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Abstract

This paper proposes a new speech enhancement (SE) algorithm utilizing constraints to the Wiener gain function
which is capable of working at 10 dB and lower signal-to-noise ratios (SNRs). The wavelet thresholded multitaper
spectrum was taken as the clean spectrum for the constraints. The proposed algorithm was evaluated under eight
types of noises and seven SNR levels in NOIZEUS database and was predicted by the composite measures and the
SNRLOSS measure to improve subjective quality and speech intelligibility in various noisy environments. Comparisons
with two other algorithms (KLT and wavelet thresholding (WT)) demonstrate that in terms of signal distortion, overall
quality, and the SNRLOSS measure, our proposed constrained SE algorithm outperforms the KLT and WT schemes for
most conditions considered.
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1 Introduction
The objective of speech enhancement (SE, also called
noise reduction) algorithms is to improve one or more
perceptual aspects of the noisy speech by decreasing the
background noise without affecting the intelligibility of
the speech [1]. Research on SE can be traced back to 40
years ago with two patents by Schroeder [2], where an ana-
log implementation of the spectral magnitude subtraction
methodwas described. Since then, the problem of enhanc-
ing speech degraded by uncorrelated additive noise, when
only the noisy speech is available, has become an area
of active research [3]. Researchers and engineers have
approached this challenging problem by exploiting differ-
ent properties of speech and noise signals to achieve better
performance [4].
SE techniques have a broad range of applications, from

hearing aids to mobile communication, voice-controlled
systems, multiparty teleconferencing, and automatic
speech recognition (ASR) systems [4]. The algorithms
can be summarized into four classes: spectral subtractive
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[5-8], sub-space [9,10], statistical model-based [11-13],
and Wiener-type [3,14-16] algorithms.
Much progress has been made in the development of

SE algorithms capable of improving speech quality [17,18]
which was evaluated mainly by the objective performance
criteria such as signal-to-noise ratio (SNR) [19]. How-
ever, SE algorithm that improves speech quality may
not perform well in real-world listening situations where
background noise level and characteristics are constantly
changing [20]. The first intelligibility study done by Lim
[21] in the late 1970s found no intelligibility improve-
ment with the spectral subtraction algorithm for speech
corrupted in white noise at −5 to 5 dB SNR. Thirty
years later, a study conducted by Hu and Loizou [1]
found that none of the examined eight different algo-
rithms improved speech intelligibility relative to unpro-
cessed (corrupted) speech. Moreover, according to [1], the
algorithms with the highest overall speech quality may
not perform the best in terms of speech intelligibility
(e.g., logMMSE [12]). And the algorithm which performs
the worst in terms of overall quality may perform well
in terms of preserving speech intelligibility (e.g., KLT
[9]). To our knowledge, very few speech enhancement
algorithms [22-25] claimed to improve speech intelligibil-
ity by subjective tests for either normal-hearing listeners
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or hearing-impaired listeners. Hence, we focused in this
paper on improving performance on speech intelligibility
of the SE algorithm.
From [19], we know that the perceptual effects of

attenuation and amplification distortion on speech intel-
ligibility are not equal. Amplification distortion in excess
of 6.02 dB (region III) bears the most detrimental effect
on speech intelligibility, while the attenuation distortion
(region I) was found to yield the least effect on intelli-
gibility. Region I+II constraints are the most robust in
terms of yielding consistently large benefits in intelligi-
bility independent of the SE algorithm used. However,
in order to divide those three regions [19], the esti-
mated magnitude spectrum needs to be compared with
the clean spectrum which we usually do not have in real
circumstances.
In this paper, we explored the multitaper spectrum

which was shown in [26] to have good bias and variance
properties. The spectral estimate was further refined by
wavelet thresholding the log multitaper spectrum in [16].
The refined spectrum was proposed in this paper to be
used as an alternative of the clean spectrum. Then, the
region I+II constraints were imposed and incorporated in
the derivation of the gain function of the Wiener algo-
rithm based on a priori SNR [3]. We have experimentally
evaluated its performance under a variety of noise types
and SNR conditions.
The structure of the rest of this paper is orga-

nized as follows. Section 2 provides the background
information on wavelet thresholding the multitaper
spectrum, and Section 3 presents the proposed approach
which imposes constraints on the Wiener filtering gain
function. Section 4 contains the speech and noise
database and metrics used in the evaluation. The sim-
ulation results are given in Section 5. Finally, a con-
clusion of this work and the discussion are given in
Section 6.

