced Mean

5 HNR Complementary spectral Voiced Std

6 SC Complementary spectral Voiced Mean

7 SC Complementary spectral Voiced Std

8 SFM Complementary spectral Voiced Mean

9 SFM Complementary spectral Voiced Std

10 SE Complementary spectral All Mean

11 SE Complementary spectral All Std

12 F0 Supra-segmental Voiced Median

13 F0DIFF Supra-segmental Voiced Rel. max

14 Jitter Supra-segmental Voiced Median

15 Jitter Supra-segmental Voiced Rel. max

16 Shimmer Supra-segmental All Median

Přibil and Přibilová EURASIP Journal on Audio, Speech, and Music Processing 2013, 2013:8 Page 6 of 22
http://asmp.eurasipjournals.com/content/2013/1/8
are the weighting parameters, and the term Θ = (μ, Σ) rep-
resents parameters of the Gaussian probability distribu-
tion. For control of the EM algorithm, the Niter parameter
corresponding to the number of iteration steps is used,
and the Ngmix represents the used number of mixtures in
each of the GMM models. The iteration stops when the
difference between the previous and the current probabil-
ities fulfills the internal condition or the predetermined
Table 5 Structure of the feature set P5

Number Name Type

1 Cepstral coeff. c1 Basic spe

2 Cepstral coeff. c1 Basic spe

3 Cepstral coeff. c2 Basic spe

4 Cepstral coeff. c2 Basic spe

5 Cepstral coeff. c3 Basic spe

6 Cepstral coeff. c3 Basic spe

7 SC Complem

8 SC Complem

9 SFM Complem

10 SFM Complem

11 SE Complem

12 SE Complem

13 F0 Supra-seg

14 F0 DIFF Supra-seg

15 Jitter Supra-seg

16 Shimmer Supra-seg
maximum number of iterations is reached. To initialize
the GMM model parameters, the K-means algorithm is
usually used—this procedure is repeated several times
until the minimum deviation of the input data sorted in N
clusters S = {S1,S2,…,SN} is found.
The GMM classifier returns probabilities (the so-

called scores) that the tested utterance belongs to the
GMM model while the identification of emotion (or
Frame Value

ctral All Skewness

ctral All Kurtosis

ctral All Skewness

ctral All Kurtosis

ctral All Skewness

ctral All Kurtosis

entary spectral Voiced Mean

entary spectral Voiced Std

entary spectral Voiced Mean

entary spectral Voiced Std

entary spectral All Mean

entary spectral All Std

mental Voiced Median

mental Voiced Rel. max

mental Voiced Median

mental All Median



Table 6 Structure of the feature set P6

Number Name Type Frame Value

1 Cepstral coeff. c1 Basic spectral All Skewness

2 Cepstral coeff. c2 Basic spectral All Skewness

3 Cepstral coeff. c3 Basic spectral All Skewness

4 Cepstral coeff. c4 Basic spectral All Skewness

5 F12 position ratio Basic spectral Voiced Mean

6 Formant tilt Basic spectral Voiced Min

7 HNR Complementary spectral Voiced Mean

8 SC Complementary spectral Voiced Mean

9 SC Complementary spectral Voiced Std

10 SFM Complementary spectral Voiced Mean

11 SFM Complementary spectral Voiced Std

12 SE Complementary spectral All Mean

13 SE Complementary spectral All Std

14 F0 Supra-segmental Voiced Median

15 Jitter Supra-segmental Voiced Median

16 Shimmer Supra-segmental All Median
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gender) i* is given by the maximum overall probability
for the given emotion (gender)

i� ¼ arg max
1≤i≤N

score T ; ið Þ; ð3Þ

where the emotion/gender score(T, i) is the returned
probability value of the GMM classifier for the models
trained for each emotion/gender category and the tested
sentence T (an input vector of features obtained from
this sentence).

2.3. Determination of basic and complementary spectral
properties of emotional speech
The basic speech spectral properties consist of the form-
ant positions F1, F2, F3, and their bandwidths as well as
the auxiliary parameters (the formant tilts) that can be
calculated by several techniques. We apply the approach
combining two basic methods for formant position de-
termination (see Figure 2).

1. Indirect—formant positions are determined as the
first three local maxima of the smoothed spectral
envelope where its gradient changes from positive to
negative. Corresponding bandwidths are obtained as
frequency intervals between the points of 3 dB
decrease of the magnitude spectrum relative to the
formant amplitudes. The smooth spectral envelope
of the speech signal can be determined during
cepstral analysis [27]. Cepstral analysis of the speech
signal is performed in the following way: first, the
complex spectrum using fast Fourier transform
(FFT) algorithm is calculated from the input samples
(after segmentation and weighting by a Hamming
window). In the next step, the power spectrum is
computed and the natural logarithm is applied.
Application of the inverse FFT algorithm gives the
symmetric real cepstrum. Limitation to the first N0

+ 1 cepstral coefficients represents an approximation
of the log spectrum envelope

S ejω
� � ¼ c0 þ 2

XN0

n¼1

cn cos n⋅ωð Þ; ð4Þ

where the first cepstral coefficient c0 corresponds to the
signal energy.

