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Abstract

standard feature extraction techniques.

The paper describes an auditory processing-based feature extraction strategy for robust speech recognition in
environments, where conventional automatic speech recognition (ASR) approaches are not successful. It incorporates
a combination of gammatone filtering, modulation spectrum and non-linearity for feature extraction in the
recognition chain to improve robustness, more specifically the ASR in adverse acoustic conditions. The experimental
results with standard Aurora-4 large vocabulary evaluation task revealed that the proposed features provide reliable
and considerable improvement in terms of robustness in different noise conditions and are comparable to those of

Introduction

Present technological advances in speech processing sys-
tems aim at providing robust and reliable interfaces for
practical deployment. Achieving robust performance of
these systems in adverse and noisy environments is one
of the major challenges in applications such as dictation,
voice-controlled devices, human-computer dialog sys-
tems and navigation systems. Speech acquisition, process-
ing and recognition in non-ideal acoustic environments
are complex tasks due to presence of unknown additive
noise and reverberation. Additive noise from interfering
noise sources and convolutive noise arising from acous-
tic environment and transmission channel characteristics
mostly contribute to the degradation of speech intelligi-
bility as well as the performance of speech recognition
systems. This article addresses the problem of achieving
robustness in large vocabulary automatic speech recogni-
tion (ASR) systems by incorporating principles inspired by
cochlea processing in the human auditory system.

The human auditory processing system is a robust front-
end for speech recognition in adverse conditions. In the
recently conducted PASCAL CHiME challenge [1], which
aimed at source separation and robust speech recogni-
tion in noisy conditions similar to that of daily life, the
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performance of a human was much better than that of
the ASR standard baseline for different signal-to-noise
ratios (SNRs). As seen from Figure 1, the performance of a
human is more robust and consistent than the ASR base-
line. Further, the performance of both ASR baseline and
human improved in line with the increase in SNR. This
plot shows how susceptible the present systems are com-
pared with a human listener with latest noise experimental
setup.

The degradation of recognition accuracy for ASR sys-
tems in noisy environments is mostly due to the dis-
crepancy between training and testing conditions. The
training data are recorded in clean conditions, and
the accuracy gets degraded when it is tested against
data acquired in noisy conditions. Various speech signal
enhancement, feature normalization and model param-
eterization techniques are applied at various phases of
processing to reduce the mismatch between training
and testing conditions [2,3]. Spectral subtraction-, Wiener
filtering-, statistical model- and subspace-based speech
enhancement techniques aim at improving the quality of
speech signal captured through a single microphone or
microphone array [4,5]. Feature normalization attempts
to represent parameters that are less sensitive to noise
by modifying the extracted features. Common techniques
include cepstral mean normalization (CMN) which forces
the mean of each element of the cepstral feature vec-
tor to be zero for all utterances. Other variants include
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Figure 1 Comparison of performance accuracy for human and ASR baseline for different SNRs.

mean-variance normalization (MVN), cepstral mean sub-
traction and variance normalization (CMSVN) and rel-
ative spectral (RASTA) filtering [2,6]. Model adaptation
approaches modify the acoustic model parameters’ match
with the observed speech features [4,7].

The auditory system-based techniques have been used
in speech recognition to improve the robustness [8-15].
Examples of non-uniform frequency resolution in popular
speech analysis techniques include Mel frequency-based
features and perceptual linear prediction which attempt to
emulate human auditory perception. The gammatone fil-
ter bank with non-uniform bandwidths and non-uniform
spacing of center frequencies provided better robustness
in adverse noise conditions for speech recognition tasks
[12-15].

Another important characteristic, the modulation spec-
trum of speech, represents low temporal modulation
components and is important for speech intelligibility
[16,17]. Similar to the perceptual ability of human audi-
tory system, the relative prominence of slow temporal
modulations is different at various frequencies. The gam-
matone filter bank-derived modulation spectral features
have shown to improve the robustness for far-field speaker
identification [18]. Our previously described auditory-
based modulation spectral feature is a combination of
gammatone filtering and modulation spectral features for
robust speech recognition [19].