2 Wavelet thresholding themultitaper spectrum
In real-world scenarios, the background noise level
and characteristics are constantly changing [20]. Bet-
ter estimation of the spectrum is required to allevi-
ate the distortion caused by SE algorithms. For speech
enhancement, the most frequently used power spec-
trum estimator is direct spectrum estimation based on
Hann windowing. However, windowing reduces only
the bias not the variance of the spectral estimate [27].
The multitaper spectrum estimator [26], on the other
hand, can reduce this variance by computing a small
number (L) of direct spectrum estimators (eigenspectra)
each with a different taper (window) and then averag-
ing the L spectral estimates. The underlying philosophy
is similar to Welch’s method of modified periodogram
[27].

The multitaper spectrum estimator is given by

Ŝmt(ω) = 1
L

L−1∑
k=0

Ŝmt
k (ω) (1)

with

Ŝmt
k (ω) =

∣∣∣∣∣
N−1∑
m=0

ak(m)x(m)e−jωm

∣∣∣∣∣
2

, (2)

where N is the data length, and ak is the kth sine taper
used for the spectral estimate Ŝmt

k (·), which is proposed by
Riedel and Sidorenko [28] and defined by

ak(m) =
√

2
N + 1

sin
πk(m + 1)
N + 1

,m = 0, · · · ,N − 1.

(3)

The sine tapers were proved in [28] to produce smaller
local bias than the Slepian tapers, with roughly the same
spectral concentration.
The multitaper estimated spectrum can be further

refined by wavelet thresholding techniques [29-31].
Improved periodogram estimates were proposed in [29],
and improved multitaper spectrum estimates were pro-
posed in [30,31]. The underlying idea behind those tech-
niques is to represent the log periodogram as ‘signal’ plus
the ‘noise’, where the signal is the true spectrum and the
noise is the estimation error [32]. It was shown in [33] that
if the eigenspectra defined in Equation 2 are assumed to be
uncorrelated, the ratio of the estimated multitaper spec-
trum Ŝmt(ω) and the true power spectrum S(ω) conforms
to a chi-square distribution with 2L degrees of freedom,
i.e.,

υ(ω) = Ŝmt(ω)

S(ω)
∼ χ2

2L
2L

, 0 < ω < π . (4)

Taking the log of both sides, we get

logŜmt(ω) = logS(ω) + logυ(ω). (5)

From Equation 5, we know that the log of the multita-
per spectrum can be represented as the sum of the true
log spectrum plus a logχ2 distributed noise term. It fol-
lows from Bartlett and Kendall [34] that the distribution
of logυ(ω) is with mean φ(L) − log(L) and variance φ′(L),
where φ(·) and φ′(·) denote, respectively, the digamma
and trigamma functions. For L ≥ 5, the distribution of
logυ(ω) will be close to a normal distribution [35]. Hence,
provided L is at least 5, the random variable η(ω)

η(ω) = logυ(ω) − φ(L) + log(L) (6)

will be approximately Gaussian with zero mean and vari-
ance σ 2

η = φ′(L). If Z(ω) is defined as

Z(ω) = logŜmt(ω) − φ(L) + log(L), (7)
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then we have

Z(ω) = logS(ω) + η(ω), (8)

i.e., the log multitaper power spectrum plus a known con-
stant (log(L) − φ(L)) can be written as the true log power
spectrum plus approximately Gaussian noise η(ω) with
zero mean and known variance σ 2

η [30].
The model in Equation 8 is well suited for wavelet

denoising techniques [36-39] for eliminating the noise
η(ω) and obtaining a better estimate of the log spec-
trum. The idea behind refining the multitaper spectrum
by wavelet thresholding can be summarized into four
steps [16].

• Obtain the multitaper spectrum using Equations 1 to
3 and calculate Z(w) using Equation 7.

• Apply a standard periodic discrete wavelet transform
(DWT) out to level q0 to Z(w) to get the empirical
DWT coefficients zj,k at each level j, where q0 is
specified in advance [40].

• Apply a thresholding procedure to zj,k .
• The inverse DWT is applied to the thresholded

wavelet coefficients to obtain the refined log
spectrum.

3 Speech enhancement based on constrained
Wiener filtering algorithm

Among the numerous techniques that were developed,
the Wiener filter can be considered as one of the most
fundamental SE approaches, which has been delineated
in different forms and adopted in various applications
[4]. The Wiener gain function is the least aggressive, in
terms of suppression, providing small attenuation even at
extremely low SNR levels.
A block diagram of the proposed SE algorithm is shown