2. Immediate—estimation of the formant frequencies
and their bandwidths directly from the complex
roots of the linear predictive coding (LPC)
polynomial A(z)—poles of the LPC transfer function.
The formant frequency Fk and the 3 dB bandwidth
Bk in (Hz) can be determined as follows:

Fk ¼ f s
2π

θk ¼ arg zkð Þ
2π

f s; Bk ¼ −
f s
π

ln zkj j; ð5Þ

where fs is the sampling frequency and θ k is the angle in
(rad) of the complex root.
Resulting values obtained with the help of the direct

method are corrected by the results of indirect determination



Table 7 Structure of the feature set P8

Number Name Type Frame Value

1 Cepstral coeff. c1 Basic spectral All Skewness

2 Cepstral coeff. c1 Basic spectral All Kurtosis

3 Cepstral coeff. c2 Basic spectral All Skewness

4 Cepstral coeff. c2 Basic spectral All Kurtosis

5 Cepstral coeff. c3 Basic spectral All Skewness

6 Cepstral coeff. c3 Basic spectral All Kurtosis

7 Cepstral coeff. c4 Basic spectral All Skewness

8 Cepstral coeff. c4 Basic spectral All Kurtosis

9 F12 position ratio Basic spectral Voiced Mean

10 F12 position ratio Basic spectral Voiced Std

11 F13 position ratio Basic spectral Voiced Mean

12 F13 position ratio Basic spectral Voiced Std

13 F23 position ratio Basic spectral Voiced Mean

14 F23 position ratio Basic spectral Voiced Std

15 F12 formant tilt Basic spectral Voiced Min

16 F13 formant tilt Basic spectral Voiced Min

17 F23 formant tilt Basic spectral Voiced Rel. Max

18 HNR Complementary spectral Voiced Mean

19 HNR Complementary spectral Voiced Std

20 SC Complementary spectral Voiced Mean

21 SC Complementary spectral Voiced Std

22 SFM Complementary spectral Voiced Mean

23 SFM Complementary spectral Voiced Std

24 SE Complementary spectral All Mean

25 SE Complementary spectral All Std

26 F0 Supra-segmental Voiced Median

27 F0 Supra-segmental Voiced Std

28 F0 DIFF Supra-segmental Voiced Median

29 F0 DIFF Supra-segmental Voiced Std

30 F0 ZCR Supra-segmental Voiced Median

31 Jitter Supra-segmental Voiced Median

32 Shimmer Supra-segmental All Median

Přibil and Přibilová EURASIP Journal on Audio, Speech, and Music Processing 2013, 2013:8 Page 8 of 22
http://asmp.eurasipjournals.com/content/2013/1/8
of the spectral envelope (smoothed by cepstral limita-
tion) according to the following two criteria:

� the values of 3-dB bandwidths must be less than 500
Hz [28],

� the found values of the first three formant positions
must fall within the corresponding frequency
interval depending on the gender type
(male/female) [29].

The auxiliary spectral parameters like the formant tilts
are defined as directions and angles between the first
three spectral maxima of a smoothed envelope. The
general bisector formula in the parametric form can be
used for calculation

y−y1 ¼ k x−x1ð Þ; k ¼ y2−y1
x2−x1

; k ¼ tg ϕð Þ; ð6Þ

where k is a bisector direction, y1,2 represent values of power
spectral density (PSD) in (dB) of determined formants, and
x1,2 are positions of the formants on the frequency axis
in (Hz). For k < 0, the formants have declining trend, for
k > 0 the formants have ascending trend. The resulting
angle φ in degrees is defined as φ = (Arctg (k)/π)⋅180.
The cepstral coefficients {cn} obtained during the

cepstral analysis process bring information about spectral
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properties of the human vocal tract [27]. As the shape of
the vocal tract depends also on the emotional state of the
speaker, these coefficients can be used in the feature vector
for GMM emotional classification. The mentioned cepstral
analysis (see Figure 3) can also be used for determination
of additional speech parameters—the CSF including

1. The SC defined as a center of gravity of the power
spectrum [10] which can be calculated using the
absolute value of the FFT |S(k)| of the speech signal
x(n). The SC values in (Hz) are determined as

SC ¼

XNFFT=2

k¼1

k S kð Þj j2

XNFFT=2

k¼1

S kð Þj j2
⋅

f s
NFFT

; ð7Þ

where fs is the sampling frequency, and NFFT represents
the number of the processed points for FFT calculation.

2. The SFM can be used to determine the degree of
periodicity in the signal [6,7]. This spectral feature is
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Figure 6 Influence of the used number of mixtures on GMM gender r
calculated as a ratio of the geometric and the
arithmetic mean values of the power spectrum by
the following formula

SFM ¼

YNFFT=2

k¼1

S kð Þj j2
" # 2

NFFT

2
NFFT

XNFFT=2

k¼1

S kð Þj j2
: ð8Þ

3. The SE is a measure of spectral distribution [10]. It
quantifies a degree of randomness of spectral
probability density represented by normalized
frequency components of the spectrum. SE will be
low for spectra having clear formants whereas for
unvoiced sounds it will be higher. Shannon SE is
defined as follows:

SE ¼ −
XNFFT=2

k¼1

P kð Þ log2P kð Þ; ð9Þ

where P(k) represents the PSD values.
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ecognition; Niter = 1500, feature set P3.



