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Abstract

It was recently shown that delta-sigma quantization (DSQ) can be used for optimal multiple description (MD) coding
of Gaussian sources. The DSQ scheme combined oversampling, prediction, and noise-shaping in order to trade off
side distortion for central distortion in MD coding. It was shown that asymptotically in the dimensions of the
resampling, prediction, and noise-shaping filters as well as asymptotically in the quantizer dimensions, all
rate-distortion points on the symmetric quadratic Gaussian MD rate-distortion function could be achieved. In this
work, we show that this somewhat theoretical framework is suitable for practical low-delay MD audio coding. In
particular, we design a practical MD audio coder with two descriptions and provide simulations on real audio data.
The simulations demonstrate that even when using low-dimensional noise-shaping, prediction, and resampling filters,
it is possible to obtain good quality audio in the presence of packet losses. Simulations on real audio reveal that,
contrary to existing designs, it is straightforward to obtain a large number of trade-off points between side distortion
and central distortion, which makes the proposed coder suitable for a wide range of applications.
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1 Introduction
There is a growing interest in achieving reliable stream-
ing of high-quality audio over networks for digital audio
broadcast services, internet radio, youtube, and similar
multimedia streaming services. High-quality streaming
can be achieved by using, e.g., error-correcting codes
and by allowing large delays, large bandwidths, or dedi-
cated/prioritized networks. However, for certain applica-
tions, long delays cannot be tolerated. For example, for
interactive services such as voice over IP or musicians
playing together via the internet, it is crucial that the
delay is kept at a minimum. Indeed, for the latter case,
it has been noted that delays less than 5 ms are often
required [1].
Conventional broadband connections in homes are

generally asymmetric in the sense that their downlink
capacity is much greater than their corresponding uplink
capacity. While this is good for common internet usage
such as browsing, it is not ideal for interactive high-
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quality streaming services, where instead a more sym-
metric strategy would be advantageous. To reduce the
required bandwidth for audio streaming services, it is
common to exploit efficient audio compression methods.
The de facto standard for lossy compression of music is
the family of advanced audio coding (AAC) algorithms,
which have been standardized by ISO and IEC as part
of the MPEG-2 and MPEG-4 specifications [2-4]. AAC is
used for audio compression for digital TV as well as digital
audio broadcast (DAB) in several countries. AAC achieves
better quality thanMP3 and allows for high sampling rates
and multiple channels [5]. It is based on the modified dis-
crete cosine transform (MDCT), which is able to provide
a high-frequency resolution by using long delays [5]. For
low-delay coding, transform coders are generally not as
efficient as parametric (model based) coders [6]. Recently,
low-delay parametric audio coders based on linear predic-
tion [6,7] and generalized noise-shaped quantization [8]
have been proposed. With such techniques, it is possible
to achieve delays less than 5 ms while maintaining high-
quality audio. In fact, even a few sample delays can be
achieved by compromising the efficiency of the perceptual
model [6-8].
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In order to achieve a certain degree of robustness
towards packet dropouts or channel failures, it is possi-
ble to use error-correcting codes. If the tolerable delay
or bandwidth is large enough, then these codes can be
extremely efficient. An alternative is to use joint source-
channel coding techniques, where a certain amount
of source redundancy is introduced to help the chan-
nel/source decoder at the receiving end. A particular case
is multiple description (MD) coding [9], where the source
is encoded into multiple (partially) redundant packets,
which can be decoded independently of each other. More-
over, if several packets are received, then they are able
to refine each other and, thus, improve the reconstruc-
tion quality. MDs generalize the concepts of repetition
coding and layered source coding (i.e., successive refine-
ments), where in the former case, a packet is simply
duplicated, and in the latter case, packets are (nearly)
independent of each othera. In [10], it was shown that a
tolerable music quality could be achieved even on unreli-
able networks having more than 30% packet dropouts by
using MDs audio coding between two and four descrip-
tions (packets). The MD audio coding schemes pre-
sented in [10] and [11] are both based on transform
coders and therefore not able to achieve ultra low delay.
Recently, a predictive strategy for high-quality audio MD
coding was presented in [12] and a noise-shaped strat-
egy in [8], which are both able to achieve very low
delays.
Common for existing MD audio coders are that the