in Figure 1. The initial four frames are assumed to be noise
only. The algorithm can be described as follows. The input
noisy speech signal is decomposed into frames of 20-ms
length with an overlap of 10 ms by the Hann window.
Each segment was transformed using a 160-point discrete
Fourier transform (DFT). The spectrum of the segmented
noisy and noise signal are estimated by the multitaper
method and then further refined by wavelet threshold-
ing technique. The estimated ‘clean’ spectrum was gotten
from the refined multitaper estimated noisy and noise
spectrum. On the other hand, the noise-corrupted sen-
tences were enhanced by the Wiener algorithm based on
a priori SNR estimation [3]. The region I+II constraints
were then imposed on the enhanced spectrum. Finally, the
inverse fast Fourier transform (FFT) was applied to obtain
the enhanced speech signal.
The implementation details of the proposedmethod can

be described in the following four steps. For each speech
frame,

Signal segmentation
using

Hann window

Noise estimation
The Wiener gain

function

Impose Region I+II
constraints

Inverse Discrete
Fourier Transform

Wavelet
Threshold the
multitaper
spectrum

Input signal

Figure 1 Block diagram of the proposed speech enhancement
algorithm.

• compute the multitaper power spectrum Ŝmt
y of the

noisy speech y using Equation 1 and estimate the
multitaper power spectrum Ŝmt

x of the clean speech
signal by Ŝmt

x = Ŝmt
y − Ŝmt

n , where Ŝmt
n is the

multitaper power spectrum of the noise. Ŝmt
n can be

obtained using noise samples collected during speech
absent frames. Here, L is set to 16. Any negative
elements of Ŝmt

x are floored as follows:

Ŝmt
x =

{
Ŝmt
y − Ŝmt

n , if Ŝmt
y > Ŝmt

n

βŜmt
n , if Ŝmt

y ≤ Ŝmt
n ,

(9)

where β is the spectral floor set to β = 0.002.
• compute Z(ω) = logŜmt

y (ω) − φ(L) + log(L) and
then apply the DWT of Z(ω) out to level q0 to obtain
the empirical DWT coefficients zj,k for each level j,
where q0 is specified to be 5 [40]. Threshold the
wavelet coefficients zj,k and apply the inverse DWT
to the thresholded wavelet coefficients to obtain the
refined log spectrum, logŜωmt

y (ω), of the noisy singal.
Repeat the above procedure to obtain the refined log
spectrum, logŜωmt

n (ω), of the noise signal. The
estimated power spectrum Ŝωmt

x (ω) of the clean
speech signal can be estimated using

Ŝωmt
x (ω) = Ŝωmt

y (ω) − Ŝωmt
n (ω) (10)

• let Y (ω, t) denote the magnitude of the noisy
spectrum at time frame t and frequency bin ω

estimated by the method in [41]. Then, the estimate
of the signal spectrum magnitude is obtained by
multiplying Y (ω, t) with a gain function G(ω, t) as
X̂(ω, t) = G(ω, t) · Y (ω, t). The Wiener gain function
is based on the a priori SNR and is given by

G(ω, t) =
√

SNRprio(ω, t)
1 + SNRprio(ω, t)

, (11)
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where SNRprio is the a priori SNR estimated using
the decision-directed approach [3,19] as follows:

SNRprio= α · X
2
M(ω, t−1)

P̂2D(ω, t−1)
+ (1−α) · max

[
Y 2(ω, t)
P̂2D(ω, t)

− 1, 0
]
,

(12)

where P̂2D(ω, t) is the estimate of the power spectral
density of background noise, and α is a smoothing
constant (typically set to α = 0.98).

• to maximize speech intelligibility, the final enhanced
spectrum, XM(ω, t), can be obtained by utilizing the
region I+II constraints to the enhanced spectrum
X̂(ω, t) as follows:

XM(ω, t) =
{
X̂(ω, t), if X̂(ω, t) < 2̂Sωmt

x (ω)

0 else (13)

Finally, the enhanced speech signal can be obtained
by apply the inverse FFT of XM(ω, t).

The above estimator was applied to 20-ms duration
frames of the noisy signal with 50% overlap between
frames. The enhanced speech signal was combined using
the overlap and add method.

4 Evaluation setup
The proposed SE algorithm was tested using a speech
database that was corrupted by eight different real-world
noises at different SNRs. The system was evaluated using
both the composite evaluation measures proposed in [42]
and the SNRLOSS measure proposed in [43].

