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Abstract

This paper presents a voice conversion (VC) method that utilizes conditional restricted Boltzmann machines (CRBMs)
for each speaker to obtain high-order speaker-independent spaces where voice features are converted more easily
than those in an original acoustic feature space. The CRBM is expected to automatically discover common features
lurking in time-series data. When we train two CRBMs for a source and target speaker independently using only
speaker-dependent training data, it can be considered that each CRBM tries to construct subspaces where there are
fewer phonemes and relatively more speaker individuality than the original acoustic space because the training data
include various phonemes while keeping the speaker individuality unchanged. Each obtained high-order feature is
then concatenated using a neural network (NN) from the source to the target. The entire network (the two CRBMs and
the NN) can be also fine-tuned as a recurrent neural network (RNN) using the acoustic parallel data since both the
CRBMs and the concatenating NN have network-based representation with time dependencies. Through
voice-conversion experiments, we confirmed the high performance of our method especially in terms of objective
evaluation, comparing it with conventional GMM, NN, RNN, and our previous work, speaker-dependent DBN
approaches.

Keywords: Voice conversion; Conditional restricted Boltzmann machine; Deep learning; Recurrent neural network;
Speaker-specific features

1 Introduction
In recent years, voice conversion (VC), a technique used
to change specific information in the speech of a source
speaker to that of a target speaker while retaining lin-
guistic information, has been garnering much attention
in speech signal processing. VC techniques have been
applied to various tasks, such as speech enhancement [1],
emotion conversion [2], speaking assistance [3], and other
applications [4,5]. Most of the related work in VC focuses
not on f0 conversion but on the conversion of spectrum
features, and we conform to that in this report as well.
Various statistical approaches to VC have been stud-

ied so far, including those discussed in [6,7]. Among
these approaches, the Gaussian mixture model (GMM)-
based mapping method [8] is widely used, and a number
of improvements have been proposed. Toda et al. [9]
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introduced dynamic features and the global variance (GV)
of the converted spectra over a time sequence. Helander
et al. [10] proposed transforms based on partial least
squares (PLS) to prevent the over-fitting problem encoun-
tered in standard multivariate regression. There have also
been approaches that do not require parallel data since
they use a GMM adaptation technique [11], eigenvoice
GMM [12,13] or probabilistic integration model [14].
Other approaches based on statistical approaches have
been proposed; Jian et al. [15] used canonical correlation
analysis for the VC, and Takashima et al. [16] proposed a
VC technique using exemplar-based non-negative matrix
factorization (NMF).
However, most of the conventional VCmethods, includ-

ing the GMM-based approaches, rely on ‘shallow’ voice
conversion based on linear (or piecewise linear) trans-
formation. That means a source speech was converted
in the original feature space directly or in the shallow
architecture with a few hidden layers. To capture the char-
acteristics of speech more precisely, it is necessary to
have a deeper non-linear architecture with more hidden
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layers. The shape of the vocal tract is generally non-linear,
so non-linear voice conversion is more compatible with
human speech. One example of a non-linear VC method
is proposed by Narendranath et al. [17] and Desai et al.
[18] based on neural networks (NN). In the GMM-based
approaches, the conversion is achieved so as to maximize
the conditional probability calculated from a joint proba-
bility of source speech and target speech, which is trained
beforehand. On the other hand, NN-based approaches
directly train the conditional probability, which converts
the feature vector of a source speaker to that of a tar-
get speaker. It is often reported that such a discriminative
approach performs better than a generative approach,
such as GMM, in speech recognition and synthesis as well
as in VC [19,20]. For these reasons, NN-based approaches
achieve relatively high performance if the training samples
are carefully prepared [18].
These approaches often suffer from over-smoothing or

over-fitting problems. GMM-based approaches represent
acoustic features using multiple Gaussian distributions,
which are estimated by averaging observations with simi-
lar context descriptions in the training. Therefore, the out-
puts of the GMMdistribute near themodes (means) of the
Gaussians, which causes problems with over-smoothing.
Furthermore, over-fitting problems arise when we give
more Gaussian mixtures due to precise estimation of the
observed distribution. In the NN-based approaches, the
model is often over-fitted due to its complexity because
it exaggerates small fluctuations in the unknown data if
the number of training data is not enough relative to the
number of parameters.
In order to alleviate the over-smoothing effect in a