audio coding part and the MD part are somewhat sepa-
rated and only a few trade-off points on the operational
MD rate-distortion function can be obtained. On the
other hand, in this paper, we use a unified strategy based
on predictive coding and noise shaping that allows an
almost continuous trade-off between rate and distortions
of the descriptions. In particular, in [13], an inherent
connection between oversampled delta-sigma quantization

and MD coding for Gaussian sources was discovered.
By oversampling the signal, a certain amount of redun-
dancy is introduced, and by proper noise shaping of the
quantization noise a trade-off between the reconstruction
qualities due to receiving different subsets of descriptions
is possible, cf. Figure 1. The work in [13] treated white
Gaussian signals and noise shaping and was extended to
the case of predictive coding and noise shaping of colored
Gaussian sources in [14,15].
In this paper, we construct an efficient high-quality low-

delay MD coder based on the principles of oversampling,
predictive coding, and noise shaping. Specifically, we uti-
lize the theoretic construction proposed for Gaussian
sources in [13-15] and show that it naturally extends to
real audio signals. We restrict attention to two descrip-
tions and a symmetric setup, where the rate-distortion
performance of the individual descriptions are identi-
cal. It is worth emphasizing that contrary to Gaussian
source coding, it is crucial in audio coding that the tem-
poral envelope is kept smooth when filter parameters
are updated. This complicates the transition from theory
to practice. The contributions of this paper are there-
fore dedicated to the practical design of the coder, and
we refer the reader to the aforementioned literature for
the theoretical foundations. The present paper discusses
the design of filters for resampling, prediction, and noise
shaping, in addition to coding the parametersb. The pro-
posed design is evaluated on several audio signals sampled
at 48 kHz, and the performance due to receiving different
subsets of descriptions is assessed. Moreover, the pro-
posed coder is simulated in an environment with packet
losses. It is shown that good quality music is achievable
with delays less than 5 ms.
In comparison, the low-delay noise-shaped coder in [8]

reveals a significant reduction of the coding rate, which
is mainly due to the inclusion of individual description
prediction loops.

Figure 1 Schematics of the MD noise-shaped predictive encoder [13-15].
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2 Background
The MD predictive noise-shaped coder proposed in
[13-15] consists of sampling rate conversion, encoders,
noise-shaping, and decoding. We briefly describe these
components below and refer to [13-15] for further details.

2.1 Sampling rate conversion
In the MD noise-shaped predictive coder proposed in
[13-15], the original signal x(n) is first oversampled by a
factor of two to obtain xup(m) as shown in Figure 1. We
use the indices n and m to refer to samples of signals in
the original and upsampled domains, respectively. Sam-
pling rate conversion of discrete-time audio signals has
been widely studied in the audio engineering literature, cf.
[16-18] to name a few. Theoretically, if the signal is ban-
dlimited, then changing its sampling rate is a reversible
process, as long as the resulting sample rate is greater than
the Nyquist frequency of the signal, i.e., greater than twice
the signals’ bandwidth.

2.2 Encoder
The upsampled signal is split into even and odd sam-
ples (see Figure 1), and the even (odd) stream is fed to
the even (odd) encoder. Each encoder can be cast in the
framework of ‘noisy’ single-description prediction, which
in case of Gaussian signals was treated in [19]. In [19], it
was shown that optimal encoding is achieved with mini-
mum mean square error (MMSE) prediction. This result
was used in [14] to show that the optimal encoders should
beMMSE prediction filters for the colored ‘even’ and ‘odd’
Gaussian signals, respectively. Interestingly, in [15], it was
furthermore suggested that the encoders could actually
be any existing standard compression schemes. Indeed, in
[20], it was proposed to combine delta-sigma quantization
with standard JPEG coding schemes to form compres-
sion algorithms for MD coding of still images. Similarly,
in this work, we could choose to use e.g., standard AAC
compression schemes. A key motivation for choosing a
standard coder is of course the fact that one avoids the
trouble of having to design an efficient audio coder, but
perhaps more interestingly, the individual descriptions
would then also be completely standard-compliant with
existing technology. Only if both descriptions are to be
jointly considered at the receiving end, the decoder needs
to be slightly altered.