4.1 Database description
For the evaluation of SE algorithms, NOIZEUS [44] is
preferred since it is a noisy speech corpus recorded by
[18] to facilitate comparison of SE algorithms among
different research groups [20]. The noisy database con-
tains thirty IEEE sentences [45] which were recorded in
a sound-proof booth using Tucker Davis Technologies
(TDT; Alachua, FL, USA) recording equipment. The sen-
tences were produced by three male and three female
speakers (five sentences/speaker). The IEEE database was
used as it contains phonetically balanced sentences with
relatively low word-context predictability. The 30 sen-
tences were selected from the IEEE database so as to
include all phonemes in the American English language.
The sentences were originally sampled at 25 kHz and
downsampled to 8 kHz.
To simulate the receiving frequency characteristics of

the telephone handsets, the intermediate reference sys-
tem (IRS) filter used in ITU-T P.862 [46] for evaluation of
the perceptual evaluation of speech quality (PESQ) mea-
sures was independently applied to the clean and noise

signal [17]. Then, noise segment of the same length as the
speech signal was randomly cut out of the noise record-
ings, appropriately scaled to reach the desired SNR levels
(−8,−5,−2, 0, 5, 10, and 15 dB) and finally added to the
filtered clean speech signal. Noise signals were taken from
the AURORA database [47] and included the following
recordings from different places: train, babble (crowd of
people), car, exhibition hall, restaurant, street, airport, and
train station. Therefore, in total, there are 1,680 (30 sen-
tences × 8 noises × 7 SNRs) noisy speech segments in the
test set.

4.2 Performance evaluation
The performance of an SE algorithm can be evaluated
both subjectively and objectively. In general, subjective lis-
tening test is the most accurate and preferable method
for evaluating speech quality and intelligibility. However,
it is time consuming and cost expensive. Recently, many
researchers have placed much effort on developing objec-
tive measures that would predict subjective quality and
intelligibility with high correlation [42,43,48,49] with sub-
jective listening test. Among them, the composite objec-
tive measures [42] were proved to have high correlation
with subjective ratings and, at the same time, capture
different characteristics of the distortions present in the
enhanced signals [35], while the SNRLOSS measure [43]
was found appropriate in predicting speech intelligibility
in fluctuating noisy conditions by yielding a high corre-
lation for predicting sentence recognition. Therefore, the
composite objective measures and the SNRLOSS measure
were adopted to predict the performance of the proposed
SE algorithm on subjective quality and speech intelligibil-
ity, respectively.

4.2.1 The compositemeasures to predict subjective speech
quality

The composite objective measures are obtained by lin-
early combining existing objective measures that highly
correlate with subjective ratings. The objective measures
include segmental SNR (segSNR) [18], weighted-slope
spectral (WSS) [50], PESQ [51], and log likelihood ration
(LLR) [18].
The three new composite measures obtained from mul-

tiple linear regression analysis are given below:

• Csig: A five-point scale of signal distortion (SIG)
formed by linearly combining the LLR, PESQ, and
WSS measures (Table 1).

• Cbak: A five-point scale of noise intrusiveness (BAK)
formed by linearly combining the segSNR, PESQ, and
WSS measures (Table 1).

• Covl: The mean opinion score of overall quality
(OVRL) formed by linearly combining the PESQ,
LLR, and WSS measures.
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Table 1 Scale of signal distortion, background intrusiveness and overall quality

Scale of signal distortion Scale of background intrusiveness Scale of overall quality

5- very natural, no degradation 5- not noticeable 5- excellent

4- fairly natural, little degradation 4- somewhat noticeable 4- good

3- somewhat natural, somewhat degraded 3- noticeable but not intrusive 3- fair

2- fairly unnatural, fairly degraded 2- fairly conspicuous, somewhat intrusive 2- poor

1- very unnatural, very degraded 1- very conspicuous, very intrusive 1- bad

The three new composite measures obtained from mul-
tiple linear regression analysis are given below:

Csig= 3.093− 1.029 · LLR + 0.603 · PESQ − 0.009 · WSS
(14)

Cbak = 1.634 + 0.478 · PESQ − 0.007 · WSS
+ 0.063 · segSNR (15)

Covl= 1.594 + 0.805 · PESQ − 0.512 · LLR− 0.007 · WSS
(16)

The correlation coefficients between the three compos-
ite measures and real subjective measures are given in
Table 2 [42]. All three parameters should be maximized in
order to get the best performance.

4.2.2 The SNRLOSS measure to predict speech intelligibility
The SNR loss in band j and frame m is defined as follows
[43]:

SL( j,m) = SNRX( j,m) − SNRX̂( j,m), (17)

where SNRX(j,m) is the input SNR in band j, SNRX̂( j,m)

is the SNR of the enhanced signal in the jth frequency
band at themth frame.
Assuming the SNR range is restricted to [−SNRLim,

SNRLim] dB (SNRLim = 3 in this paper), the SL( j,m) term
is then limited as follows:

ŜL(j,m) = min(max(SL(j,m),−SNRLim), SNRLim)

(18)

and subsequently mapped to the range of [0, 1] using the
following equation:

Table 2 Correlation coefficients between the composite
measures and subjective measure