Table 8 Influence of Ngmix parameter on the GMM emotion classification error rate

Error rate (%)/Ngmix 1 2 3 4 5 6 7 8

Minimum 17.95 7.69 12.82 10.26 5.13 7.14 0 0

Maximum 56.41 56.41 46.15 53.85 43.59 37.84 41.03 41.02

Mean 41.06 34.76 27.57 25.37 23.22 20.20 18.75 20.79
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4. The harmonics-to-noise ratio (HNR) provides an
indication of the overall periodicity of the speech
signal. Specifically, it quantifies the ratio between the
periodic and aperiodic components in the signal
[30]. The HNR is a function of glottal noise and
other factors such as jitter and shimmer which are
responsible for the aperiodic component in the
voice. Noise at harmonic locations is typically
estimated as the average of the noise estimates at
either side of the harmonic locations. The spectral-
based HNR expressed in (dB) is computed as
follows:

HNR ¼ 10 log10

XNFFT=2

k¼NFBLO

S kð Þj j2

XNFFT=2

k¼NFBHI

N kð Þj j2

0
BBBBB@

1
CCCCCA; NFB ¼ f maxFBNFFT

f s
;

ð10Þ
where |S(k)| represents harmonic amplitudes, |N(k)| is
the noise estimate, and NFFT is the number of points up
to the sampling frequency. The summation index NFB

depends on the chosen frequency band, where fs is the
sampling frequency and fmaxFB is the maximum fre-
quency of the band (NFB equals NFFT/2 for the whole
band up to fs/2). The spectrum portion of harmonic am-
plitudes is summed from low frequencies corresponding
to the index NFBLO (approx. 50–70 Hz), the noise por-
tion is calculated from high frequencies corresponding
to the index NFBHI (approx. 1500–2000 Hz—depending
on the gender type).
In our algorithm, the values of the HNR, SC and SFM

are obtained only from the voiced speech frames. In the
case of the SE parameter, the values are determined
from the voiced as well as unvoiced frames with the sig-
nal energy higher than the threshold (calculated as ec0

using the first cepstral coefficient) for elimination of
Table 9 Influence of Ngmix parameter on the GMM gender
recognition error rate

Error rate (%)/Ngmix 1 2 3 4

Minimum 2.56 2.56 5.13 2.56

Maximum 57.14 53.57 46.43 46.84

Mean 25.05 18.72 18.25 19.23
speech pauses between words within the sentence and
beginning and ending parts of the sentence [26].
2.3. Estimation of supra-segmental features of emotional
speech
Microintonation, together with sentence melody and
word melody, represents melody of speech given by F0
contour. Microintonation component of speech melody
can be supposed to be a random, band-pass signal de-
scribed by its spectrum and statistical parameters. The
voice quality parameter “jitter” describes pitch perturba-
tions in the context of vocal expression. Our approach
to microintonation estimation is somewhat similar to
that of [31] where a jitter related to microvariations of a
pitch curve is computed as a relative number of zero
crossings of a derivative pitch curve normalized by utter-
ance duration. Speech frames classified as voiced are an-
alyzed separately depending on the emotional state and
the gender type. The whole supra-segmental feature ana-
lysis process is divided into seven phases corresponding
to the block diagram in Figure 4:
1. Determination of F0 values, definition of the voiced
and unvoiced parts of the processed speech signal.

2. Determination of F0Mean values and calculation of
the linear trend (LT) by the least mean square
method.

3. Calculation of differential microintonation signal
F0DIFF by subtraction of these values from the
corresponding F0 contours (F0Mean and LT removal)

F0DIFF nð Þ ¼ F0 nð Þ−F0Meanð Þ−LT nð Þ: ð11Þ

4. Detection of zero crossings, calculation of zero
crossing periods LZ, and relative values defined as
LZrel = NZ/NV, where NZ is the total number of zero
crossings in each of the four emotions, and NV is
the total number of voiced frames.

5. Calculation of the frequency parameters from the
zero crossing periods

F0ZCR ¼ f F= 2⋅LZrelð Þ; ð12Þ

where fF is the frame frequency.
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6. Calculation of the absolute jitter JAbs values as the
average absolute difference between consecutive
pitch periods L measured in samples [30]

JAbs ¼ 1
f s NL−1ð Þ

XNL−1

n¼1

Ln−Lnþ1j j; ð13Þ

where fs is the sampling frequency and NL is the number
of extracted pitch periods.