2.3 Noise shaping
We now turn our attention to the feedback filter whose
purpose is to perform noise-shaping of the coding noise
[21]. As illustrated in Figure 1, the coding noises eeven(n)

and eodd(n) from the two encoders are interlaced to form
the error signal e(m) having the same sampling frequency
as xup(m). The error signal e(m) is filtered by the noise-

shaping filter and then added to xup(m) and thereby
closing the feedback loop. The purpose of the noise-
shaping filter in conventional oversampled quantization
(e.g., delta-sigma quantization) is to shape the noise away
from the in-band spectrum and thereby reduce the energy
of the noise, which is imposed upon the signal [21]. In
MD coding, on the other hand, the purpose is to shape the
noise so that a proper trade-off is achieved regarding the
distortion due to receiving a single packet versus receiv-
ing both packets [13]. Indeed, it is illustrative to consider
what happens when only a single packet is received. In this
case, since we split the signal into even and odd samples,
we have in fact downsampled the oversampled signal by a
factor of two (without first applying an anti-aliasing filter).
But since the source spectrum only covers half the fre-
quency spectrum of xup(m) (due to oversampling), there
will not be any source aliasing. On the other hand, due
to interlacing the noise samples, the noise spectrum cov-
ers the full frequency range, see Figures Eight and Twelve
in [13] for an illustration of the noise spectra. Thus, the
noise spectrum will be aliased. In particular, the out-of-
band noise spectrum will be aliased and superimposed
upon the in-band source + noise spectrum. The effect is
that nomatter how the noise is shaped, the full noise spec-
trum will be imposed upon the source spectrum. On the
other hand, if both packets are received, the oversampled
signal can be recovered without noise aliasing and, thus,
it is possible to apply a low-pass filter and get rid of the
out-of-band noise. To summarize, on one hand, we would
like to minimize the total noise energy in order to reduce
the distortion when receiving only a single packet. On the
other hand, we would like to put as much noise in the
high-frequency spectrum and thereby reduce the amount
of noise in the in-band spectrum, in order to minimize the
distortion when receiving both packets. It is also interest-
ing to note that the entropy rate of the quantizer, under
high-resolution conditions, is independent of the noise-
shaping filter and given by the ratio of the power σ 2

X of
the input signal and the power of the excitation noise (the
input e(m) to the noise-shaping filter), i.e.,

R ≈ 1
2
log2

(
σ 2
X

σ 2
e

)
.

2.4 Decoder
At the receiver, the received signals are decoded as shown
in Figure 2. If only a single packet is received, the corre-
sponding decoder is applied. If both packets are received,
the even and odd signals are first individually recon-
structed and then interlaced to form an approximation
of xup(m). Then, a low-pass filter is applied to get rid of
the out-of-band noise, and the signal is downsampled by
two. We note that there is no noise-shaping loop at the
decoder.
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Figure 2 Schematics of the MD noise-shaped predictive decoder [13-15].

3 Practical construction of theMD audio coder
In the following subsections, the design of the individual
parts of the coder is described.

3.1 Sampling rate conversion
Ideal oversampling can theoretically be obtained by
inserting zeros between every sample of the original signal
and then apply an ideal low-pass filter (i.e., convolution
by an infinite-length sinc function). The resulting signal
xup(m) has twice as many samples as x(n), and form = 2n
and m even, we have that xup(m) = x(n) (if we ignore
possible integer time-delays due to filtering). Thus, we
recover the original signal simply by taking all the even
samples of xup(m). The odd samples of xup(m) are phase-
shifted versions of x(n). Of course, in practice, we cannot
use ideal low-pass filtering since this will result in pro-
hibitively large delays. Due to using finite filters, a certain
degree of aliasing is unavoidable.
In this work, we use an FIR filter h(z) with linear phase

obtained via the windowmethod (Chebyshev) as the inter-
polation filter [22]. Specifically, we insert zeros between
every sample of x(n) and apply the filter to obtain the
upsampled signal xup(m) [16]. Figure 3 shows the per-
formance in MSE as a function of the filter length. The

Figure 3 Error due to resampling using finite length filters.

solid lines are for a unit-variance audio signal ‘Abba’c and
the dashed lines (with circles) are for a zero-mean unit-
variance white Gaussian signal. As foreshadowed above,
the error on the even samples due to resampling is negli-
gible for filter orders greater than N = 18. On the other
hand, the odd samples are highly affected by the resam-
pling operation, which is due to frequency aliasingd. An
estimate of the power spectral density (PSD) of the Abba
signal is shown in Figure 4. It is clear that it is not flat,
and, thus, the impact of aliasing is much less than for the
Gaussian case.