Csig Cbak Covl

SIG 0.7

BAK 0.58

OVRL 0.73

SNRLOSS( j,m) =

⎧⎪⎪⎨⎪⎪⎩
− C−

SNRLim
ŜL( j,m), if ŜL( j,m) < 0

C+
SNRLim

ŜL( j,m), if ŜL( j,m) ≥ 0

(19)

where C− and C+ are parameters (fixed to be 1 in
this paper) controlling the slopes of the mapping func-
tion which was defined in the range of [0, 1]; therefore,
the frame SNRLOSS is normalized to the range of 0 ≤
SNRLOSS( j,m) ≤ 1. The average SNRLOSS is finally com-
puted by averaging SNRLOSS( j,m) over all frames in the
signal as follows:

SNRLOSS = 1
M

M−1∑
m=0

f SNRLOSS(m), (20)

where M is the total number of data segments in the sig-
nal, and f SNRLOSS(m) is the average (across bands) SNR
loss computed as follows:

f SNRLOSS(m) =
∑K

j=1W ( j) · SNRLOSS( j,m)∑K
j=1W ( j)

, (21)

where W ( j) is the weight (i.e., band importance function
[52]) placed on the jth frequency band and was taken from
Table B.1 in the ANSI standard [52].
The implementation of the SNRLOSS measure was sup-

plied in the website of the authors in [43]. The smaller the
value of the SNRLOSS measure is, the better performance
of the SE algorithm is achieved.

5 Simulation results
The evaluation of the subjective quality and intelligibility
of the speech enhanced by our proposed SE algorithm are
reported in this section. Three other SE schemes, namely,
wavelet thresholding (WT) [16], KLT [9], and Wiener
algorithm with clean signal present (Wiener_Clean) [19],
were also evaluated in order to gain a comparative anal-
ysis of the proposed SE algorithm. The KLT algorithm
was proved in [1] and [22] by subjective tests to per-
form well in terms of preserving speech intelligibility for
normal hearing listeners and improving speech intelligi-
bility significantly for cochlear implant users in regard to
recognition of sentences corrupted by stationary noises,
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respectively. The Wiener_Clean algorithm was taken as
the ground truth in this paper because there is clean sig-
nal used in the algorithm. The unprocessed noisy signal
(UP) was also evaluated by the SNRLOSS measure for com-
parison purposes. The implementations of these three
schemes were taken from the implementations in [18].

5.1 Performance of predicting subjective quality
5.1.1 Performance average over all eight kinds of noise
In Figure 2, the proposed algorithm is compared withWT
and KLT algorithms in terms of the composite measures
averaging over all eight noises for seven SNRs. The four
objective measures (LLR, segSNR, WSS, and PESQ) that
composed the composite measures were also given in the
first row for reference. The Wiener_Clean algorithm, as
the ground truth, performed the best for all four objective
evaluation measures. According to [42], the LLR measure
performed the best in terms of predicting signal distor-
tion, while the PESQ measure gave the best prediction
for both noise intrusiveness and overall speech quality.
From the first row of Figure 2, we can notice that our pro-
posed algorithm gives better performance than both WT
and KLT in terms of the LLR measure for all seven SNRs
tested. Moreover, when SNR is smaller than 5 dB, our pro-
posed algorithm also performed better than bothWT and
KLT for the PESQmeasure.
The second row of Figure 2 shows the composite

measures, which include Csig, Cbak, and Covl, estimated
by the combination of all those four objective mea-
sures expressed in the first row. In terms of both signal

distortion Csig and overall quality Covl, our proposed
method performs the best when SNR is less than 10 dB.
Specifically speaking, for overall quality measure Covl, the
proposed algorithm improved 10.94%, 18.94%, 21.63%,
23.66%, and 6.67% for −8,−5,−2, 0, and 5 dB, respec-
tively, when compared with the KLT method. In gen-
eral, the proposed algorithm achieved 13.88% and 6.40%
improvement for Csig and Covl, respectively, when average
over all seven tested SNR levels. However, for Cbak, the
WT and KLT algorithms give similar and better results
than our proposed one when SNR is no smaller than 0 dB.
The improvement was 0.98%, 6.98%, 11.11%, and 16.55%
for 0, 5, 10, and 15 dB, respectively. In average, the WT
and KLT methods were 5.14% better than our proposed
algorithm in terms of background intrusiveness Cbak.

