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Abstract

In this paper, an analytical approach to estimate the instantaneous frequencies of a multicomponent signal is
presented. A non-stationary signal composed of oscillation modes or resonances is described by a multicomponent
AM-FM model. The proposed method has two main stages. At first, the signal is decomposed into its oscillation
components. Afterwards, the instantaneous frequency of each component is estimated. The decomposition stage is
performed through the basis expansion exploiting orthogonal rational functions in the complex plane. Orthogonal
rational bases are generalized to expand linear time-varying systems. To decompose the non-stationary signal, its
equivalent time-varying system is sought. The time-varying poles of this system are required to construct appropriate
basis functions. An adaptive data segmentation algorithm is provided for this purpose. The effect of noise is
scrutinized analytically and evaluated experimentally to verify the robustness of the new method. The performance of
this method in extraction of embedded instantaneous frequencies is asserted by simulations on both synthetic data
and real-world audio signal.

Keywords: Instantaneous frequency estimation; AM-FM modeling; Multicomponent signals; Oscillation modes;
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1 Introduction
Non-stationary signals which are a compound of con-
stituents with time-varying amplitudes and frequencies
can be characterized by amplitude-modulated frequency-
modulated (AM-FM) models. This modeling is attended
to express genuine signals in communications [1,2],
acoustic and speech processing [3-6], biomedical sig-
nal processing [7], and image processing [8]. To esti-
mate instantaneous amplitudes (IAs) and instantaneous
frequencies (IFs) embedded in a multicomponent sig-
nal [9], the first step is decomposing it into oscillation
components. This procedure is termed ‘demodulation’,
‘separation’ or ‘decomposition’ in the literature. Each com-
ponent should represent a valid oscillation for which
the definition of instantaneous frequency is physically
meaningful [10].
All methods of multicomponent AM-FM signal decom-

position and parameter estimation can be categorized into
non-parametric and parametric methods. One class of
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non-parametric approaches is based on the joint time-
frequency processing. Widespread time-frequency dis-
tributions (TFDs) such as short-time Fourier transform
(STFT),Wigner-Ville distribution, and Choi-Williams dis-
tribution are employed [11]. These methods are limited by
the well-known compromise between time and frequency
resolution. Moreover, the cross-terms appear trouble-
some. The energy separation algorithm (ESA) which uses
a non-linear differential operator, called Teager-Kaiser
energy operator (TKEO), is another method [12]. The
energy separation algorithm which tracks the energy of
the source producing the signal is originally applicable
for monocomponent AM-FM signals. Nevertheless, they
are modified for application in multicomponent cases by
designing a bank of filters. Multiband-ESA (MESA) that
consists of bandpass filtering followed by monocompo-
nent energy separation is introduced based on this con-
cept [13]. The separation performed by bandpass filtering
is proper when components are spectrally far enough.
Huang et al. [14] proposed an iterative technique known

as the empirical mode decomposition (EMD). This tech-
nique is an algorithmic way to extract oscillation modes
embedded in the signal, named intrinsic mode functions
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(IMFs). Each IMF gives a valid IF which is estimated by
applying the Hilbert transform (HT) [14]. The proposed
algorithm for the implementation of EMD called the sift-
ing process showed several drawbacks such as sensitivity
to perturbation and mode mixing problem [15]. To over-
come these difficulties, the original EMD is modified, and
a new algorithm is developed which is named ensem-
ble empirical mode decomposition (EEMD) [15]. This
method is indeed the iteration of EMD for noise-added
signals. In each iteration, controlled white noise is added
to the data, and EMD is applied. Each individual trial may
generate noisy results, but the noise is canceled out by tak-
ing the average of the results. Thus, true solution is the
ensemble mean of enough trials. Although each trial pro-
duces a set of IMFs, the sum of IMFs is not necessarily
an IMF. An empirical solution for this issue is suggested
in [15]. EMD and EEMD methods suffer from the lack
of analytic foundation. Some research has attempted to
establish and improve analytical aspects of these empiri-
cal approaches [16]. In [17], an alternative algorithm for
EMD is introduced based on iterating certain filters, such
as Toeplitz filters. The results of iterative filtering are sim-
ilar to those of the conventional sifting process. Although
the authors of [17] do not claim superiority for their
method, it lays down a mathematical framework for an
alternative approach to EMD. The convergence of itera-
tive filtering EMD is studied in [18]. A variant of EMD to
decompose multiscale data is proposed in [19]. This work
provides some theoretical understanding of EMD for a
class of multiscale data and introduces two algorithms,
Newton-Raphson-based EMD and ODE-based EMD, as
the variations of the sifting process. The decomposition
of multiscale data based on EMD is pursued in [20]
inspired by the compressed sensing theory. The spars-
est representation of multiscale data is sought within
the largest possible dictionary constructed of IMFs. The
problem is formulated as a non-linear L1 optimization,
and an iterative algorithm is proposed to solve it. Noise
and perturbation in data may cause numerical instabil-
ity in this method. Daubechies et al. developed a method
which captures the philosophy of EMD and decomposes
special functions in a defined class [21]. This method
employs a combination of wavelet analysis and realloca-
tion technique called synchrosqueezing transform which
aim to sharpen a time-frequency representation. Syn-
chrosqueezed wavelet transform is also investigated for
signal sampling and denoising applications in multicom-
ponent signal analysis [22]. In [23], an algorithm for
AM-FM parameter estimation is proposed based on the
iterated application of the Hilbert transform to ampli-
tude envelopes obtained by adaptively low-pass filters.
Furthermore, the IF of AM-FM components can be calcu-
lated by a posteriori adaptive segmentation of the acquired
phase signal. Another iterative AM-FM decomposition