3.2 Closed-loop prediction
Let us momentarily forget about the feedback loop shown
in Figure 1 (since this will be treated in the following sub-
section) and simply consider that xup(m) is to be split into
its even and odd samples, which are denoted by zeven(n)

and zodd(n) in Figure 1. For clarity, we have redrawn
the encoder with more details in Figure 5. The even sig-
nal zeven(n) is now fed into a compression algorithm
(encoder), and the compressed signal yeven(n) is transmit-
ted to the decoder. The odd signal zodd(n) is processed in

Figure 4 Estimate of the one-sided power spectral density of the
music signal Abba.
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Figure 5 Schematics of the complete MD noise-shaped predictive encoder [14,15].

a similar way. Thus, the even samples then constitute one
of the packets in the MD coder, and the odd samples con-
stitute the other packet. The number of samples to include
in each packet depends upon several factors and will be
treated in the sequel.

3.2.1 Linear predictive coding
The encoders will in this work be given by forward lin-
ear prediction coding. In particular, in order to encode the
even signal zeven(n), we design a linear predictor based on
the even unquantized samples zeven(n). We use a forward
linear predictor, which as usual is obtained by minimiz-
ing the prediction error in the least squares sense, cf. [23]
for details. The predictor performs closed-loop predic-
tion, i.e., the quantizer is contained within the prediction
loop [19]. To do so, we consider a block of samples and
use these for estimating the prediction filter. The filter
needs to be encoded and transmitted to the decoder. Thus,
there is a trade-off between the rate required for coding
the filter coefficients, the update rate of the filter, and the
rate required for coding the prediction error. A general
approach to choosing a proper rate distribution between
model parameters and signal was considered in [24].

3.2.2 Coding the prediction error
Even though the prediction filters are updated only once
per block of samples, quantization of the prediction error
is performed on a sample-by-sample basis. Thus, we need
to use scalar quantization, and for simplicity, we will use
scalar uniform quantization [25]. We therefore only need
to design the proper step-size � of the quantizer. To
obtain the bitrates of the coder, we first run the predic-
tor using a fixed step size � on a large data set of mixed
audio having a sampling frequency of 48 kHz. Then, a
scalar (Huffman) entropy coder is designed on the quan-
tized output of the predictor [26]. Thus, we are using a

static and memoryless entropy coder. Finally, the predic-
tor is tested on an audio segment (in this case, it consists
of jazz music), which is not part of the training material.
Figure 6 shows the resulting coding rate due to using a
scalar uniform quantizer with a step-size � followed by a
scalar (Huffman) entropy coder. The corresponding MSE
due to changing the step size of the quantizer is shown
in Figure 7. In these simulations, we update the two lin-
ear predictive coding (LPC) filters once in each block of
128 samples. Since the audio signals have a sampling fre-
quency of 48 khz, then if the bitrate is say 5 bits/sample,
the resulting rate for coding the prediction error is 240
kbps per packet.

3.2.3 Predictor order
In predictive audio coding, it is common to use predictors
of orders greater than 10 [6]. However, in our case, the

Figure 6 Bitrates due to forward linear prediction followed by
encoding of the prediction error.
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Figure 7MSE due to forward linear prediction and encoding the
prediction error.

outer loop introduces noisy feedback, which to a certain
degree reduces the predictor capabilities. For example, let
� = 0.01, and construct a 10th-order noise-shaping fil-
ter using the design in Equation 1 provided in the next
subsection. Then, the performance in terms of rate and
distortion of the predictor as a function of its order is
shown in Figures 6 and 7. The bitrates illustrated in the
figures correspond to the rates required for encoding
the prediction residuals. The actual predictor coefficients
have not been coded in these simulations. The simulations
are repeated for a wide range of predictor orders. It may be
noticed that increasing the order from 1 to 5 significantly
decreases the required bitrate for coding the residual,
whereas using an order above 10 does not lead to signifi-
cant improvements. On the other hand, the resultingMSE
is approximately unaffected by the predictor order.