The present paper describes an alternate approach, in
which the gammatone filtering, non-linearity and modu-
lation spectrum for feature extraction are combined. The

enhanced speech signal improved the accuracy of the sys-
tem by reducing the sensitivity. The features derived from
the combination are used to provide robustness, partic-
ularly in the context of mismatch between training and
testing in noisy environments. The studied features are
shown to be reliable and robust to various noises for
a large vocabulary task. For comparison purposes, the
recognition results obtained by using conventional fea-
tures are tested, and the usage of the proposed features is
proved to be efficient.

The paper is organized as follows: Section Related
work gives an overview of the auditory-inspired features
including gammatone filter bank processing, modu-
lation spectrum and non-linearity processing. Section
Auditory processing-based features describes the metho-
dology for feature extraction. Section Database description
and experiments presents database description and exper-
iments. Section Recognition results discusses the results,
and finally, Section Conclusions concludes the paper.

Related work

Most state-of-the-art ASR systems perform far below the
human auditory system in the presence of noise. Auditory
modeling, which simulates some properties of the human
auditory system, has been applied to speech recognition
systems to enhance robustness. The information coded
in auditory spike trains and the information transfer pro-
cessing principles found in the auditory pathway are used
in [20]. The neural synchrony is used for creating noise-
robust representations of speech. The model parameters
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are fine-tuned to conform to the population discharge
patterns in the auditory nerve which are then used to
derive estimates of the spectrum on a frame-by-frame
basis. This was extremely effective in noise and improved
performance of the ASR dramatically. Various auditory
processing-based approaches were proposed to improve
robustness, and in particular, the works described in
[13,20] were focused to address the additive noise prob-
lem. Further, in [21], a model of auditory perception
(PEMO) developed by Dau et al. [22] is used as a front
end for ASR, which performed better than the standard
Mel-frequency cepstral coefficient (MFCC) for an isolated
word recognition task. The auditory processing-related
principles attempted to model human hearing to some
extent have been applied for speech recognition [6,17].
The modulation spectrum is an important psychoacous-
tic property which represents a slow temporal modulation
which is significant for determining speech intelligibil-
ity. For improving robustness, the normalized modulation
spectra have been proposed in [23]. Similar work in the
context of large vocabulary speech recognition such as
noisy Wall Street Journal (New York, NY, USA) and GALE
task as reported in [24,25].

Feature extraction at different stages of the auditory
model output to determine which component has the
highest impact on the accuracy of recognition has been
studied [26]. The study also evaluated the contribution of
each stage in auditory processing for improving robust-
ness on the resource management database by using
SPHINX-III speech recognition system (Carnegie Mellon
University, Pittsburgh, PA, USA). Particularly, the effects
of rectification, non-linearities, short-term adaptation and
low-pass filtering were shown to contribute the most to
robustness at low SNRs.

In another study [8], the techniques motivated by
human auditory processing are shown to improve the
accuracy of automatic speech recognition systems. It was
shown that non-linearities in the representation, espe-
cially non-linear threshold effect, played important role
in improving robustness. Other important aspect was the
impact of time-frequency resolution based on the obser-
vations that the best estimates of attributes of noise are
obtained by using relatively long observation windows and
frequency smoothing provides significant improvements
to robust recognition.

In the context of speaker identification, auditory-based
features have been extensively studied [27]. The con-
trasts of MFCC and gammatone frequency cepstral coeffi-
cients (GFCC) have been compared, and the noise robust
improvements by GFCC has been explained in [28].

In our earlier studies [19], several auditory processing-
motivated features have shown considerably improved
robustness for both additive noise and reverberation.
However, all these above studies are confined to small
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and medium vocabulary tasks. In that direction, it is an
attempt to apply these techniques for large and complex
vocabulary task, namely Aurora-4, which is based on Wall
Street Journal database. Artificially added noises ranged
from SNRs of 5 to 15 dB with a variety of noises which
include babble, car, street and restaurant. The effects at
different stages of processing are analyzed to study the
contribution of each stage for improving robustness. A
preliminary version of our work was presented earlier
[29].