5.1.2 Performance average over seven SNRs
Figure 3 shows the three different composite measures
averaged over seven SNRs for eight kinds of noise com-
puted forWT, KLT,Wiener_Clean, and proposed SE algo-
rithms. The Wiener_Clean algorithm still works as the
ground truth here. From Figure 3, it is clear that in terms
of Csig, the KLT works much better than WT. Hence,
the proposed algorithm is compared with only the KLT
method here. We observe that on average, the proposed
algorithm is better than the KLT method in terms of Csig
for train (9.19%), babble (15.93%), car (14.51%), exhibition
hall (7.74%), restaurant (16.74%), street (13.42%), airport
(16.64%), and train station (16.23%) noises. The number
in the bracket indicates the Csig by which our proposed
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Figure 2 Averaged over seven SNRs. The composite measure comparisons for four SE schemes (WT, KLT, proposed, and Wiener_Clean) averaged
over seven SNRs (−8,−5,−2, 0, 5, 10, and 15 db) for eight kinds of noise.
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Figure 3 Averaged over eight kinds of noise. The composite measure comparisons for four SE schemes (WT, KLT, proposed, and Wiener_Clean)
averaged over eight kinds of noise for seven SNRs (−8,−5,−2, 0, 5, 10, and 15 dB).

algorithm is better than the KLT method. The mean Csig
over all eight noise types of our proposed SE algorithm
is 13.88% better than that of the KLT method. Further-
more, the proposed SE algorithms outperforms the KLT
in terms of Covl by an average of 6.40% over all eight
kinds of noise that were considered. However, in terms of
background intrusiveness Cbak, the KLT algorithm gives
an average of 5.14% better results than our proposed
algorithm.
Thus, in conclusion, the proposed SE algorithmwas pre-

dicted to be able to achieve the best overall subjective
quality for most SNRs and all noise types considered when
comparing with WT and KLT algorithms.

5.2 Performance of predicting speech intelligibility
The SNRLOSS measure values obtained from each algo-
rithm (include UP) were subjected to statistical analysis in

order to assess their significant differences. A highly sig-
nificant effect (p < 0.005) was found in all SNR levels and
all types of noise by analysis of variance (ANOVA). Fol-
lowing the ANOVA, multiple comparison statistical tests
according to Tukey’s HSD test were done to assess the sig-
nificance between algorithms. The difference was deemed
significant if the p value was smaller than 0.05.
Table 3 gives the statistical comparisons of the SNRLOSS

measure between unprocessed noisy sentences (UP) and
enhanced sentences by four SE algorithms (WT, KLT,
Wiener_Clean, and proposed). At the same time, the com-
parisons between our proposed SE algorithm and the
other three algorithms were also given. From Table 3, we
know that when compared with the UP, our proposed
algorithm was predicted by the SNRLOSS measure to be
able to improve the intelligibility in low SNRs for most
noises tested (italicized). The R in the table gives the
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Table 3 Statistical comparisons of the SNRLOSS measure between unprocessed sentences and enhanced sentences by SE algorithms

WT-UP KLT-UP Wiener_Clean-UP Proposed-UP Proposed-WT Proposed-KLT Proposed-Wiener_Clean

Noise SNR (dB) R (%) p value R (%) p value R (%) p value R (%) p value R (%) p value R (%) p value R (%) p value

Train −8 1.30 0.000 0.98 0.011 −7.05 0.000 −0.87 0.031 −2.15 0.000 -1.83 0.000 6.64 0.000

−5 1.61 0.000 1.26 0.004 −6.87 0.000 −0.91 0.076 −2.47 0.000 −2.13 0.000 6.41 0.000

−2 1.93 0.000 1.43 0.005 −6.74 0.000 −0.96 0.127 −2.83 0.000 −2.35 0.000 6.20 0.000

0 3.41 0.000 2.33 0.002 −9.83 0.000 −1.67 0.054 −4.92 0.000 −3.92 0.000 9.04 0.000

5 3.44 0.001 2.12 0.084 −8.95 0.000 0.45 0.983 −2.89 0.004 −1.63 0.264 10.32 0.000

10 2.96 0.024 2.47 0.091 −7.06 0.000 3.74 0.002 0.76 0.930 1.25 0.687 11.63 0.000

15 3.54 0.034 4.96 0.001 −1.85 0.553 10.76 0.000 6.97 0.000 5.52 0.000 12.85 0.000

Babble −8 1.61 0.000 0.73 0.128 −7.69 0.000 −1.16 0.002 −2.73 0.000 −1.88 0.000 7.07 0.000

−5 2.25 0.000 1.21 0.010 −7.23 0.000 −1.11 0.022 −3.28 0.000 −2.30 0.000 6.60 0.000

−2 2.42 0.000 1.22 0.047 −6.90 0.000 −1.06 0.118 −3.39 0.000 −2.25 0.000 6.28 0.000

0 3.25 0.000 1.55 0.046 −9.57 0.000 −1.85 0.009 −4.93 0.000 −3.34 0.000 8.54 0.000

5 4.88 0.000 2.76 0.002 −8.06 0.000 0.10 1.000 −4.56 0.000 −2.59 0.004 8.87 0.000