3.3 Noise shaping
The purpose of the noise-shaping filter is to shape the
quantization noise appropriately in the frequency domain
[21]. Ideally, the frequency response of the noise-shaping
filter should be a two-step function, which in the in-band
frequency range has power δ−1 and in the out-of-band
frequency range has power δ [13]. Thus, if both descrip-
tions are received, one is able to filter out the out-of-band
noise and thereby obtain a resulting noise power that is
proportional to δ−1. On the other hand, if only a single
description is received, then due to aliasing, the resulting
noise power is proportional to δ + δ−1. Furthermore, fix-
ing the levels as δ and δ−1, respectively, guarantees that
their geometric mean is one, which basically fixes the cod-
ing rate while allowing one to trade-off side distortion for
central distortion [13].
In practice, we need to approximate the two-step

response using a finite length feedback filter. The optimal

design of the noise-shaping filter c(z) for any filter order p
was given in [13] as:

c = − (G + 2λI)−1 g (1)

where c = (c1, . . . , cp)T are the filter coefficients, g =
(sinc(1/2), sinc(2/2), . . . , sinc(p/2))T , andG is the matrix
with entries Gi,j = sinc((i − j)/2), i, j = 1, . . . , p. In (1),
λ denotes the trade-off between central and side distor-
tion. Choosing λ = 1 indicates that the central and side
distortion are given the same weight. In this case, the cen-
tral distortion will on average be around 3 dB smaller than
the side distortion. On the other hand, choosing λ � 1
reduces the central distortion at the price of increasing the
side distortion. This is illustrated in Figures 8 and 9 for the
case of p = 10 and p = 30, respectively. In these simu-
lations, � ∈ {0.01, 0.05, 0.1}. It may be noticed that larger
� yields larger distortions as expected. It can also be seen
that for large λ, the central distortion is approximately
−10 log10(λ) dB smaller than the side distortion.

3.3.1 Coding the predictor coefficients
There exists a vast amount of literature on efficient encod-
ing of LPC coefficients, cf. [27] and the references therein.
Here, we will use a common approach and transform the
LPC coefficients to line spectral frequencies (LSF) coef-
ficients [28]. This is done partly due to the fact that it
is easy to guarantee stability of the inverse filter in the
LSF domain and partly due to fact that they are easier to
encode efficiently [29]. From Figure 6, it is clear that using
a filter order above 10 does not significantly decrease the
coding rate for the prediction error over what is possible
with a 10th order filter. We therefore proceed using a 10th
order predictor, which is first converted to 10 LSF coeffi-
cients. The 10 LSF coefficients are then quantized using
a scalar quantizer with a step size of π/64. The quantized
coefficients are then split into three subvectors of length
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Figure 8 Performance for the Abba signal when using a noise
shaping filter of order p = 10.
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Figure 9 Performance for the Abba signal when using a noise
shaping filter of order p = 30.

3, 3, and 4, respectively. Finally, each subvector is inde-
pendently vector Huffman coded. The resulting bitrates
are shown in Tables 1 and 2, where LSFi denotes the ith
subvector. In these simulations, the window size of the
predictor is 128 samples. It may be noticed from Table 2
that the average coding rate is approximately 20.8 bits per
LSF vector. Since the sampling frequency is 48 kHz and
the block size is 128 samples, the resulting average bitrate
for coding the LSF vectors is 7.8 kbps per packet.

3.4 Decoding
Decoding the received audio packets is more challenging
than in conventional audio coding since the encoder does
not know which packets (if any) the decoder receives. In
fact, since the encoder forms two packets, the decoder
will at each time instance enter one of 16 different states,
which depends upon its previous state, see Table 3. If the
decoder remains in one of the states on the ‘diagonal’ in
Table 3, i.e., states 1, 6, 11, or 16, it is straightforward to
guarantee a smooth transition between blocks. The prob-
lem occurs when the decoder switches to the other states.
We solve these issues in the sequel.