7. Calculation of the shimmer measure as a period-
to-period variability of amplitudes of a speech
signal [30]

shimmer ¼ An−Anþ1j j
1
NV

XNV−1

n¼1

An

; ð14Þ

where An is the peak amplitude value of the nth frame
of the input speech signal, and NV is the number of
voiced frames.
Male_N Female_N Male_J Female_J
0

10

20

30

40

50

60

70

80

90

100

—
› 

E
rr

or
 r

at
e 

[%
]

Figure 8 Influence of the used number of training iterations on the G
3. Description of performed analysis and
comparison experiments
Our experiments were aimed at comparison and analysis
of

1. influence of the used number of mixtures and the
used number of training iterations on GMM
emotion classification;

2. influence of the used number of mixtures and the
used number of training iterations on the GMM
gender recognition error rate;

3. influence of different length of the feature vector on
GMM emotion classification error rate;

4. influence of different length of the feature vector on the
computational time (complexity) of the phases: GMM
creation, training, and classification (recognition);

5. influence of the type of the features in the feature
vector on GMM emotion classification and gender
recognition error rate;

6. test of the complete GMM emotion classifier with the
best training parameters (Niter and Ngmix) and the feature
set with the best score (minimum mean error rate).
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Table 10 Influence of Niter parameter on the GMM emotion classification error rate

Error rate (%)/Niter 100 200 400 600 800 1000 1200 1500

Minimum 3.57 7.69 2.56 3.57 0 5.13 5.12 2.56

Maximum 36.36 38.46 35.13 45.45 43.59 41.05 29.73 43.59

Mean 19.56 20.53 18.70 21.18 21.11 20.75 17.64 20.57
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To find the optimum number of mixtures for GMM
classification and the optimum number of training itera-
tions the influence of using one to eight mixtures was
investigated for classification of four emotional speech
styles and the influence of one to four mixtures was
tested for recognition between male and female genders.
The influence of the used number of iterations on the
GMM classification/recognition error rate was analyzed in
eight cases with the values in the range of <100–1500>.
For the analysis of different number of values in the fea-
ture vector (see points 3 and 4), three types of vectors
were used with different lengths of NFEAT = 8, 16, and 32
values. In the case of the shortest one with the length of 8
we used parameters {1, 5, 6, 8, 10, 12, 13, 16} of the ori-
ginal feature vector with the length NFEAT = 16.
In addition, we perform a set of tests of stability

consisting of

1. stability of the GMM emotion classification process
when the time duration of the input processed
sentence shortens;

2. stability of the GMM emotion classification process
with the limited length of the feature vector;

3. stability of the emotion classification when the
gender type of the GMM model is chosen
incorrectly;

4. stability test of the obtained GMM scores and finally
determined emotional class for correctly set male or
female genders.

The same testing sentence was processed to compare
recognition scores of the GMM classifiers. This test
passed for 500 times using the same set of the trained
models. The sentence “Vlak už nejede” (No more train
leaves today) was used for testing. It was expressed by
two male and two female speakers in neutral and emo-
tional speaking styles with mean duration of 1.5 s (which
corresponds approx. to 125 frames for analysis). The
length of the original feature vector was NFEAT = 16. For
limited length of NFEAT = 12, the zero values were used
Table 11 Influence of Niter parameter on the GMM gender rec

Error rate (%)/Niter 100 200 400

Minimum 1.75 2.56 2.41

Maximum 42.42 46.64 44.28

Mean 17.24 19.28 18.37
at the positions 7, 9, 11, and 15 of the original feature
vector. For the length the NFEAT = 8, the zero values
were used at the positions 2, 3, 4, 7, 9, 11, 14, and 15.
Finally, we realized two experiments for verifying of

our working hypothesis about:

1. usability of the speech database in other language
using the German database as a data source for
GMM emotion training and testing (recognition);

2. minimal influence of the order of parameters in the
input feature vector on the GMM emotion
classification score.

Verification of the second working hypothesis was re-
alized within the framework of analysis of influence of
the type of the feature vector and the order of features
in the feature vector on the recognition error rate and
the stability of the classifier.
3.1. Used types of features in the input vectors of the
GMM classifier
As it was mentioned in Section 1, our research is focused
mainly on analysis and comparison of basic and comple-
mentary spectral properties of the emotional speech in-
cluding the prosodic—supra-segmental parameters.
For that reason, also in this experiment, these types of

speech parameters were used as the input features for
the emotion classification based on the GMM approach.
In the case of the spectral features, the basic statistical

parameters—mean value, and standard deviation (std)—
were used as the representative values in the feature vec-
tors for GMM emotion and gender recognition. The spe-
cial category of the spectral features is represented by
coefficients of the real cepstrum [27]. The calculated his-
tograms of distribution were used to determine the ex-
tended statistical parameters—skewness and kurtosis that
were used in the feature vectors. For implementation of
the supra-segmental parameters of emotional speech, the
statistical types of median values, range of values, std,
ognition error rate

600 800 1000 1200 1500

2.45 2.44 2.46 2.46 2.46

45.46 50 39.29 39.29 44.26

18.87 15.58 14.69 16.39 18.23
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Figure 9 Influence of the features vector length for GMM emotion classification error rate; feature set P3 (with 8, and 16 values), and
the set P8 (32 values), Ngmix = 6, Niter = 1200.
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and/or relative maximum and minimum we used in the
feature vectors.
For our experiments, we set up six basic feature sets

and a special one as the input data vectors for GMM
training and classification—see detailed description of
their structure in Tables 1, 2, 3, 4, 5, 6 and 7:

1. feature set containing only statistical values of supra-
segmental parameters (P1);

2. feature set consisting of extended statistical values of
spectral parameters together with extended
statistical values of supra-segmental parameters (P2);

3. feature set including complete values of CSF and
extended statistical values of supra-segmental
parameters (P3);

4. feature set containing a ratio of formant frequencies
F1, F2, a formant tilt, values for all types of CSF, and
extended values of supra-segmental parameters (P4);

5. feature set including extended statistical parameters
of the first three cepstral coefficients (c1–c3)
together with basic values of CSF (excluding the
HNR), and basic supra-segmental parameters (P5);

6. feature set containing a mix of basic spectral
parameters (skewness of the first four cepstral
coefficients, a formant ratio, and a tilt), complete
Table 12 Comparison of emotion classification mean
error rate values for different lengths of the feature
vector

Feature vector
length/emotion

Mean error rate (%)

Neutral Joy Sadness Anger

NFEAT = 8 35.38 50.68 47.89 63.42

NFEAT = 16 20.51 33.71 11.14 43.19

NFEAT = 32 15.82 34.66 12.46 33.04
values of CSF, and basic supra-segmental parameters
(P6);

7. special feature set consisting of 32 values including
extended mix of basic spectral parameters (a
skewness and a kurtosis of the first four cepstral
coefficients, formant ratios of the first three formant
frequencies F1, F2, F3, and formant tilts computed
also from the first three formants), values for all
types of CSF, and extended statistical values of
supra-segmental parameters (P8).

Influence of the feature vector length on GMM emo-
tion classification error rate was analyzed using the spe-
cial feature set P8 consisting of 32 parameters. For
verifying our working hypothesis about minimal influ-
ence of the feature order in the input data vector, the set
P3 was used with the reversed order of features giving
thus the set called P7.

3.2. Description of the used speech corpora and methods
of processing of sentences
The speech material for building of the training and the
testing data corpus was originated from two sources. The
reference speech corpus was taken from the emotional
speech database Berlin (EMO-DB) [32,33] in German lan-
guage. This speech corpus was chosen due to our prior
analysis and comparison of spectral properties of emo-
tional speech in German, Czech, and Slovak [34]. The
EMO-DB speech database consists of a set of sentences
with the same contents expressed in seven emotional
styles: neutral, joy, sadness, boredom, fear, disgust, and
anger. For our comparison we use only four emotional
types in Czech & Slovak—neutral, joy, sadness, and anger.
We extracted 95 sentences spoken by 5 male speakers,
and 134 sentences spoken by 5 female speakers with dur-
ation from 1.5 to 8.5 s sampled at 16 kHz. The Czech and



Table 13 Comparison of computational complexity for different lengths of the feature vector

Feature vector length/
mean CPU time (ms)

Models creation
and training

Classification Summarized
CPU timeNeutral Joy Sadness Anger

NFEAT = 8 296 153 163 214 195 482

NFEAT = 16 336 162 173 220 208 529

NFEAT = 32 387 166 179 226 212 622
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Slovak speech corpus was extracted from the fairy tales
performed by professional actors. It contains sentences
with different contents expressed in the mentioned four
emotional styles uttered by several speakers (134
sentences spoken by male voices and 132 sentences
spoken by female voices, 8 + 8 speakers altogether). The
processed speech material consists of the sentences with
a duration of 1.5–5.5 s, resampled at 16 kHz. Feature
vectors were extracted from the EMO-DB corpus in
16,234 frames from male speakers, and 25,753 frames
from female speakers. In the case of sentences from the
Czech & Slovak speech corpus the number of the ana-
lyzed frames was 25,988 for male speakers and 24,017
for female speakers.
To obtain the input features of a sentence, the speech

signal is pitch-asynchronously processed and analyzed in
the frames of constant duration corresponding to the
mean fundamental frequency of a speaker group (differ-
ent for male/female speakers). Depending on the type of
the feature, the resulting values are calculated either from
the voiced frames of the analyzed utterance or from both
voiced and unvoiced frames. The prosodic parameters
were primarily determined from the F0 contour—there-
fore, the voicing classification of the analyzed frame must
be performed first. On the border between the voiced and
the unvoiced parts of the speech signal, a situation can
occur when the frame is classified as voiced but the
obtained value corresponds to the unvoiced class. For cor-
rection of this effect, the output values of the pitch-period
detector are filtered by a 3-point recursive median filter.
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Figure 10 Influence of the type of the feature vector on GMM emotio
The basic functions from the Ian T. Nabney “Netlab”
pattern analysis toolbox [35,36] were used for the cre-
ation of the GMM models, data training, and classifica-
tion. The computational complexity was tested on the
PC with following configuration: processor Intel(R) i3-
2120 at 3.30 GHz, 8 GB RAM, and Windows 7 profes-
sional OS. This test compared the obtained CPU times
for GMM creation and training phase in both genders,
as well as the CPU times of emotion classification phases
(neutral and three emotional styles for male/female gen-
der). The mean CPU times for different lengths of fea-
ture vectors (8/16/32 values) were calculated as duration
of the training phase summed with mean duration of the
classification phase averaged for all four emotions and
both genders.