Auditory processing-based features

In this section, a general overview of gammatone fil-
ter bank-, non-linearity- and modulation spectrum-based
auditory features is presented.

Gammatone filter bank

Gammatone filters are linear approximation of physiolog-
ically motivated processing performed by the cochlea [30].
It is commonly used in modeling the human auditory sys-
tem and consists of a series of bandpass filters. In the
time domain, the filter is defined by the following impulse
response:

g(t) = at"'cos (2nfet + §) e Y, W

where 7 is the order of the filter, b is the bandwidth of the
filter, a is the amplitude, f; is the filter center frequency,
and ¢ is the phase.

The filter center frequencies and bandwidths are
derived from the filter’s equivalent rectangular bandwidth
(ERB) as detailed in [30]. In [31], Glasberg and Moore
relate center frequency and the ERB of an auditory filter as

4.37f.

ERB =247 ——+1 2

() ( 1000 © ) @

The filter output of the mth gammatone filter, X,, can
be expressed by

Xim(k) = x(k) * hy (k), @)

where /,, (k) is the impulse response of the filter.
The frequency response of the 32-channel gammatone
filter bank is as shown in Figure 2.

Non-linearity

The sigmoid non-linearity that represents physiologi-
cally observed rate-level non-linearity is the same as that
described in [26] and given by

w2

yi(t) = (4)
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where x; [t] is the ith channel log gamma spectral value,
and y; [¢] is the corresponding sigmoid compressed value.
The optimal parameters are derived from evaluation of
resource management development set in additive noise
at 10 dB [26].

Modulation spectrum

The long-term modulations examine the slow tempo-
ral evolution of the speech energy with time windows
in the range from 160 to 800 ms, contrary to the con-
ventional short-term modulations studied with time win-
dows of 10 to 30 ms which capture rapid changes of
the speech signals. The modulation spectrum Y, ( 1 g) is
obtained by applying Fourier transform on the running
spectra, obtained by taking absolute values |Y (¢,f)| at
each frequency, where Y (t,f) is the time-frequency rep-
resentation after short-time Fourier analysis, expressed as

Yo (f,8) = FT[IY (6:f) 1] le=1..1» (5)
where T is the total number of frames, and g is the
modulation frequency. The relative prominence of slow
temporal modulations is different at various frequencies,
similar to perceptual ability of human auditory system.
Most of the useful linguistic information is in the modula-
tion frequency components from the range between 2 and

16 Hz, with dominant component at around 4 Hz [16,17].
In [17], it has been shown that for noisy environments, the
components of the modulation spectrum below 2 Hz and
above 10 Hz are less important for speech intelligibility,
particularly the band below 1 Hz which contains mostly
information about the environment. Therefore, the recog-
nition performance can be improved by suppressing this
band in the feature extraction. Figures 3 and 4 show the
spectrogram, gammatonegram and gammatonegram with
non-linearity plots for two types of noise-corrupted utter-
ance. It can be observed that the gammatonegram with
non-linearity plots for babble and restaurant noises pro-
vide cleaner spectral information which is important for
speech recognition.

Database description and experiments
The Aurora 4 evaluation task provides a standard database
for comparing the effectiveness of robust techniques in
LVCSR tasks in the presence of mis-matched channels
and additive noises. It is a part of the ETSI standardiza-
tion process and derived from the standard 5k WSJ0 Wall
Street Journal database. It has 7,180 training utterances
of approximately 15 h and 330 test utterances with an
average duration of 7 s.

The acoustic data (both training and test) are also
available in two different sampling frequencies (8 and
16 kHz), compressed or uncompressed. Two different
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(C) gammatonegram (after non linearity)
Figure 3 Spectrogram (a), gammatonegram (b) and gammatonegram with non-linearity (c) plots for babble noise-corrupted utterance.

training conditions were specified. Under clean training
(clean train), the training set is the full SI-84 WSJ train
set processed with no noise added. Under multicondi-
tion training (multi-train), about half of the training data
were recorded using one microphone; the other half were
recorded under a different channel (also used in some

of the test sets) with different types of noise and differ-
ent SNRs added. The noise types are similar to the noisy
conditions in test.