Table 1 Bitrates for coding the (even/odd) subvectors of
the LSF vector

Audio LSF1 LSF2 LSF3

Jazz 6.63 / 6.62 6.50 / 6.47 5.63 / 5.58

Harpsichord 6.77 / 6.77 7.29 / 7.25 8.11 / 8.14

Speech 7.99 / 8.00 7.35 / 7.32 6.97 / 7.01

Pop 6.98 / 6.98 5.80 / 5.78 5.26 / 5.23

Rock 6.92 / 6.93 7.86 / 7.85 7.85 / 7.86

Average 7.06 / 7.06 6.96 / 6.93 6.77 / 6.76

LSFi denotes the ith subvector.

Table 2 Bitrates (in bits/vector) for coding the (even/odd)
LSF vectors

Audio LSF vector

Jazz 18.76 / 18.67

Harpsichord 22.17 / 22.17

Speech 22.32 / 22.33

Pop 18.04 / 17.99

Rock 22.64 / 22.63

Average 20.79 / 20.76

3.4.1 State 1
This is the case with no packet dropouts. The decoder
simply processes the two descriptions as described in
Subsection 2.4. Both descriptions are first individually
reconstructed, then interlaced, and finally downsampled
to produce a single high-quality reconstruction. Thus, the
states of the LPC filters at the side decoders as well as
the state of the low-pass filter at the central decoder are
all properly updated, which results in smooth transitions
between consecutive blocks.

3.4.2 States 2 and 3
Assume that the decoder is in state 1 (i.e., it has received
both packets) but then in the next time slot it only receives
the odd packet and thereby enters state 3e. Then, no new
even LPC filter coefficients are received, and the even LPC
filter state (memory) is therefore not properly updated.
The odd samples are phase-shifted by a 1/2 sample com-
pared to the original signal, and the odd predictor is
therefore not identical to the even predictor. Moreover,
since both packets are not received, the low-pass filter at
the central decoder is not applied and its state (memory)
is therefore not updated.
Figure 10 illustrates the effect on the reconstructed sig-

nal due to the decoder switching from state 1 to 3 at
sample 128 and from state 3 to 1 at sample 640. In this
example, both packets have been received prior to the
frame beginning at the first vertical line after which the
even packet is lost and only the odd packet is therefore
received. The second vertical line denotes the point where
both packets are again received. In order to construct
the central reconstruction and thereby make sure that the
state of low-pass filter at the central decoder is updated,

Table 3 The 16 (next) states the decoder can enter
depending upon the decoders (current) state information

Current/next Central Even Odd None

Central 1 2 3 4

Even 5 6 7 8

Odd 9 10 11 12

None 13 14 15 16
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Figure 10 Illustration of the boundary effects due to the decoder
switching.

a naive approach is simply to replace the lost packet by
zeros. However, since this effectively means that only a
single packet is used, the central reconstruction suffers
from a decrease in energy as can be seen in Figure 10 (the
dash-dotted line).
An obvious solution is to scale the received Odd packet

by two and thereby counteract the loss of energy. Unfortu-
nately, while less severe, an audible notch around sample
152 is still present in the reconstructed signal (illustrated
by the dashed line in Figure 10), see also Figure 11. To
solve the issue, we let the even packet be equal to the
odd packet, which yields a smooth boundary transition
(illustrated by the black line in Figure 10). In this case,
the even LPC filter states are updated with sample values
closer to the desired. Interestingly, while the latter method
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Figure 11 Same setup as in Figure 10 but here zoomed-in on
small interval.

(packet copying) yields more visually and acoustically
pleasing boundary transitions, the former method (zero-
ing even packet and scaling odd packet) actually results in
a smaller overall MSE, i.e., -38.8 versus -38.3 dB, respec-
tively, for the case of 1% packet losses. In the example
described above, we used LPC filter orders of 5, predic-
tion block sizes of 512 samples, a resampling filter order
of 200, noise-shaping filters of order 10, λ = 1/100,
and � = 1/100.