is suggested in [24] using the quasi-harmonic model
(QHM) for quasi-harmonic signals such as voiced
speech.
There are various parametric approaches to extract IFs

of multicomponent signals. One common approach is
based on signal segmentation, while some simplifying
assumptions such as constant frequency seem logical in
each segment. Then, an estimator is designed to esti-
mate the model parameters segment by segment. In [25],
the maximum windowed likelihood (MWL) criterion is
used to estimate the AM-FM components. The high non-
linearity of this method makes the necessary optimization
difficult. Another parametric approach is based on the
statistical modeling of the signal according to its statistical
attributes and assumptions. Speech signals are statistically
modeled as AM-FM signals, and the extended Kalman
filter (EKF) is applied for demodulation [3]. The idea of
EKF is also exploited in [26]. Polynomial phase signal
(PPS) modeling is another parametric approach which is
employed for AM-FM signals [27].
The interpretations and estimation of instantaneous fre-

quencies embedded in amulticomponent signal have been
controversial [28]. Three different approaches are pro-
posed to estimate the IFs after the decomposition stage.
In the first approach, the Hilbert transform is exploited
to get the analytic signal whose phase is differentiated to
find the IF [10]. The energy operator (TKEO) is utilized
in the second approach [12], and the third one is based
on TFD [11,29]. Different definitions of IF are consid-
ered in these approaches, and consequently, their results
are not necessarily equivalent. In [28] and [30], the dif-
ferent definitions and estimation methods are compared
and discussed. The main contribution of this paper is to
develop a novel approach based on the expansion of time-
varying systems by orthogonal rational functions. The
method introduced in [31] is extended and improved to
be applied as the essence of the new method for IF esti-
mation. An adaptive segmentation procedure in the pro-
posed algorithm allows us to estimate the IFs locally. The
decomposition is performed using orthogonal rational
functions.

2 Problem statement
Multicomponent signals are first introduced in [9]. Amul-
ticomponent AM-FM model describes a non-stationary
signal as the combination of oscillation terms with time-
varying amplitudes and frequencies:

x(t) =
Nc∑
k=1

Ak(t)e jθk(t), (1)

where Nc is the number of components. Ak(t) and θk(t)
are time-varying envelope and time-varying phase of the
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kth component respectively, and the instantaneous fre-
quency denoted by fk(t) is defined from θk(t) :

fk(t) = dθk(t)
dt

. (2)

The general model in (1) can be interpreted as the sig-
nal expansion by a generalized complex exponential basis,
which are exponential functions with time-varying ampli-
tudes and frequencies. The decomposition of the mul-
ticomponent AM-FM signal is investigated through this
point of view. Therefore, we are going to find an appropri-
ate basis to expand the non-stationary signal x(t):

x(t) =
K∑

k=1
ckgk(t). (3)