The Aurora 4 test data include 14 test sets from two dif-
ferent channel conditions and six different added noises
(in addition to the clean environment). The SNR was

Frequency Frequency

Frequency

utterance.

(c) gammatonegram (after non linearity)

Figure 4 Spectrogram (a), gammatonegram (b) and gammatonegram with non-linearity (c) plots for restaurant noise-corrupted
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randomly selected between 0 and 15 dB on an utterance-
by-utterance basis. Six noisy environments and one clean
environment no noise (set01), car (set02), babble (set03),
restaurant (set04), street (set05), airport (set06) and train
(set07) are considered in the evaluation set which com-
prises 5,000 words under two different channel condi-
tions. The original audio data for test conditions 1 to
7 was recorded with a Sennheiser microphone (Lower
Saxony, Germany), while test conditions 8 to 14 were
recorded using a second microphone that was randomly
selected from a set of 18 different microphones. These
included such common types as a Crown PCC-160
(Elkhart, IN, USA), Sony ECM-50PS (New York, NY, USA)
and a Nakamichi CM100 (Tokyo, Japan). Noise was dig-
itally added to this audio data to simulate operational
environments.

The block schematic for the feature extraction tech-
nique is shown in Figure 5. The speech signal first under-
goes pre-emphasis (with a coefficient of 0.97), which
flattens the frequency characteristics of the speech sig-
nal. The signal is then processed by a gammatone filter
bank which uses 32 frequency channels equally spaced
on the equivalent ERB scale as shown in Figure 2. The
computationally efficient gammatone filter bank imple-
mentation as described in [32] is used. The gammatone
filter bank transform is computed over L ms, and the
segment is shifted by # ms. The log magnitude resulting
coefficients are then decorrelated by applying a discrete
cosine transform (DCT). The computations are made
over all the incoming signal, resulting in a sequence of
energy magnitudes for each band sampled at 1/n Hz.
Then, frame-by-frame analysis is performed, and a N-
dimensional parameter is obtained for each frame. The
modulation energy of each coefficient, which is defined as
the Fourier transform of its temporal evolution, is com-
puted. In each band, the modulations of the signal are
analyzed by computing FFT over the P ms Hamming win-
dow, and the segment is shifted by p ms. The energies for
the frequencies between the 2 and 16 Hz, which represent
the important components for the speech signal are com-
puted. For the experiments and gammatonegrams shown
in Figures 3 and 4, the values of L, n and N are 25 ms, 10
ms and 32, respectively, and modulation parameters of P
and p with 160 and 10ms, respectively, are used.

Recognition results

The HTK setup followed is three-state cross-word tri-
phone models tied to approximately 3,000 tied states, each
represented by four-component Gaussian mixtures with
diagonal covariance, together with the 5,000 closed vocab-
ulary bigram language model (LM) [33]. Triphone states
were tied using the linguistic-driven top-down decision-
tree clustering technique, resulting in a total of 3,135
tied states in clean train and 3,068 tied states in multi-
train. The CMU dictionary was used to map lexical items
into phoneme strings, and the 5,000-word closed vocab-
ulary bigram LM was used. The LM weights, pruning
thresholds and insertion penalties were based on [33].