10 6.11 0.000 4.74 0.000 −4.76 0.000 4.72 0.000 −1.31 0.684 −0.02 1.000 9.95 0.000

15 6.84 0.000 7.72 0.000 1.91 0.687 12.76 0.000 5.54 0.001 4.67 0.006 10.65 0.000

Car −8 1.18 0.000 0.12 0.984 −8.38 0.000 −1.89 0.000 −3.04 0.000 −2.01 0.000 7.09 0.000

−5 1.90 0.000 0.46 0.424 −8.20 0.000 −2.11 0.000 −3.94 0.000 −2.56 0.000 6.64 0.000

−2 2.25 0.000 0.56 0.321 −8.20 0.000 −2.48 0.000 −4.62 0.000 −3.03 0.000 6.23 0.000

0 3.38 0.000 0.78 0.373 −11.23 0.000 −3.45 0.000 −6.61 0.000 −4.19 0.000 8.77 0.000

5 3.46 0.000 −0.21 0.997 −10.70 0.000 −2.33 0.001 −5.59 0.000 −2.12 0.005 9.38 0.000

10 5.32 0.000 1.90 0.345 −7.52 0.000 1.55 0.554 −3.58 0.003 −0.34 0.997 9.81 0.000

15 5.10 0.000 2.78 0.075 −2.68 0.093 8.25 0.000 2.99 0.030 5.32 0.000 11.22 0.000

Exhibition Hall −8 0.58 0.026 −0.42 0.201 −7.79 0.000 −1.44 0.000 −2.01 0.000 −1.03 0.000 6.88 0.000

−5 1.01 0.000 −0.17 0.947 −7.70 0.000 −1.61 0.000 −2.60 0.000 −1.45 0.000 6.60 0.000

−2 1.41 0.000 0.03 1.000 −7.48 0.000 −1.83 0.000 −3.20 0.000 −1.86 0.000 6.10 0.000

0 4.00 0.000 0.77 0.738 −10.52 0.000 −1.95 0.020 −5.72 0.000 −2.70 0.000 9.58 0.000

5 3.68 0.000 −0.62 0.889 −9.69 0.000 0.15 0.999 −3.40 0.000 0.77 0.779 10.90 0.000

10 4.86 0.001 2.14 0.393 −6.57 0.000 4.34 0.004 −0.49 0.993 2.15 0.365 11.67 0.000

15 6.17 0.000 4.88 0.003 −1.24 0.880 11.13 0.000 4.67 0.002 5.96 0.000 12.53 0.000
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Table 3 Statistical comparisons of the SNRLOSS measure between unprocessed sentences and enhanced sentences by SE algorithms (Continued)

Restaurant −8 1.81 0.000 0.95 0.033 −7.42 0.000 −1.14 0.005 −2.90 0.000 −2.07 0.000 6.78 0.000

−5 2.15 0.000 1.10 0.044 −7.09 0.000 −1.07 0.053 −3.16 0.000 −2.15 0.000 6.47 0.000

−2 2.18 0.000 1.12 0.113 −6.67 0.000 −1.05 0.159 −3.16 0.000 −2.14 0.000 6.03 0.000

0 4.76 0.000 3.21 0.000 −8.82 0.000 −0.88 0.746 −5.38 0.000 −3.96 0.000 8.70 0.000

5 4.06 0.002 2.53 0.142 −7.90 0.000 0.83 0.939 −3.10 0.028 −1.65 0.525 9.49 0.000

10 7.40 0.000 6.27 0.000 −3.21 0.053 6.53 0.000 −0.81 0.945 0.24 1.000 10.06 0.000

15 8.27 0.000 9.01 0.000 −3.77 0.101 15.18 0.000 6.38 0.000 5.67 0.001 11.00 0.000

Street −8 1.11 0.045 0.72 0.363 −7.26 0.000 −1.27 0.015 −2.35 0.000 −1.98 0.000 6.46 0.000

−5 1.48 0.017 0.89 0.329 −7.24 0.000 −1.32 0.044 −2.76 0.000 −2.19 0.000 6.39 0.000

−2 1.58 0.030 0.86 0.502 −7.12 0.000 −1.36 0.088 −2.90 0.000 −2.20 0.001 6.21 0.000

0 4.76 0.000 2.90 0.004 −9.14 0.000 −1.13 0.622 −5.62 0.000 −3.91 0.000 8.82 0.000

5 4.64 0.000 2.85 0.036 −8.59 0.000 0.74 0.944 −3.73 0.001 −2.05 0.210 10.20 0.000

10 6.28 0.001 5.29 0.007 −5.61 0.003 5.36 0.006 −0.86 0.976 0.07 1.000 11.62 0.000

15 7.55 0.000 7.49 0.000 0.47 0.998 12.22 0.000 4.34 0.014 4.41 0.012 11.70 0.000