GMM-based method, some methods have been pro-
posed so far, such as the global variance model [21],
a minimizing-divergence model [22], and post-filtering
[23]. An exemplar-based VC system using non-negative
matrix factorization (NMF) has also been proposed to
tackle the over-smoothing problems [16,24]. In our earlier
work [25], we proposed a new VC technique that copes
with the over-fitting problems in NN-based approaches,
using a combination of speaker-dependent restricted
Boltzmann machines (RBMs) [26] (or deep belief nets
(DBN) [27]) that captures high-order features in an unsu-
pervised manner and a concatenating NN. It is reported
that these graphical models are better at representing the
distribution of high-dimensional observations with cross-
dimension correlations than GMM in speech synthesis
[28] and in speech recognition [29]. Since Hinton et al.
introduced an effective training algorithm for the DBN in
2006 [27], the use of deep learning rapidly spread in the
field of signal processing, as well as in speech signal pro-
cessing. An RBM (or DBN) has been used, for example,
for hand-written character recognition [27], 3-D object
recognition [30], machine transliteration [31], and so on.

In this paper, we extend our earlier work in [25] to
systematically capture time information as well as latent
(deep) relationships between a source speaker’s and a
target speaker’s features in a single network. This is
accomplished by combining speaker-dependent condi-
tional restricted Boltzmann machines (CRBMs) and a
concatenating NN.
A CRBM is a non-linear probabilistic model used to

represent time series data consisting of three factors: (i)
an undirected model between binary latent variables and
the current visible variables, (ii) a directed model from
the previous visible variables to the current visible vari-
ables, and (iii) a directed model from the previous visible
variables to the latent variables. In our approach, we first
train two exclusive CRBMs for the source and the tar-
get speakers independently using segmented training data
prepared for each speaker, then train a NN using the
projected features, and finally, fine-tune the networks as
a single network for VC. Because the training data for
the source speaker CRBM include various phonemes par-
ticular to the speaker, the speaker-dependent network
tries to capture the abstractions to maximally express
the training data that have abundant speaker individu-
ality information and less phoneme-related information.
Furthermore, the network captures time-series features
with the directed models (ii) and (iii), enabling it to dis-
cover temporal correlations at the same time. Therefore,
we expect that if feature conversion is conducted in such
time-related individuality-emphasized high-order spaces,
it is much easier to convert voice features than if the
original spectrum-based space is used.
Similar research can be found in [32] and [33]. Wu

et al. employed a CRBM to capture the linear and non-
linear relationship between the source and the target fea-
tures [32]. Chen et al. also used a RBM to model the joint
spectral distribution instead of using the conventional
joint density GMM [33]. Unlike these approaches, which
is based on a joint model, our method trains two exclu-
sive RBMs for each speaker, aiming to capture speaker-
specific conversion-friendly features. We will discuss the
differences between these approaches and the proposed
method in Section 4.
The rest of the article is organized as follows. In

Section 2, we briefly review the fundamental techniques,
(RBMs and CRBMs) before explaining our method. The
proposed VC system is presented in Section 3, and we
compare the proposed method with existing related work
in Section 4. We describe the various experiments and
VC results in Section 5, and we conclude the article in
Section 6.