3.3. Obtained results of performed experiments
Obtained recognition (classification) results are com-
pared visually in the form of graphs as well as numer-
ically in the form of tables (basic statistical values
determined from the score parameters). The resulting
graphs and data are ordered and grouped into the sets
corresponding to the type of the performed experi-
ments (see detailed description at the beginning part
of this section):

� influence of the used number of mixtures for GMM
emotion classification of male and female voices and
for male and female gender recognition—see bar
graphs in Figures 5 and 6, and Tables 8 and 9;
Sadness_M Sadness_F Anger_M Anger_F

n classification error rate; Ngmix = 6, Niter = 1200.
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Figure 11 Influence of the type of the feature vector on GMM gender recognition error rate; Ngmix = 3, Niter = 1000.
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� influence of the used number of training iterations
during creation of the GMM models—results of
classification of four emotions for male and female
voices (Figures 7 and 8, and Tables 10 and 11);

� influence of different length of the feature vector on
GMM emotion classification and gender recognition
error rate (see Figure 9 and values in Table 12), and
corresponding computational complexity
(comparison of computing times in Table 13);

� influence of the used type of the feature vector on
GMM emotion classification of male and female
genders, and male and female gender recognitions
including the test of the order of the features in the
input vector—comparison of the obtained
recognition error rate in Figures 10 and 11, and
Tables 14 and 15;

� results of the complete gender recognizer and
emotional speech style classifier—see the confusion
matrix in Figure 12, and numerical results in
Table 16.

The second group of results consists of obtained values
from performed stability test experiments including:

� results of the influence of the length of the input
processed sentence and the limited length of the
feature vector on the stability of the GMM emotion
classification process are shown in Figures 13 and 14;
Table 14 Influence of used type of the feature set on the
emotion classification error rate; summarized for all
emotions and both genders

Error rate (%)/
feature set

P1 P2 P3 P4 P5 P6 P7

Minimum 10.26 17.85 7.69 6.89 5.13 2.56 10.26

Maximum 41.03 37.93 46.15 46.16 48.79 48.72 51.28

Mean 25.11 27.37 25.95 29.01 29.75 27.82 25.79
� analysis of the influence of incorrectly chosen GMM
gender model on stability and correctness of the
emotion classification (see sets of results for male/
female genders in Figure 15);

� the final stability test – summary comparison of the
GMM emotion classification process separately
presented by a gender type—see sets of graphs in
Figures 16 and 17.

Finally, the obtained results of comparison of emotion
classification results for sentences from EMO-DB speech
corpus and Czech & Slovak fairy tales are presented in
the form of the integrated confusion matrix for male
and female voices (Figure 18), summary results of emo-
tional speech style classification error rate in Table 17
together with comparison of gender type recognition
(separate confusion matrices of gender recognition per
emotion style in Figure 19), and summary results of rec-
ognition error rate in Table 18.

4. Discussion of results
The first group of performed experiments was oriented
on finding the optimum number of mixtures for GMM
classification and the optimum number of iterations
during the training process. In correspondence with
our presupposition, the obtained results showed that
the situation was different for emotion speech style
classification and that for male and female gender
Table 15 Influence of used type of the feature set on the
gender recognition error rate; summarized for all
emotions

Error rate (%)/
feature set

P1 P2 P3 P4 P5 P6 P7

Minimum 0 2.56 0 0 0 0 0

Maximum 38.86 53.57 40.56 32.14 69.74 74.62 40.14

Mean 16.77 18.72 18.69 13.45 29.84 32.19 18.29
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recognitions (compare values of the error rate in Ta-
bles 8, 9, 10, and 11). All tests in this step were realized
using the feature set P3 which combines all three types
of the speech parameters—basic spectral, CSF, and
supra-segmental. For next analysis and processing, the
following setting of parameters were consequently
chosen: Ngmix = 6, Niter = 1200 for emotion classifica-
tion and Ngmix = 3, Niter = 1000 for gender recognition.
From next comparison follows that obtained emotion

classification error rate using only 8-parameters feature
vector gives the mean value of 49.3%. However, error
rates for emotions joy and anger were more than 50%
what makes the whole classifier practically unusable.
Comparison of attained mean error rates between clas-
sification with the help of the feature vector consisting
of 32 values and with the basic length of 16 values gave
ambiguous result (see Table 12 and bar diagram in
Figure 9). While the extension to 32 values brought a
little improvement in the summary mean error rate of
24% compared with 27% error rate for the length of 16
values, in the case of emotions joy and anger the results
were worse than in the case of the basic 16-parameters
feature vector. On the other hand, the summary results
Table 16 Summarized mean emotion classification error
rate of the complete GMM classifier; consisting of
cascade connection of the gender recognizer and the
emotional classifier parts