Airport −8 1.80 0.000 0.96 0.147 −7.89 0.000 −1.51 0.004 −3.25 0.000 −2.44 0.000 6.93 0.000

−5 2.31 0.000 1.37 0.048 −7.42 0.000 −1.37 0.048 −3.60 0.000 −2.70 0.000 6.53 0.000

−2 2.65 0.000 1.60 0.035 −6.78 0.000 −1.13 0.249 −3.68 0.000 −2.68 0.000 6.06 0.000

0 4.53 0.000 1.72 0.225 −9.43 0.000 −1.45 0.392 −5.72 0.000 −3.12 0.001 8.81 0.000

5 5.26 0.000 3.36 0.007 −7.69 0.000 0.60 0.972 −4.42 0.000 −2.67 0.042 8.99 0.000

10 7.72 0.000 5.88 0.000 −2.90 0.113 6.58 0.000 −1.05 0.876 0.66 0.977 9.76 0.000

15 7.76 0.000 7.43 0.000 2.61 0.270 13.81 0.000 5.62 0.000 5.95 0.000 10.92 0.000

Train station −8 1.67 0.000 0.89 0.034 −8.37 0.000 −1.91 0.000 −3.52 0.000 −2.78 0.000 7.04 0.000

−5 2.30 0.000 1.22 0.010 −7.89 0.000 −1.90 0.000 −4.11 0.000 −3.09 0.000 6.50 0.000

−2 2.64 0.000 1.47 0.006 −7.53 0.000 −1.88 0.000 −4.41 0.000 −3.30 0.000 6.11 0.000

0 3.19 0.000 0.58 0.857 −10.72 0.000 −2.97 0.000 −5.98 0.000 −3.54 0.000 8.67 0.000

5 4.25 0.003 1.24 0.812 −9.47 0.000 −1.63 0.608 −5.64 0.000 −2.84 0.092 8.65 0.000

10 5.43 0.000 2.38 0.192 −5.94 0.000 2.79 0.082 −2.50 0.115 0.41 0.995 9.29 0.082

15 7.60 0.000 6.30 0.000 0.38 0.999 11.19 0.000 3.33 0.065 4.60 0.004 10.76 0.000

Four SE algorithms: WT, KLT, Wiener_Clean, and proposed. The comparisons between our proposed SE algorithm and the other three were also given. The results in italics show the SNRLOSS measure by which our proposed
SE algorithm is better than others, and the difference was significant (p<0.05).
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percentage by which our algorithm is better than oth-
ers; the value is negative because better performance gave
smaller SNRLOSS measure. Furthermore, our proposed SE
algorithm was also compared with the WT and KLT algo-
rithms and was proved to supply better performance for
most conditions tested.

6 Conclusions
The main contribution of this paper was the introduc-
tion of a new SE algorithm based on imposing constraint
on Wiener gain function. Experiments were done on
NOIZEUS database for eight kinds of noise (AURORA
database) across seven different SNRs ranging from −8
to 15 dB. The Wiener_Clean algorithm was taken as the
ground truth. The performance of our proposed algo-
rithm was compared with WT and KLT methods. The
results were analyzedmainly by three compositemeasures
and the SNRLOSS measure to predict the performance on
subjective quality and speech intelligibility, respectively.
Through extensive experiments, we showed that when
averaged over all eight kinds of noises, our proposed SE
algorithm achieved the best results in terms of predict-
ing signal distortion Csig and overall quality Covl when
SNR is no more than 10 dB. Furthermore, we investigated
the individual performance on each noise type. Our pro-
posed SE algorithm outperformed the KLT algorithm for
all noise types tested in terms of both Csig and Covl. On
the other hand, the SNRLOSS measure comparisons with
both the UP and other SE algorithms predicted that our
proposed algorithm was able to improve speech intelligi-
bility for low SNR levels and outperform WT and KLT
algorithms for most conditions examined.
It is important to point out that the three composite

measures and the SNRLOSS measure used in this paper
are adopted for predicting the subjective quality and
intelligibility of noisy speech enhanced by noise suppres-
sion algorithms because of their high correlation with
real subjective tests [42,43]. Further subjective tests on
both normal-hearing listeners and hearing-impaired lis-
teners are needed to verify the effectiveness of the pro-
posed algorithm on improving both subjective quality
and speech intelligibility. It is also worth mentioning that
depending on the nature of the application, some practi-
cal SE systems may require very high quality speech but
can tolerate a certain amount of noise, while other sys-
temsmay want speech as clean as possible even with some
degree of speech distortion. Therefore, it should be noted
that according to different applications, different SE algo-
rithms should be chosen to meet the variant requirement.
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