2 Preliminaries
Our voice conversion system uses CRBMs to capture
high-order conversion-friendly features. A RBM, the
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fundamental model of the CRBM, was first introduced as
a method of representing binary-valued data [34,35], and
it later came to be used to deal with real-valued data (such
as acoustic features) known as a Gaussian-Bernoulli RBM
(GBRBM) [36]. However, it has been reported that the
original GBRBM had some difficulties because the train-
ing of the parameters was unstable [27,37,38]. Later, an
improved learning method for GBRBM was proposed by
Cho et al. [39] to overcome the difficulties. We briefly
review RBMs and CRBMs in this section, introducing
their improved versions.

2.1 RBM
A RBM is an undirected graphical model that defines the
distribution of visible variables with binary hidden (latent)
variables. In literature dealing with the improved GBRBM
[39], the joint probability p(v,h) of real-valued visible
units v =[ v1, · · · , vI ]T , vi ∈ R and binary-valued hidden
units h =[ h1, · · · , hJ ]T , hj ∈ {0, 1} is defined as follows:

p(v,h) = 1
Z
e−E(v,h) (1)

E(v,h) =
∥∥∥∥v − b

2σ

∥∥∥∥
2
− cTh −

( v
σ 2

)T
Wh (2)

Z =
∑
v,h

e−E(v,h), (3)

where ‖ · ‖2 denotes L2 norm. W ∈ R
I×J , σ ∈ R

I×1,
b ∈ R

I×1, and c ∈ R
J×1 are model parameters of the

GBRBM, indicating the weight matrix between visible
units and hidden units, the standard deviations associated
with Gaussian visible units, a bias vector of the visi-
ble units, and a bias vector of hidden units, respectively.
The fraction bar in Equation 2 denotes the element-wise
division.
Because there are no connections between visible units

or between hidden units, the conditional probabilities
p(h|v) and p(v|h) form simple equations as follows:

p(hj = 1|v) = S
(
cj +

( v
σ 2

)T
W :j

)
(4)

p(vi = v|h) = N
(
v | bi + W i:h, σ 2

i
)
, (5)

where W :j and W i: denote the jth column vector and the
ith row vector, respectively. S(·) and N (·|μ, σ 2) indicate
an element-wise sigmoid function and Gaussian proba-
bility density function with the mean μ and variance σ 2,
respectively.
For parameter estimation, the log-likelihood of a col-

lection of visible units L = log
∏

n p(vn) is used as an

evaluation function. Differentiating partially with respect
to each parameter, we obtain:

∂L
∂W ij

=
〈
vihj
σ 2
i

〉
data

−
〈
vihj
σ 2
i

〉
model

(6)

∂L
∂bi

=
〈
vi
σ 2
i

〉
data

−
〈
vi
σ 2
i

〉
model

(7)

∂L
∂cj

= 〈
hj
〉
data − 〈hj〉model , (8)

where 〈·〉data and 〈·〉model indicate expectations of input
data and the inner model, respectively. However, it is
generally difficult to compute the second term, so, typi-
cally, the expected reconstructed data 〈·〉recon computed
by Equations 4 and 5 is used instead [27].
In the improved GBRBM, the variance parameter σ 2

i is
replaced as σ 2

i = ezi so as to constrain the variance to a
non-zero value and provide stability in training the param-
eters. Under this modification, the gradient with respect
to zi becomes:

∂L
∂zi

= e−zi
〈
(vi−bi)2

2 − viW i:h
〉
data

−e−zi
〈
(vi−bi)2

2 − viW i:h
〉
model

. (9)

Using Equations 6, 7, 8, and 9, each parameter can
be updated by stochastic gradient descent with a fixed
learning rate and a momentum term.