Mean error rate (%)/emotion Neutral Joy Sadness Anger

Male 25.64 7.14 7.69 43.65

Female 7.69 39.39 3.45 33.33

Total 16.67 23.28 5.57 38.99
of achieved computing times (CPU times) showed in
Table 13 are in correspondence with expectancy (the
maximum for overall GMM processing using the fea-
ture vector of 32 values and the minimum in the case of
the length of 8 features). The consequence of change of
the feature vector length from 16 to 32 causes increas-
ing of the mean CPU time only by 18%, which is rela-
tively negligible.
Our experimental work was primarily focused on ana-

lysis of different types of speech features for GMM emo-
tion classification and gender recognition—as it can be
seen in the bar graph in Figure 10 and as follows from
the summary results in Table 14, the best values are ob-
served in the case of the P3 feature set (with the mean
recognition error rate of about 26%). Very similar results
are obtained also with the set P7. This partial result con-
firms our assumption that the succession of features in
the input data vector has minimum influence on the rec-
ognition score (the set P7 has the same structure of fea-
tures but in the reversed order when compared with the
P3). Also the summary results of the obtained GMM
gender recognition error rate stored in Table 15 are con-
sistent with the previous statement. The P4 feature set
was evaluated as the best one with the mean error rate
of 13.45%. The bar graph in Figure 11 shows that some
types of features are entirely inappropriate for gender
recognition—in the case of the set P5 and, first of all, in
the case of the set P6 the error rate reaches more than
70%. These feature sets are different from the other ones
that contain statistical values of the cepstral coefficients
and the first two formants ratios. On the other hand,
these values are useful for emotion classification—
obtained scores and mean error rate values are near the
best evaluation (classification) results of the P3 set.
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Figure 13 Influence of the input sentence length on stability of the GMM emotion classification process; obtained scores (upper set of
graphs), determined class of emotion (bottom set); feature set P3, Ngmix = 6, Niter = 1200; tested sentence expressed by the male
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Figure 14 Influence of limited length of feature vector on stability of the GMM emotion classification process; obtained scores (upper
set of graphs), determined class of emotion (bottom set); feature sets P3_8, P3_12, and P3_16, Ngmix = 6, Niter = 1200; tested sentence
expressed by the female speaker in joyous style.
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Obtained results of the first experiment with a cascade
connection of the GMM gender recognition block and the
emotional style classification block (see Figure 1) show that
this approach is applicable and the obtained recognition
error of the whole GMM classifier presented in Table 16
achieves acceptable values (the mean error rate for all four
emotions and both voices is 21.13%). From the detailed
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Figure 16 Stability test of the GMM emotion classifier for male gende
class of emotion (bottom set); feature set P3, Ngmix = 6, Niter = 1200;
emotional styles.
results per emotions (see Figure 12) follows that in corres-
pondence with values obtained in the case of the separate
recognition blocks, the problems occur in the neutral state
of the female voice and in the joyful state of the male voice.
The performed emotion classification test confirmed

good stability of the obtained GMM scores for the two ob-
served sentences of male and female speakers, but on the
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Figure 17 Stability test of the GMM emotion classifier for female gender; obtained scores (upper set of graphs), and finally
determined class of emotion (bottom set); feature set P3, Ngmix = 6, Niter = 1200; tested sentence expressed by the female speaker in
neutral and emotional styles.
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other hand, the test showed that a principal problem can
occur with wrong classification. As the score is a statistical
variable containing probability/uncertainty, the results
show variability which can cause erroneous emotion deter-
mination when the final score contains comparable values
for more emotions. Therefore, we realized analysis of
other factors with a potential effect on stability of the
emotion classification. From the next test follows that the
input sentence length plays a great role in recognition sta-
bility (see Figure 13). When the number of features
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Figure 18 Integrated confusion matrices of emotion classification for
set P3, Ngmix = 6, Niter = 1200.
obtained from analysis of the tested sentence is less than
70, the resulting score produced by the GMM classifier is
unstable, non-repeatable, and classification contains a lot
of errors. It means that the minimum limit for proper
function is approx. 90 signal frames of the processed input
speech signal. Also the limitation of the length of the fea-
ture vector has a great influence on the correctness as well
as the stability of the emotion classification (see Figure 14).
Results of this analysis show that the GMM classification
using feature vectors with the length less than 12 values
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Table 17 Comparison of GMM emotion classification error rate for sentences from EMO-DB/CZ&SK speech corpora

Gender
type

Neutral Joy Sadness Anger

EMO-DB (%) CZ&SK (%) EMO-DB (%) CZ&SK (%) EMO-DB (%) CZ&SK (%) EMO-DB (%) CZ&SK (%)