In order to analyze the effect of the non-linearity
(Equation 4) on phone recognition rate, small subsets
with a random number of utterances from AURORA-4
multi-condition training data are used. Experiments with
training on clean condition are considered, because the
purpose is precisely to test robustness in the presence of
noise while retaining similar performance in clean condi-
tions. All experiments have been performed with 16-kHz

Table 1 Accuracy rate (%) baselines for different feature
extraction techniques

Channel MFCC PLP GFCC
1 89.3 90.5 88.43
2 776 77.1 80.7
3 61.7 63.8 64.5
4 538 555 584
5 579 575 64.4
6 62.5 62.2 63.6
7 532 535 61.6
8 729 73.0 71.8
9 584 61.8 63.2
10 452 47.7 48.6
1 41 432 459
12 36.2 389 46.1
13 47.0 480 49.8
14 383 40.2 46.9
Average 56.7 58.0 61.0
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Table 2 Accuracy rates (%) for the different extraction

techniques

Channel GFCC-MS GFCC-MS-NL GFCC-NL
1 873 89.9 896
2 80.7 834 81.1
3 626 72.8 709
4 56.0 69.2 65.6
5 64.5 716 694
6 62.6 73.2 70.1
7 62.0 66.9 68
8 69.7 744 71
9 617 638 624
10 482 523 51.9
11 445 512 50.1
12 430 508 484
13 472 543 516
14 46.8 504 50.2
Average 59.8 64.3 66.0

data of the Aurora-4 database. Table 1 shows the results
in percent accuracy for the different features. The average
performance for all the noise conditions for the differ-
ent features is shown at the last row of the table. MFCC,
perceptual linear prediction (PLP) and GFCC are the
standard 39-dimensional Mel-frequency, perceptual lin-
ear prediction and gammafrequency cepstral coefficient
features along with their delta and acceleration deriva-
tives. From Table 1, it is clear that the traditional MFCC
features have the lowest accuracy indicating inefficiency
of these features for noisy environments. Also, it can be
seen that GFCC has the best performance compared to
PLP which, in turn, was better when compared to MECC
which is consistent with earlier studies [13,14].

Table 2 shows the results for gammafrequency with
modulation spectrum (GFCC-MS), gammafrequency
with modulation spectrum and non-linearity (GFCC-MS-
NL) and gammafrequency with non-linearity (GFCC-NL)
feature extraction techniques. For this task, we can see
that the GFCC-MS do not provide any improvement
which is contrary to our earlier study [29]. In our ear-
lier study, the combination of GFCC and modulation
spectrum was better than GFCC alone for isolated word
recognition in reverberant environment of around 0.3 to
0.5s.

1 Street traffic
-0 Train station
Vv Cars
-A-Babble

- Restaurant
< Airport

90

75

-9

-8 -7

-6

T T T 50
-4 -3 2 1

Figure 6 Comparison of word accuracies (%) for various w; values of different noises.
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We hypothesize that we do not observe the similar
effect in this case due to different task (large vocabulary
with triphones) and different environment (only additive).
However, from the table, we can see that the optimized
non-linearity improved the performance of GFCC and
GFCC-MS considerably. Further, we can also be observe
that the contribution towards improved performance
from the non-linearity is consistent for all types of noises.
This clearly demonstrates that including a non-linearity is
significantly beneficial for improving robustness in noisy
environment.

The features are computed with wy = 1.0 and various wy
and w; combinations. As seen from Figure 6, the selec-
tion of the weights is crucial for improving the recognition
performance. It can also be observed that for w; ranging
from —0.7 to —1.8, the performance is better than those of
GFCC-MS and GFCC. The best performance for this task
is obtained with wg = 1 and w; = —0.9 which are used
for the experiments reported in Table 2.

Conclusions

The features proposed in the present study are derived
from auditory characteristics, which include gammatone
filtering, non-linear processing and modulation spectral
processing, emulating the cochlear and the middle ear to
improve robustness. In earlier studies, several auditory
processing-motivated features have improved robustness
for small and medium vocabulary tasks. The paper has
studied the application of these techniques to large and
complex vocabulary task, namely, the Aurora-4 database.
The results have shown that the proposed features con-
siderably improved the robustness in all types of noise
conditions. However, the present study is essentially con-
fined to handle noise effects on speech and has not con-
sidered reverberant conditions. The selected weights for
the non-linearity were heuristic, and automatic selection
of optimal weights from the evaluation data is desir-
able. For the future, we would like to investigate these
issues and evaluate the performance of the proposed fea-
tures for reverberant environments and large vocabulary
tasks.
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