2.2 CRBM
A CRBM is an extended version of RBM proposed by
Taylor et al. [40] and is suitable for the representation
of time series data. In addition to the use of an undi-
rected model as in RBM, CRBM also employs directed
models from a collection of previous visible units V ′(t) ={
v(p)}t−1

p=t−P , v
(p) =

[
v(p)
1 , · · · , v(p)

I

]T
, v(p)

i ∈ R to binary

hidden units h(t) =
[
h(t)
1 , · · · , h(t)

J

]T
, h(t)

j ∈ {0, 1} and to

the current visible units v(t) =
[
v(t)
1 , · · · , v(t)

I

]T
, v(t)

i ∈ R

at the current frame t, where P is the number of previ-
ous frames from the current frame taken into account. In
this model, there are three types of parameters to be esti-
mated:W v′pv ∈ R

I×I (a directed weight matrix from v(t−p)

to v(t)),W v′ph ∈ R
I×J (a directed weight matrix from v(t−p)

to h(t)), and W vh ∈ R
I×J (an undirected weight matrix

between v(t) and h(t)). These weights are estimated using
contrastive divergence in a similar manner to an RBM
by maximizing the likelihood L = log

∏
t p
(
v(t)|V ′(t)),

where:
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p
(
v(t)|V ′(t)) = 1

Z
∑
h(t)

e−E
(
v(t),h(t)|V ′(t)

)
(10)

Z =
∑

v(t),h(t)

e−E
(
v(t),h(t)|V ′(t)

)
. (11)

Inspired by the improvement learning method of a
GBRBM, we define the energy function E in this paper as
follows:

E
(
v(t),h(t)|V ′(t)) (12)

=
∥∥∥∥∥v

(t) − b′(t)

2σ

∥∥∥∥∥
2

− c′(t)Th(t) −
(
v(t)

σ 2

)T

W vhh(t)

b′(t) = b +
∑
p

WT
v′pvv

(t−p) (13)

c′(t) = c +
∑
p

WT
v′phv

(t−p). (14)

We obtain the following partial differential equations to
the log-likelihood L:

∂L
∂
(
W v′pv

)
i′i

=
〈
v(t)
i v(t−p)

i′

σ 2
i

〉
data

−
〈
v(t)
i v(t−p)

i′

σ 2
i

〉
model

(15)

∂L
∂
(
W v′ph

)
i′j

=
〈
v(t−p)
i′ h(t)

j

〉
data

−
〈
v(t−p)
i′ h(t)

j

〉
model

(16)

The other parameters related to the undirected model
(W vh, b, c, and σ (or z)) are also calculated from
Equations 6, 7, 8, and 9 by proper substitution of variables.
Once the parameters are estimated, forward inference
(the conditional probability of h(t) given v(t) and V ′(t))
and backward inference (the conditional probability of v(t)

given h(t) and V ′(t)) are respectively written as:

p
(
h(t)
j = 1|v(t),V ′(t))

= S

⎛
⎝cj + v(t)TW vh:j +

∑
p

v(t−p)TW v′ph:j

⎞
⎠ (17)

p
(
v(t)
i = v|h(t),V ′(t))

= N

⎛
⎝v|bi + h(t)TWT

vhi: +
∑
p

v(t−p)TW v′pv:j , σ
2
i

⎞
⎠ (18)

3 Proposed voice conversion
In general, the fewer phonological and the more
individuality-emphasized features a source input includes
for a speaker, the easier it is to convert the source features
to target features. This paper proposes voice conversion
using such features.
Figure 1 shows an overview of our proposed voice con-

version system where we set P = 1. In our approach, we

independently train CRBMs for each speaker beforehand
as shown in Figure 1a. Variables x(t) and y(t) (x(t−1) and
y(t−1)) represent acoustic feature vectors (e.g., visible units
in a CRBM), such as Mel-frequency cepstral coefficient
(MFCC), at frame t (at frame t − 1) for a source speaker
and a target speaker, respectively.
For the source speaker, for instance, the parameter

matrix W xh is, along with W x′h and W x′x, estimated so
as to maximize the probability of T chained training sam-
ples p(x) = ∏T

t=1 p
(
x(t)|x(t−1)). Using these matrices,

an input vector x(t) at frame t given the previous vector
x(t−1) is projected into the speaker-dependent latent space
that captures speaker-individualities. The latent features
h(t)
x can be calculated using mean-field approximation as

follows:

h(t)
x = S

(
W xhx(t) + W x′hx(t−1) + cx

)
(19)

from Equation 17, where cx is a bias vector of forward
inference for the source speaker. Because each unit in the
hidden vector h(t)

x is independent from the others (due
to the nature of RBM), it captures the common char-
acteristics in the visible units. The training data usually
include various phonemes and unvarying speaker-specific
features; thus, we expect that the extracted features in h(t)

x
represent speaker-individual information. Since we esti-
mate the time-relatedmatricesW x′h andW x′x jointly with
the static term W xh as shown in Equation 12 using the
training data, they capture time-related information and
W xh can focus on capturing other static information. This
means that the obtained features in the hidden units h(t)

x
also help to capture time-related speaker-individualities.
The above discussion applies to the target speaker, and the
hidden vector for the target y(t) is obtained in the same
manner as in Equation 19:

h(t)
y = S

(
W yhy(t) + W y′hy(t−1) + cy

)
(20)

where cy is a bias vector for the target speaker.
In our approach, we convert such individuality-

emphasized features (from h(t)
x to h(t)

y ) using a NN that
has L + 2 layers (L is the number of hidden layers; typi-
cally, L is 0 or 1) as shown in Figure 1b. To train the NN,
we use the parallel training set

{
xt , yt

}T ′
t=0 where T

′ is the
number of frames of the parallel dataa. During the train-
ing stage of the NN, the projected vectors of the source
speaker’s acoustic features h(t)

x are used as inputs, and the
projected vectors of the corresponding target speaker’s
features h(t)

y are used as outputs. Weight parameters of
the NN {W l,dl}Ll=0 are estimated to minimize the error
between the output η

(
h(t)
x

)
and the target vector h(t)

y
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Figure 1 A flow chart of the proposed voice conversion system. (a) CRBMs for a source speaker (below) and a target speaker . (b) Our proposed
voice conversion architecture combining the two pre-trained speaker-dependent CRBMs with a concatenating NN.

as is typical for a NN. Once the weight parameters are
estimated, an input vector h(t)

x is converted to:

η
(
h(t)
x

)
=

L⊙
l=0

ηl
(
h(t)
x

)
(21)

ηl
(
h(t)
x

)
= S

(
W lh(t)

x + dl
)

(22)

where
⊙L

l=0 denotes the composition of L + 1 functions.
For instance,

⊙1
l=0 ηl(z) = S(W 1S(W 0z + d0) + d1) for

a NN with one hidden layer.
To convert the output of the NN to the acoustic features

of the target speaker, we simply use backward inference of
a CRBM using Equation 18, resulting in:

p
(
y(t)|h(t)

y , y(t−1)
)

= N
(
y|WT

yhh
(t)
y + W y′yy(t−1) + by, σ 2

y

)
(23)

where by and σ y are a bias vector of backward infer-
ence for the target speaker, respectively. Generalizing and
summarizing the above discussion, a voice conversion
function of our method from a source acoustic vector x(t)

to a target vector y(t) at frame t, given the previous vectors
X ′(t) = {x(t−p)})Pp=1 andY ′(t) = {y(t−p)}P

p=1, is written as:

y(t) =
L+2⊙
k=0

f(k)
(
W (k)x(t) + a(k)(X ′(t),Y ′(t))

)
(24)

whereW (k) and a(k)
(
X ′(t),Y ′(t)) denote elements of a set

of our model parameters � = {W ∪ A}:
W = {

W (k)
}L+2
k=0 (25)

=
{
W xh,W 0, · · · ,W L,W yh

T
}

(26)

A =
{
a(k)(X ′(t),Y ′(t))

}L+2

k=0
(27)

=
⎧⎨
⎩cx +

∑
p

W x′hx(t−p),d0, (28)

· · · ,dL, by +
∑
p

W y′yy(t−p)