Male 7.41 28.21 0 17.86 0 25.64 5.71 43.24

Female 0 10.26 6.06 27.27 0 34.48 11.63 43.59
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produces unacceptable error rate and this classifier
would practically be inapplicable. Incorrectly chosen
GMM model of gender type which is subsequently ap-
plied for emotion classification has no influence on sta-
bility but practically causes large error rate of emotion
classification. It is documented in Figure 15—the emo-
tion class was evaluated wrong in all cases, when the
gender type was set badly.
Finally realized comparison of emotion classification

results for sentences from the EMO-DB speech corpus
and the Czech & Slovak fairy tales shows that better
results were achieved in the case of the EMO-DB. It
holds also for obtained gender recognition error rate.
The best results were achieved for the emotions of sad-
ness and joy, the worst result was received for the emo-
tion of anger (see values in Tables 17 and 18). It is not
entirely consistent with the results obtained from other
authors using the EMO-DB database for GMM emotion
recognition [37-39] as well as those published in more
complex comparison studies [40,41]. Usually, the best rec-
ognized emotions are anger and sadness followed by neu-
tral state, the emotion joy generates the most confusion
being recognized as anger [39]. Similar results were also
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Figure 19 Confusion matrices of gender recognition for sentences fro
set P3, Ngmix = 3, Niter = 1000.
achieved in classifications accomplished in [33], where the
same emotional speech database was used. But these au-
thors use features different from ours. For GMM recogni-
tion, they apply the features consisting first of all of the
MFCC parameters, complemented with supra-segmental
ones (mean, maximum, and minimum values of F0, the
maximum steepness and dispersion of F0 [37], intensity,
low-pass intensity, high-pass intensity, etc. [40]).
For the Czech & Slovak database, the worst recognition

rate was obtained also for the emotional style of anger but
the best results were obtained for the neutral style. Using
the EMO-DB, the overall mean error rate of emotion clas-
sification for both genders was 3.85% and the total error
rate of male/female gender recognition was 3.94%. In the
case of the Czech & Slovak database, the emotion classifi-
cation error rate was 28.82% and the gender recognition
error rate was 12.42%. This can be caused by the fact that
our Czech & Slovak speech database is not balanced.

5. Conclusion
The performed experiments have successfully confirmed
that the chosen conception of the two-level architecture
of the whole GMM classifier is correct and the system is
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Table 18 Comparison of GMM gender recognition error
rate for sentences from EMO-DB/CZ&SK speech corpora

Error rate
(%)/gender

Male Female

EMO-DB CZ&SK EMO-DB CZ&SK

Minimum 0 1.82 0 1.58

Maximum 11.14 33.72 8.64 13.48

Mean 3.62 18.72 4.25 6.13
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functional if the gender of the voice is determined prop-
erly. A critical issue is a correct function of the first block
(the recognizer of the gender type) as the block of emotion
determination operates with two different models trained
for the male and the female voices. In the case of confu-
sion, it occurs that probability (score) of correct determin-
ation of emotion type is decreased. The chosen type of a
classifier is text-independent, i.e., it operates only with
data (features) obtained from a speech signal. Incorpor-
ation of the input text information as an additional criter-
ion for classification could help to increase the achieved
error rate of the whole system.
The performed analysis of the influence of the initial

parameters on creation and training of the GMM model
shows that there is a substantial influence of the number
of used mixtures in the context of the number of emo-
tions (genders) that are to be recognized—the number of
mixtures should be at least equal to the number of out-
put recognized emotional states (genders). On the other
hand, choice of the number of iterations has not great
weight when its order is about hundreds; the optimum
value is about 1,000.
The main point of our analysis consists in testing of

the influence of the used type of the feature vector on
the obtained GMM emotion recognition score. The aim
was to find out the best (optimum) feature set for GMM
emotion classification and gender recognition. However,
this choice is not universal—it is necessary to use a dif-
ferent type for gender recognition and emotion classifi-
cation. The set P3, evaluated as the best one, represents
a mix of supra-segmental, spectral, and CSF features
while later it appeared that the choice of the type of the
statistical function is not substantial—as a rule, it is
enough to use the basic statistical functions of mean or
median, and the standard deviation.
Because our GMM classifier was developed for emotion

recognition in continuous speech (sentences—not isolated
words), observed limitation of the minimum length of the
processed speech signal does not play essential role. In
addition, it is supposed [3] that in the short parts of speech
the emotions cannot adequately be expressed (excluding
the anger one with high negative emotional load).
The overall results replicate, to a certain extent, the

values obtained for individual blocks of the recognizer,
i.e., the increased error rate (recognition error) in the
case of the joy style for the male voice and the neutral
style for the female voice. The worst identified emo-
tional style is anger—it is assumed that it results from
incorrect recognition of the male voice (due to higher
F0 and other features for this emotion the male voice is
confused for the female voice) and consequently a badly
trained model is used for emotion recognition. Appar-
ently, a similar but opposite situation occurs in the case
of the emotion joy (i.e., the female voice is erroneously
determined as the male one), however, it does not mani-
fest so markedly.
In near future, we would like to supplement our

speech corpus with another three emotions (boredom,
surprise, and fear)—so that it would directly be compar-
able with the EMO-DB which we use as the reference
one and to carry out the extension of the GMM classi-
fier for these emotional states. Further, we want to im-
plement the block of the recognizer in the language C++
for real-time applications running under the Windows
(XP/Vista/Win7) platform. Later, we want to try an opti-
mized variant in the mobile device of the type PDA/
smartphone and Tablet.
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