The functions {gk ; k = 1, 2, · · · ,K} should represent the
oscillation modes in signal, for which the instantaneous
frequency is meaningfully definable. Accordingly, each
term represents a valid IF of the multicomponent signal.
The main idea to attain such decomposition is expand-
ing the corresponding system of the AM-FM signal in
the complex plane. Since the transfer function of a real-
istic linear system has a rational representation, it can be
expanded by orthogonal rational functions in the com-
plex z-plane. Returning back to the time-domain, each
rational function is equivalent to a generalized exponen-
tial basis and represents one valid oscillation term or
resonance. To perform this procedure, we should specify
the generating system of the AM-FM signal. The corre-
sponding system of a non-stationary signal is modeled
by a linear time-varying (LTV) system [32]. LTV mod-
els have been applied to describe non-stationary signals
[33,34]. Our proposed method is developed based on this
approach of modeling. Let us consider the discrete-time
AM-FM signal x[n] , obtained by time sampling of x(t)
at the rate of fs. Its generating system is modeled as a
LTV system, which can be described by a bivariate func-
tion to characterize the input-output linear relationship
[32]. Hence, a bivariate discrete-time impulse response,
h[m, n] , is considered, where n and m are two indepen-
dent time instants, representing the time variable of the
signal and the time variable of the system, respectively.
Taking the Z-transform of h[m, n] with respect to the time
variable of the signal, H(m, z) is obtained which denotes
the generating system of x[n] . The orthogonal rational
basis has been investigated for the decomposition of linear
time-invariant (LTI) systems [35] and should be general-
ized to expand the time-varying generating system of the
AM-FM signal as follows:

H(m, z) =
K∑

k=1
Ck(m)Gk(m, z), (4)

where {Gk(m, z); k = 1, 2, · · · ,K} is a rational basis. Fortu-
nately, to find the orthogonal rational functions for system
expansion, it is not necessary to have the system’s trans-
fer function with all the details. The knowledge of poles or
logical assumptions about them are sufficient to extract a
proper basis [35].

3 Orthogonal rational functions
The decomposition step in the proposedmethod is indeed
an expansion of the AM-FM signal, which is accomplished
through the incorporating expansion of the equivalent
time-varying system by orthogonal rational functions.
Generally, the knowledge about the poles is sufficient as
a priori information to describe the desired space being
spanned by a rational basis. Let us consider a set of M
time-varying poles, {ξk[m] , k = 1, . . . ,M}. We can make
a first-order IIR transfer function by each pole. So, a basis
set is constructed including all specified poles, but not
orthogonal. The Blaschke products [35] formed by these
poles are two-dimensional functions,

B0(m, z) = 1,

Bk(m, z) =
k∏

i=1

1 − ξ̄i[m] z
z − ξi[m]

, k = 1, 2, . . . ,M.
(5)

Applying the Gram-Schmidt procedure on these rational
functions with respect to z, two-dimensional functions are
obtained:

Gk(m, z) =
√
1 − |ξk[m]|2
z − ξk[m]

k−1∏
i=1

(
1 − ξi[m]∗ z
z − ξi[m]

)
,

k = 1, . . . ,M.

(6)

This is the same routine for finding Takenaka-
Malmquist functions [36]. Now, these functions are gen-
eralized to two-dimensional functions for the LTV system
expansion. The resultant functions in (6) are orthogo-
nal with respect to z in the complex domain. The inner
product of each pair of these functions is a function of
time,m:

dkl[m] = 〈Gk(m, z),Gl(m, z)〉z

= 1
2π j

∮
C
Gk(m, z)G∗

l

(
m,

1
z∗

)
dz
z
.

(7)

Utilizing the Cauchy integral implies that dkl[m] is zero
at each snapshot, m, for k �= l. Taking the inverse
Z-transform of Gk(m, z) produces gk[m, n] . Since the Z-
transform and its inverse are homomorphic transforms,
these functions would preserve orthogonality with respect
to n. Two problems remain to be studied. At first, the
underlying time-varying poles of the corresponding LTV



Sebghati et al. EURASIP Journal on Audio, Speech, andMusic Processing 2014, 2014:8 Page 4 of 11
http://asmp.eurasipjournals.com/content/2014/1/8

system should be determined. Secondly, univariate terms
should be extracted from bivariate functions, gk[m, n] , to
express the oscillation modes of x[n] . These issues are
resolved simultaneously by adaptive segmentation which
is addressed in the following section.