3.4.3 State 13
In this state, all buffers are zero, which corresponds to the
initial state of the system. The decoder is then operated as
in state 1.

3.4.4 States 14 and 15
As was the case for state 13, all buffers are also zero here.
If the current state is 14 (15), the decoder is then in the
next state operated as in state 2 (3).

3.4.5 States 4, 8, 12, and 16
In these states, no packets are received by the decoder. We
then simply replace both packets by zeros and update the
states of the LPC filters and low-pass filter accordingly.

4 Simulation study
In this section, we provide simulation studies of the pro-
posed coder. We simulate an environment with packet
losses of 0.1%, 1%, and 10%. We restrict the quantization
step sizes to � ∈ {0.01, 0.05}, the block size upon which
the predictor is used to {64, 128, 256, 512, 1024, 2048}, and
the LPC filter order to plpc ∈ {5, 10}. Finally, in all sim-
ulations, the low-pass filters used for resampling are of
order 200, the noise-shaping filter is of order 10, and the
noise-shaping ratio λ = 0.01.

4.1 Study 1
In this study, we quantize the residual but we do not
quantize the predictor (LPC) coefficients. The test data
consists of five audio segments containing rock, jazz, pop,
speech, and harpsichord music, respectively. Each seg-
ment is sampled at 48 kHz and with a duration of 10 s.

Table 4 Relationship between the ITU-R 5-grade scale and
ODG [30]

Impairment ITU-R 5-grade scale ODG

Imperceptible 5.0 0.0

Perceptible but not annoying 4.0 -1.0

Slightly annoying 3.0 -2.0

Annoying 2.0 -3.0

Very annoying 1.0 -4.0
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Table 5 Average ODG at 0.1% packet losses

Block size 64 128 256 512 1,024 2,048

� = 0.01

plpc = 5 -0.77 -0.82 -0.81 -0.22 -0.14 -0.20

plpc = 10 -0.18 -0.21 -0.21 -0.20 -0.16 -0.18

� = 0.05

plpc = 5 -1.54 -1.44 -1.43 -1.02 -0.99 -1.04

plpc = 10 -1.06 -0.95 -0.95 -1.04 -1.06 -1.12

We use objective difference grades (ODG) instead of MSE
in order to better reflect the perceived quality of the
reconstructed audio signals. For an explanation of the
relationship between the ITU-R 5-grade scale and ODG,
see Table 4 and [30]. To obtain the ODG scores, we use
a Matlab implementation of the PEAQ standard [31]. The
resulting ODG are shown in Tables 5, 6, and 7. In the
tables, we have averaged the ODG scores over all audio
segments.
From the tables, it is clear that decreasing the packet loss

rate or the step size of the quantizers increases the quality
as expected. It is also interesting to note that using a longer
block size appears to improve the performance.

4.2 Study 2
We now quantize as well as entropy code the residual and
the LPC coefficients and will therefore be able to obtain
bitrates as well as ODG scores. For training the entropy
coders, we use a collection of different music genres con-
stituting about 5 min of audio sampled at 48 kHz. The
test data is the same as above and is not part of the train-
ing data. The resulting bitrates (expressed in bits/sample)
for the even and odd descriptions are shown in Figure 12.
The corresponding ODGs are shown in Figures 13 and
14 for � = 0.05 and � = 0.01, respectively. Interest-
ingly, the bitrate (per sample) as well as the ODG are
improving as a function of the block size upon which the
predictor is applied. Intuitively, one would think that a
fixed-order predictor would be better on shorter segments
of the signal. We ascribe this phenomenon to the fact that
the performance of the current predictor depends upon