⎫⎬
⎭ , (29)

and
{
f(k)
}L+2
k=0 = {S ,S , · · · ,S , I}, where I indicates an

identity function.
The conversion function shown in Equation 24 implies

a dynamic model of a (L + 4)-layer network with sigmoid
activated functions. Therefore, regarding it as a recurrent
neural network (RNN),b we can fine-tunec each param-
eter of the entire network by back-propagation through
time (BPTT) [41] using the acoustic parallel data. Specifi-
cally, each parameter is re-updated so as to minimize the
total error ε in a gradient-descent-based approach, which
is defined as:

ε =
∑

1≥t≥T
ε(t) = 1

2
∑

1≥t≥T

(
y(t) − ν(t)

)2
, (30)
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where ν(t) denotes the output of RNN at frame t. The
gradient with respect to θ , which is a parameter in the
highest recursive hidden layer, for instance, can be written
as follows:

∂ε

∂θ
=

∑
1≤t≤T

∂ε(t)

∂θ
(31)

∂ε(t)

∂θ
=
∑

1≤k≤t

(
∂ε(t)

∂h(t)
y

∂h(t)
y

∂h(k)
y

∂+h(k)
y

∂θ

)
(32)

∂h(t)
y

∂h(k)
y

=
∏

t≥i>k

∂h(i)
y

∂h(i−1)
y

(33)

=
∏

t≥i>k
W y′y

(
1 − S

(
h(i−1)
y

))
, (34)

where ∂+h(k)

∂θ
refers to the immediate partial derivative

of the hidden units h(k) with respect to θ (i.e., h(k−1) is
regarded as a constant with respect to θ ).
As Equation 24 indicates, we need a current acous-

tic vector from a source speaker and previous vectors
from both a source speaker and a target speaker to esti-
mate the target speaker’s current acoustic vector. How-
ever, we never know the correct previous vector of
the target speaker, so in practice, we use the last con-
verted (estimated) vectors as the previous target vector
iteratively, starting from a zero vector. We confirmed
that this approach worked well through our preliminary
experiments.

Meanwhile, a conventional GMM-based approach [9]
with M Gaussian mixtures converts the source features x
as:

y =
M∑

m=1
P (m|x)

(
�(m)

yx �(m)−1
xx

(
x − μ(m)

x

)
+ μ(m)

y

)
(35)

P(m|x) =
w(m)N

(
x;μ(m)

x ,�(m)
xx
)

∑M
m=1 w(m)N

(
x;μ(m)

x ,�(m)
xx
) (36)

where w(m), μ
(m)· and �

(m)· are the weight, the corre-
spondingmean vectors, and the corresponding covariance
matrices to the speaker of the mth mixture, respectively,
showing it to be an additive model of piecewise linear
functions. Our approach using Equation 24 is based on the
composite function of multiple different non-linear func-
tions feeding time-series data. Therefore, it is expected
that our composite model can represent more complex
relationships than the conventional GMM-based method
and other static network approaches [18,25].

4 Related work
It is worth noting that we compare our method with the
conventional method proposed by Wu et al. in [32], that
also employed a CRBM for VC. Figure 2 shows the com-
parison of graphical models among three methods. Wu’s
method directly uses CRBM to estimate the target features
y(t) from the input x(t) along with the latent features h(t)

to capture the linear and non-linear relationship between
the source and the target features (Figure 2b). On the
other hand, our method (Figure 2c) uses two CRBMs for
each of the source and the target speakers to obtain their

Figure 2Model structures of the related systems. (a) Our earlier work, speaker-dependent RBM, (b) CRBM proposed in [32], and (c) our
proposed method, speaker-dependent CRBM.
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latent features h(t)
x and h(t)

y , capturing time-related infor-
mation (from t − 1 to t frames). Connecting the latent
features using a NN, the entire conversion network of our
method consequently forms a deep architecture. Our pre-
vious approach [25] has a deep network similar to that
of the proposed method (Figure 2a); however, the differ-
ence is that it involves time-related relationships in the
network.
Since the acoustic signals we are targeting are time-

series data, the model that captures time-related informa-
tion will provide us with the better performance.