4 Time-varyingmodeling
The concept of poles and zeros are also generalized for
linear time-varying systems. Concerning the stability and
behavior of the LTV systems, several definitions of poles
or eigenvalues of such systems have been proposed [37],
depending on the characterization method of the LTV
system. The notion of time-varying poles in this paper is
founded on the time-varying autoregressive model. Para-
metric models for LTI systems can be generalized for LTV
ones by imposing time-varying parameters on the model.
The AM-FM signal, x[n] , is modeled by a time-varying
autoregressive (TVAR) of orderM:

x[n]= −
M∑

m=1
am[n] x[n − m] + ν[n] . (8)

{am[n] ,m = 1, . . . ,M} are the time-varying parame-
ters, and ν[n] is the zero-mean innovation process, also
addressed as a modeling error. The most general case of
this model is where the parameters are completely uncor-
related at each time sample. Therefore, each time sample
of x[n] would be represented by M unknown coefficients;
hence, it is not a practical approach. Based on a common
practical assumption, the non-stationary signal is approx-
imately regarded locally stationary or quasi-stationary.
This assumption implies that the parameters of the TVAR
model are correlated, and the coefficients are supposed to
be constant in subintervals of the total time span, referred
to as segments. This model is called a block stationary AR
model [34]. For multicomponent AM-FM signals whose
IAs and IFs are slowly time-varying or piecewise-constant,
the segmentation strategy is applicable. By virtue of this
assumption, a real multicomponent AM-FM signal over
its support is considered as a superposition of temporar-
ily more limited signals with constant frequencies. These
intervals can generally have various lengths, and different
methods from fixed-length windowing to adaptive seg-
mentation algorithms are introduced to determine the
borders of the segments [23]. In the proposed method, the
segmentation is performed adaptively from the aspect of
TVAR parameter estimation.

4.1 Segmentation procedure
The entire signal of N samples is segmented into L blocks
with various lengths:

x�[n]= x[n] , n�−1 ≤ n < n�, (9)

where � = 1, . . . , L and n0 = 0. The TVAR coefficients
are supposed to be constant in each segment. The mean
square error in the �th segment is given by

J� = 1
n� − n�−1

n�−1∑
n=n�−1

∣∣∣∣∣ x[n]+
M∑

m=1
a�,mx[n − m]

∣∣∣∣∣
2

,

(10)

where {a�,m,m = 1, . . . ,M} are the TVAR coefficients
of the �th segment. The boundaries of each segment are
determined such that the error J� remains under a spec-
ified threshold. The segmentation algorithm operates as
follows. At the start of each stage, the length of the cur-
rent segment (say �) is considered the minimum possible
length, equal to the order of the TVAR model, i.e., n� =
n�−1 + M. The TVAR coefficients, a�,m, are estimated
by the recursive least squares (RLS) technique, and the
error in (10) is computed. If it is still greater than the pre-
specified threshold, the length of the segment increases
by one sample, and the calculations are repeated. This
procedure continues by one-sample increment in each
stage until the error falls below the threshold. Now, the
boundaries and the length of the current segment are
determined, and the procedure starts over the next time
sample for another segment establishment. This algo-
rithm runs through the entire signal repeatedly and stops
at the end of the data batch. The question arises here about
the threshold setting and how it can affect the accuracy of
the IF estimation. This issue is scrutinized in the succeed-
ing subsection separately. Once the TVAR parameters are
estimated, the corresponding time-varying poles, denoted
by {ξk[m] , k = 1, . . . ,M}, are obtained by applying the
Z-transform of (8) with respect to n.

4.2 Error analysis
It is noteworthy to mention the relation between the error
caused by segmentation and the error of IF estimation.
This analysis leads us to select a reliable error threshold
in the adaptive segmentation procedure. Let us consider a
discrete-time AM-FM component:

x[n]= A[n] e jθ [n]. (11)

The error in the instantaneous phase imposed by the
TVAR modeling in each segment, denoted by εθ , sets off
an error in signal:

x̂[n]= A[n] e j(θ [n]+εθ [n]). (12)

For very small phase errors, the following approximation
is considered using the Maclaurin series:

e j(θ [n]+εθ [n]) ≈
(
1 − ε2θ [n]

2
+ jεθ [n]

)
e jθ [n]. (13)
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Substituting this approximation in (12), we have

e[n]= x[n] −̂x[n]= ε[n]A[n] e jθ [n], (14)

where

ε[n]= ε2θ [n]
2

− jεθ [n] . (15)

The error e[n] whose instantaneous amplitude is absolute
error of modeling is also an AM-FM signal:

|e[n]| = |ε[n]A[n]| . (16)

The error in phase is now transduced to the error of
amplitude. Let us define a time-varying threshold denoted
by η[n] such that |e[n]| is restrained lower than it, i.e.,
|e[n]| < η[n] . If we substitute |e[n]| by (16), the following
inequality holds:

|ε[n]| <
η[n]

|A[n]| . (17)