Table 6 Average ODG at 1% packet losses

Block size 64 128 256 512 1,024 2,048

� = 0.01

plpc = 5 -0.99 -0.94 -0.40 -0.46 -0.43 -0.37

plpc = 10 -0.42 -0.43 -0.32 -0.35 -0.36 -0.34

� = 0.05

plpc = 5 -1.87 -1.81 -1.73 -1.32 -1.17 -1.09

plpc = 10 -1.50 -1.39 -1.23 -1.28 -1.25 -1.16

Table 7 Average ODG at 10% packet losses

Block size 64 128 256 512 1,024 2,048

� = 0.01

plpc = 5 -2.77 -2.16 -1.20 -0.87 -0.60 -0.60

plpc = 10 -2.61 -1.88 -1.45 -1.08 -0.72 -0.67

� = 0.05

plpc = 5 -3.31 -3.00 -2.49 -2.44 -2.19 -2.16

plpc = 10 -3.25 -2.97 -2.93 -2.85 -2.61 -2.35

the predictor applied in the previous block due to the fil-
ter’s memory (i.e., we reuse the state of the past predictor).
Thus, for short blocks, a substantial part of the prediction
of the block is influenced by the history of the previous
predictor. This phenomenon is particularly pronounced in
the case of large packet-loss rates, where the ODG is sig-
nificantly improved by going from block sizes of, e.g., 64
to 512 samples.

4.3 Comparison to existing works
It is interesting to compare the performance of the pro-
posed coder to the noise-shaped MD coder presented in
[8]. The coder in [8] is based upon the principle of moving
horizon (MH) estimation, which is also known as model
predictive control when applied in closed-loop control
[32]. The scheme in [8] does not use source prediction,
and it is therefore expected to performworse than the pro-
posed coder, which combines noise shaping with source
prediction. It is also important to note that the scheme in
[8] is of ultra low delay, whichmeans that it can operate on
small block sizes. Indeed, in the present simulation, we use
a block size of one sample. Instead of oversampling, the
MDs in [8] are based on the index assignment construc-
tion derived in [33]. The simulation results are presented
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Figure 12 Bitrates as a function of predictor block size and for
λ = 1/100.
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Figure 13 ODG as a function of predictor block size for � = 0.05
and for λ = 1/100.

in Figure 15. The jazz music signal has been used, and
two packet loss scenarios have been simulated, a high loss
(10% packet losses) and a low loss (1% packet losses) sce-
nario. For the proposed coder, we vary � in the interval
0.01 to 0.05 in steps of 0.01. The total bitrate consists of
the rates required for coding the LSF coefficients as well as
the prediction residual. It can be see in the figure that the
proposed coder is able to efficiently exploit its prediction
loops and thereby reduce the bitrate over what is possible
with the MH design. In these simulations, the proposed
coder uses a block size of 64 samples for the prediction.
Further improvement is possible by increasing the block size.

5 Conclusions
We presented a practical design of a low-delay MD
audio coder, which is able to provide a certain degree of
robustness towards packet losses. The proposed coder

Figure 14 ODG as a function of predictor block size for � = 0.01
and for λ = 1/100.

Figure 15 ODG as a function of bitrates for the proposed DSQ
scheme and the MD scheme of [8].

combined oversampling and noise shaping with source
prediction. The oversampling process creates two source
descriptions in order to counteract possible packet
losses on the network. The prediction loop removes
source redundancy and thereby reduces the coding rate,
whereas the noise-shaping process controls the dis-
tortion due to receiving subsets of the descriptions.
The quantized prediction residual was entropy coded
using a static and memoryless Huffman coder. In prac-
tical simulations on real audio, it was shown that it
is enough to use LPC filters of order 10 (estimated
from blocks of 64 samples), noise-shaping filters of
order 10, resampling filters of order 200, and bitrates
of approximately 4 bits per sample (per description) in
order to achieve good quality (ODG better than -1)
music in the presence of 1% packet losses.

Endnotes
aIn layered source coding, the source is usually split

into a base layer and at least one refinement layer. While
the base layer can be used by itself, the refinement layers
are usually no good without the base layer.

bFor reproducibility, the complete source code for the
proposed coding scheme is electronically available at
http://kom.aau.dk/~jo.

cThe audio signal ‘Abba’ is a 10-s clip of the song ‘Head
Over Heals’ by Abba - sampled at 44.1 kHz.

dIn order to correctly estimate the error, we need to
correct the phase shift of the odd samples. This is done
by once more filtering the odd samples with the same
filter. Of course, for subjective listening tests, we do not
need to correct the phase.

eThe effect of receiving different numbers of
descriptions from frame to frame, corresponds in some
sense to (noisy) non-uniform sampling in MDs, cf. [34].

http://kom.aau.dk/~jo
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