5 Experiments
5.1 Conditions
In our experiments, we conducted voice conversion
using the ATR Japanese speech database [42], compar-
ing our method (speaker-dependent restricted Boltzmann
machines; say ‘SD-CRBM’) with four methods: the well-
known GMM-based approach (‘GMM’), conventional
NN-based voice conversion [18] (‘NN’), our previous work
[25] (‘SD-RBM’) and, for a reference, a recurrent neu-
ral network with randomly-initialized weights (‘RNN’).
In order to evaluate our method under various circum-
stances, we tested male-to-female (the source and the
target speakers are identified with MMY and FTK in the
database, respectively), female-to-female (FKN and FTK),
and male-to-male (MMY and MHT) patterns.
For an input vector, we calculated 24-dimensional

MFCC features from 513-dimensional STRAIGHT spec-
tra [43] using the filter-theory [44] to decode the MFCC
back to STRAIGHT spectra in the synthesis stage. Each
speech signal was sampled at 12 kHz and windowed with
a 25-ms Hamming window every 10 ms. Unlike our previ-
ous work [25], we processed the obtainedMFCCwith zero
component analysis (ZCA) whitening [38], where we con-
firmed it worked better than without whitening, especially
for ‘NN.’ The parallel data of the source/target speakers
processed by dynamic programming were created from
216 word utterances in the dataset and were used for
the training of each method (note that two CRBMs for
‘SD-CRBM’ and two RBMs for ‘SD-RBM’ can be trained
without the necessity of using parallel data, although we
used the same parallel training data for the CRBMs and
the RBMs in this research.)
The network-based approaches (‘SD-CRBM’, ‘SD-

RBM’, ‘NN’, and ‘RNN’) were trained using gradient
descent with a learning rate of 0.01 and momentum of
0.9, with the number of epochs being 400. The parame-
ters of ‘NN’ and ‘RNN’ were initialized randomly. All the
network-basedmethods had four layers including an input
layer, two hidden layers, and an output layer. Other con-
figurations, such as the number of hidden units, will be
discussed in the following section.
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5.30

24 48 72

M
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D
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dB
)

Number of hidden units

SD-CRBM SD-RBM
NN RNN

Figure 3 Changing hidden units. The values show averaged
Mel-cepstral distortion with varying numbers of hidden units J for all
network-based methods (N = 20, 000).

For the GMM-based approach, we used diagonal covari-
ance matrices without global variance and dynamic
features.
For the objective test, 15 sentences (about 60 s

long) that were not included in the training data were
arbitrarily selected from the database (identified with
SDA01∼SDA15). For the objective evaluation, we used
Mel-cepstral distortion (MCD) to measure how close the
converted vector is to the target vector in Mel-cepstral
space. The MCD is defined as below:

MCD [dB] = 10
ln 10

√√√√2
24∑
d=1

(
cd − c′d

)2 (37)

where cd and c′d denote the dth original target MFCC and
the converted MFCC, respectively. The smaller the value
of MCD is, the closer the converted spectra are to the tar-
get spectra. We calculated the MCD for each frame in the
training data and averaged the MCD values for the final
evaluation.
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Figure 4 Changing previous frames. The values show averaged
Mel-cepstral distortion with varying numbers of previous frames P to
be taken into account for our method (N = 20, 000).
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Figure 5 Changing mixtures. The values show averaged
Mel-cepstral distortion with varying numbers of mixturesM for GMM
method (N = 20, 000).

For the subjective evaluation, ABX listening tests were
conducted, where nine participants listened to five pairs of
converted speech signals (from a development set, which
was used for the determination of model parameters) pro-
duced using our approach (‘SD-CRBM’) and the converted
speech signals produced by the other methods (‘SD-RBM’,
‘NN’, ‘RNN’, and ‘GMM’) along with an original target
speech signal (generated from analysis-by-synthesis). We
evaluated the models, which were trained using N =
5, 000 or N = 20, 000 training frames. They then selected
the better one in terms of speaker identity (how well they
can recognize the speaker from the converted speech)
and speech quality (how clear and natural the converted
speech is).