So, the absolute error of phase depends on the signal enve-
lope. This means that for a fixed threshold, where η[n]
is constant over the entire signal, larger phase errors can
occur when IA becomes smaller. Therefore, the thresh-
old should vary adaptively, adjusted to the envelope of
the observed signal. In other words, the locally normal-
ized error for each segment is a proper threshold. Since
the IA evolves slowly, its mean or minimum amount dur-
ing the segment can be utilized for normalization. The
normalized threshold is denoted by η̄ for brevity:

η̄ = η[n]
mean{|A[n]|} . (18)

Thus, the inequality (17) is practically used as the follow-
ing one:

|ε[n]| < η̄. (19)

The square of |ε[n]| is obtained from (15):

|ε[n]|2 = ε4θ [n]
4

+ ε2θ [n] . (20)

Exploiting this relation in the inequality (19) and perform-
ing some mathematical reformulations result in a bound
for the phase error:

|εθ [n]|2 < 2
(√

1 + η̄2 − 1
)
. (21)

When η̄ → 0, the right-hand side of the above inequality
is approximately equal to η̄2. Keeping the phase error (εθ )
under control, the error of IF is consequently controlled.
By definition (2), IF is the derivative of instantaneous
phase, which is a difference equation in the discrete-time
situation:

ω[n]= θ [n]−θ [n − 1]
Ts

, (22)

where ω[n]= 2π f [n] is the instantaneous frequency in
radian per second, and Ts denotes the sampling time. In
the worst case, the maximum phase errors of two con-
secutive instants accumulate. Thus, the maximum error
of IF is 2εθ fs. For example, if η̄ = 10−3, then from (21),
the maximum phase error is almost 10−3, and the abso-
lute error of IF is at most 0.2% of the sampling frequency.
This error can be controlled by arbitrary selection of η̄. A
smaller threshold leads to wider segments, in which the
assumption of constant frequency is no longer respected.
Our experiments verified that the condition of piecewise-
constant frequency for slowly varying IFs is satisfied for η̄

in the order of 10−3 ∼ 10−2.

5 Estimation framework
The main algorithm of IF estimation takes the extracted
time-varying poles to construct Gk(m, z) in (6). Then,
bivariate functions, {gk[m, n] , k = 1, . . . ,M}, are pro-
duced by taking the inverse Z-transform. Now, the one-
dimensional basis is extracted from the existing bivariate
functions to achieve a one-dimensional expansion for x[n]
as in (3). The basis gk[n] is constructed by the concatena-
tion of truncated pieces of bivariate functions, gk[m, n] ,
based on the result of the segmentation procedure:

gk[n]=
L∑

�=1
W�[n] gk[m�, n], (23)

where L is the number of total segments, and W�[n] is
an arbitrary weighting window over the �th segment. It
is supposed that during this block, the corresponding
pole remains equal to ξk[m�] . Each resultant function,
gk[n], is a valid oscillation mode for which IF is defin-
able. Thus, the estimation of the embedded IFs is achieved
through the IF estimation of the extracted functions. To
estimate the IF, linear regression of the phase for each
segment is computed by applying the weighted linear
least squares technique on a first-order polynomial model.
The abrupt changes in the phase which can affect the IF
estimation severely are an important issue.While the con-
secutive segments derived from different rows of gk[m, n]
are concatenated, there may be some phase discontinu-
ities over the resultant bases in the junctions of segments.
Such discontinuities in the phase trajectory cause seri-
ous deficiency in the IF estimation which appears as
spikes over the resultant IFs. To remedy this problem,
a proper data window such as the Hamming window
is chosen as W�[n] in (23), which controls the effect
of borderline samples. The Hamming window is com-
monly utilized as an analysis window in audio and speech
processing [24,27].
When the signal is contaminated by noise, the time-

varying poles estimated from noisy observations are
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misplaced. Thus, the estimated IF incurs more error due
to the error in the estimation of poles imposed by the
noise. This issue is alleviated by increasing the order of
the TVAR model. Each resonance of a clean signal is
represented by a pair of time-varying poles; hence, the
order of the TVAR model (M) is twice the number of
components (Nc). Nonetheless, to improve the estima-
tion of time-varying poles in the presence of noise, we
should haveM > 2Nc. Therefore, extraneous poles appear
besides the valid poles. Aminimum distance classifier [38]
is applied to assign the poles of the resonances in each
segment and distinguish them from the invalid poles. The
perturbation of the poles due to the estimation error of
TVAR coefficients is investigated mathematically in the
succeeding section. The steps of the proposed algorithm
are summarized as follows:

1. Adaptive segmentation of the AM-FM signal based
on TVAR modeling and computation of underlying
time-varying poles.

2. Assignment of the poles to the components by
minimum distance classifier.

3. Employing the time-varying poles to construct
oscillation terms, gk[n] .

4. Fitting a linear model to the phase of each segment of
gk[n] to estimate the IF.

In this novel method of IF extraction, the Hilbert trans-
form that is a global operator is not employed. Addition-
ally, a linear model is applied to the phase of components
segment by segment in spite of differentiating through-
out. It makes the proposed method less sensitive to phase
changes. Therefore, the adaptive segmentation is advanta-
geous for both decomposition and frequency estimation.

6 Pole perturbation
The coefficients of the TVAR model (8), estimated
through the RLS technique, are affected by noise. The per-
turbation in these coefficients leads to the perturbation in
the resultant time-varying poles. Let p(�, z) be the poly-
nomial of AR model in the �th segment whose roots are
time-varying poles:

p(�, z) =
M∑
i=0

a�,iz−i =
M∏
k=1

(
1 − ξk[m�] z−1), (24)

where the coefficients are normalized, i.e., a�,0 = 1. If the
perturbation �a�,i occurs in the ith coefficient, a�,i, the
polynomial (24) changes to

p̃(�, z) = p(�, z) + �a�,iz−i. (25)

The roots of this new polynomial differ from ξk[m�] by
�ξk[m�] , which may be real or complex. Let us denote the
perturbed roots by ξ̃k[m�]= ξk[m�]+�ξk[m�]:

p̃(�, ξ̃k[m�] ) = p
(
�, ξ̃k[m�]

)
+ �a�,i

(
ξ̃k[m�]

)−i = 0.

(26)

From now on, the kth pole and its perturbation are
denoted by ξk and �ξk , respectively, and their arguments
are neglected for brevity. When �ξk → 0, the above
equation is simplified by employing Taylor’s expansion:

p′ (�, ξk) �ξk + �a�,iξ
−i
k = 0, (27)

where p′(�, z) is the first derivative of p(�, z) with respect
to z. This equation expresses the linear relation between
perturbation in poles and perturbation in coefficients:

�ξk = − ξ−i
k

p′ (�, ξk)
�a�,i. (28)

Considering �a�,i and �ξk as random variables, their
variances, respectively σ 2

a�,i and σ 2
ξk
, are related linearly,

σ 2
ξk

=
∣∣∣∣∣ ξ−i

k
p′(�, ξk)

∣∣∣∣∣
2

σ 2
a�,i . (29)

Obtaining p′(�, ξk) from (24), the ratio of the variances is
given by

σ 2
ξk

σ 2
a�,i

= 1∣∣∣∣ξ i−1
k

∏M
j = 1
j �= k

(
1 − ξkξ

−1
j

)∣∣∣∣2
. (30)

This ratio indicates the sensitivity of the poles to the per-
turbation of the coefficients. Smaller ratio represents less
sensitivity or more robustness of pole. When all poles are
inside the unit circle, i.e., |ξk| < 1, k = 1, . . . ,M, the ratio
in (30) takes its maximum value for i = M. This means
that the perturbation in the coefficient of the highest order
in the polynomial has the most effect on misplacing the
poles. This maximum value for each pole is defined as its
variance ratio:

γk = σ 2
ξk

σ 2
a�,M

= 1∣∣∣∣ξM−1
k

∏M
j = 1
j �= k

(
1 − ξkξ

−1
j

)∣∣∣∣2
. (31)

γk is the variance ratio of ξk which indicates the robustness
of this pole. This parameter only depends on the positions
of the underlying poles, which are determined by AM-FM
signal characteristics.

7 Experimental evaluation
The proposed method is implemented on both synthetic
and real-world signals, and its performance is compared
to the results of two previously introduced methods.
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7.1 Synthetic data
A two-component AM-FM signal is considered as below:

x(t) =
2∑

k=1
exp (αkt) exp

[
j2π

(
βk,3t3 + βk,2t2 + βk,1t

)]
.

(32)

The parameters of the first and the second components
are α1 = −2,β1,1 = 103,β1,2 = 5× 103,β1,3 = −20× 103
and α2 = −5,β2,1 = 5 × 103,β2,2 = −3 × 103,β2,3 = 0.
The two following IFs are embedded in this AM-FM
signal:

f1(t) = − 60t2 + 10t + 1 kHz,

f2(t) = − 6t + 5 kHz.
(33)

The signal in (32) is sampled atTs = 50 μs intervals, so the
sampling frequency is fs = 20 kHz. Since the absolute val-
ues of the instantaneous frequencies increase over time,
a limited span of signal is observed to avoid aliasing. The
algorithm is run over N = 2, 000 samples of the signal.
The corresponding system has four time-varying com-
plex poles {ξ1[m] , . . . , ξ4[m] } in conjugate pairs. There are
two conjugate pairs, and each pair represents one oscil-
lation component. Consequently, four complex functions,
g1[n] , . . . , g4[n] , are extracted whose phases yield desired
IFs. g1[n] and g2[n] are common resonances, which means
that their IFs have equal absolute values, but opposite
signs. g3[n] and g4[n] determine the second IF likewise.
The adaptive segmentation procedure divides the data
batch into L = 45 segments with different lengths. The
threshold of error in the segmentation procedure is set to
0.001. The coefficients of the TVAR model and, accord-
ingly, the time-varying poles are estimated through the
RLS algorithm with the forgetting factor of 0.98. Figure 1
demonstrates the estimated IFs denoted by f̂i; i = 1, 2
besides the original IFs. f̂1 and f̂2 track the original IFs
very closely. The step-like variation, produced by segmen-
tation, is obvious. For quantitative evaluation, the relative
mean absolute error (MAE) of IF estimation is computed
for f̂1 and f̂2, and illustrated in Tables 1 and 2, respectively.
The proposed method is compared with two previous

methods, EEMD-HT and QHM. The EEMD-HT is a non-
parametric method which decomposes the components
by the EEMD algorithm and estimates the IFs of resultant
IMFs utilizing the Hilbert transform [14]. The QHM is a
parametric method which has been appraised on speech
signals [24]. The result of decomposition of the original
signal by the EEMD procedure is displayed in Figure 2.
The relative standard deviation of added noise is 0.2, and
the ensemble number for each run is 100. Nine IMFs
are derived while there are just two embedded oscilla-
tion modes. The first and the second IMFs are expected
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Figure 1 The original instantaneous frequency and the estimation
result. (a) First component. (b) Second component.

oscillation modes, and the others are false IMFs gener-
ated due to deficiencies in the iterative algorithm. EEMD
initially extracts faster oscillations. Thus, the first IMF
has higher frequency and represents our second compo-
nent, and reversely, the second IMF corresponds to the
first component. The valid IMFs are selected and assigned
subjectively or based on the result of estimation [15]. In
this simulation, the estimated IFs of the first and the sec-
ond IMFs are closer to f2 and f1, respectively. MAEs of the
estimation of IFs are recorded in Tables 1 and 2. The esti-
mation errors of QHM are also provided in these tables
for comparison. The analysis window of 64 samples and
hop step of one sample is considered for this algorithm.
The simulation is repeated in the presence of additive

white-Gaussian noise, and the errors for different SNRs
are depicted in the same tables. Each value is the aver-
age of 100 iterations. The proposed method outperforms
the other algorithms, especially in stronger noise. These
results verify the robustness of the proposed algorithm.
Although the QHM has smaller error for clean signal,
it is more sensitive to noise. The EEMD, which is more
robust than EMD, is still affected by the perturbations on

Table 1 Relative MAE (%) for the estimation of the first
instantaneous frequency, f1(t)

SNR EEMD-HT QHM Proposedmethod

∞ 0.57 0.06 0.53

30 dB 1.49 0.83 1.62

10 dB 79.68 44.03 40.74
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Table 2 Relative MAE (%) for the estimation of the second
instantaneous frequency, f2(t)

SNR EEMD-HT QHM Proposedmethod

∞ 0.17 0.03 0.09

30 dB 0.46 0.24 0.19

10 dB 21.54 8.30 3.23

the amplitude of the data. Therefore, EEMD-HT has the
worst performance in the presence of noise. For the clean
signal (SNR = ∞), the order of the TVAR model, M, is
equal to 4. Since higher error is imposed on pole esti-
mation for stronger noise, M should increase to alleviate
this problem. We have M = 24 for SNR = 30 dB and
SNR = 10 dB. Figure 3 depicts the MAE of IF estimation
with respect to M for both components. It demonstrates
that the error decreases remarkably as the order increases.
However, there are more poles for higher orders which
raise the error of classification routine and consequently
the total error of estimation. Thus, there is a compromise
to select the optimum order. In Figure 3, MAEs of f̂1 and
f̂2 are minimum atM = 24 andM = 28, respectively.
The effect of noise is illustrated by the perturbation vari-

ance ratios, γ1, . . . , γ4 (31) for each segment in Figure 4.
The variance ratios of the poles in a conjugate pair are
very close to each other or even equal in some segments.
γ3 and γ4, corresponding to ξ3 and ξ4 or the second res-
onance, are smaller than γ1 and γ2. This means that the
poles corresponding to the first oscillation component are
more sensitive to the noise. This observation justifies why
the MAE for f̂1 (Table 1) deteriorates more than the MAE
of f̂2 (Table 2) due to the noise.
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Figure 2 Extracted IMFs by EEMD from AM-FM signal.
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The proposed method can distinguish components
and estimate embedded close IFs, even when they have
crossovers. To illustrate this capability, the simulation of
a similar two-component signal is repeated, except that
the frequency of the second component, f2, is reduced by
4.8 kHz, i.e., β2,1 = 1, 200 in (32). In this case, two IFs
are closer and intersect each other. Both IFs are depicted
in Figure 5. The proposed method is implemented in the
same condition, and the results of estimation are exhibited
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Figure 5 The original instantaneous frequencies and the
estimation results, when two IFs intersect each other.

in Figure 5, besides the original IFs. This method can track
both IFs, and the intersection in their trajectories is han-
dled properly. The degradation of estimation, especially
around the crossover junction, is obvious by comparing
Figures 5 and 1, but the trajectories are not missed and
the estimated IFs are improved with time. This advantage
arises from the step of pole classification in the proposed
algorithm.

7.2 Real-world signal
Acoustic studies have revealed that many natural acous-
tic signals such as the sounds of songbirds and oceanic
mammals fit into the AM-FM model [27,39]. A duration
of 68ms of a song of two songbirds, a canary, and a kinglet,
recorded at 22.05 kHz sampling frequency, is considered
for the experiment. The spectrum of this signal estimated
by STFT with sliding window of 128 samples, an overlap
of 100 samples, and frequency resolution bin of 2 Hz is
depicted in Figure 6. This signal is composed of two AM-

Figure 6 STFT of birds’ song and the trajectories of the
estimated IFs.

FM components and real-world disturbing signals such
as ambient and instrumental noises. Four complex poles
and consequently four bases are extracted which present
two embedded dominant oscillations. Through the adap-
tive segmentation procedure, the signal is divided into
L = 76 unequal blocks. The threshold of the segmentation
procedure, η̄, is set to 0.01. The extracted IFs are illus-
trated in the same figure of the STFT spectrum by black
marks. The estimated IF tracks the frequency of domi-
nant oscillations. In Figure 7, the IFs are demonstrated
in addition to the results of EEMD-HT and QHM. Nine
IMFs are extracted through EEMD, but the first and the
second ones are valid resonances whose IFs are displayed.
The relative standard deviation of added noise is set to 0.2,
and the number of ensembles is 100. It takes several sam-
ples for EEMD-HT to resolve two IFs. Furthermore, the
local variations and spikes in the results of EEMD-HT and
QHM are noticeable. By contrast, the IFs of the proposed
method are piecewise-constant, and no spike appears due
to the segmentation. The lengths of the segments and con-
sequently the variations of the resultant IFs (flatness or
volatility) are controllable by the threshold selected in the
segmentation procedure.

8 Conclusion
The analytical approach developed for extraction of oscil-
lation modes of multicomponent non-stationary signals is
founded on several facts which are summarized herein.
Firstly, the decomposition of a multicomponent signal
is considered as a signal expansion and investigated
from this point of view. Secondly, the equivalent time-
varying system of the non-stationary signal is modeled by
TVAR and expanded by the orthogonal rational functions.
Finally, oscillation modes are constructed, employing
these bivariate rational functions, and their IFs are esti-
mated. For this purpose, the evolution of the time-varying
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poles is considered piecewise-constant which imposes the
same approximation in frequency estimation. The thresh-
old parameter in the adaptive segmentation algorithm
controls this approximation and governs the flatness of
estimated IF against volatility.
The order of the TVAR model or equivalently the num-

ber of time-varying poles is another parameter which is
set properly to confront the noise. Because this method
utilizes the poles of the generating system of the AM-FM
signal, the distortions on the amplitude, like noise, affect
the estimation results mildly in comparison to those of
the empirical methods. Although the noise degrades the
estimation of underlying poles, it can be controlled by the
order of the TVAR model. Simulations reveal the supe-
riority of this method in the presence of noise. The con-
trolling parameters in the proposed method yield some
degree of freedom to adjust it for different realistic appli-
cations. Its capability to extract the embedded IFs in audio
signals is illustrated.
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