5.2 Determining appropriate parameters
In this section, we report preliminary experiments in
which we tested various models with different hyper
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Figure 6Male-to-female voice conversion results. The values
show averaged Mel-cepstral distortion for each method with varying
amounts of training data.
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Figure 7 Female-to-female voice conversion results. The values
show averaged Mel-cepstral distortion for each method with varying
amounts of training data.

parameters to determine the appropriate ones. All models
were trained using N = 20, 000 frames from the male-to-
female training data and evaluated using a development
set of five sentences (identified with SDA16∼SDA20 in
the database) that were not included in either the training
set or the test set.

5.2.1 Network-basedmethods
Here, we will see how our approach works as the number
of hidden units J in each hidden layer changes, com-
paring it to four network-based methods (‘SD-CRBM’,
‘SD-RBM’, ‘NN’, and ‘RNN’). In this preliminary experi-
ment, three architectural patterns were tested, where J =
24, 48, and 72. We used L = 0, which forms a four-layer
network for all methods (for example, when J = 48 is
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Figure 8Male-to-male voice conversion results. The values show
averaged Mel-cepstral distortion for each method with varying
amounts of training data.
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Figure 9 Subjective preference scores w.r.t. speaker identity
(in caseN = 5, 000). Our method ‘SD-CRBM’ was compared to four
other methods: ‘SD-RBM’, ‘NN’, ‘RNN’, and ‘GMM’.

used, the numbers of units in ‘NN’ from the input/source
layer to the output/target layer become 24, 48, 48, and 24
in order). For ‘SD-CRBM’, we set P = 1 (1 delay for
‘RNN’ as well), whichmeans we take into account only one
previous frame.
Figure 3 compares the averaged MCD obtained for each

architecture. As shown in Figure 3, our method ‘SD-
CRBM’ performed the best of all the methods for each
case. The interesting point is that the more hidden units
the network has, the better performance it provides for
‘SD-CRBM’ and ‘RNN’, while it is the other way around for
‘SD-RBM’ and ‘NN’. This is considered to be due to over-
fitting to the training data for ‘SD-RBM’ and ‘NN’ when
the number of parameters is large (e.g., J = 72), while
‘SD-CRBM’ and ‘RNN’ still required parameters to fit the
models that capture time-series data.
For the remaining experiments in this paper, the best

architectures for each method were used, i.e., J = 24 for
‘SD-RBM’ and ‘NN’, and J=72 for ‘SD-CRBM’ and ‘RNN’.
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Figure 10 Subjective preference scores w.r.t. speech quality
(in caseN = 5, 000). Our method ‘SD-CRBM’ was compared to four
other methods: ‘SD-RBM’, ‘NN’, ‘RNN’, and ‘GMM’.
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Figure 11 Subjective preference scores w.r.t. speaker identity
(in caseN = 20, 000). Our method ‘SD-CRBM’ was compared to four
other methods: ‘SD-RBM’, ‘NN’, ‘RNN’, and ‘GMM’.

5.2.2 The number of previous frames
We further investigated the performance of our method
‘SD-CRBM’ with the hidden units of J = 72, chang-
ing the number of previous frames in the CRBM as
P = 1, 2, 3, 4, 5. The evaluation results are described in
Figure 4, showing the averagedMCDs obtained from each
case. As shown in Figure 4, we could not necessarily
obtained a better performance as the number of previous
frames increased. One reason is that the neighbor source
vectors previous to the current one contained similar
information, and only a few source vectors were required
to estimate the current target vector. Therefore, the poor
performance with the larger number of previous frames
(e.g., P = 4) was caused because the parameter estima-
tion became more difficult as the redundant parameters
increased.
In the remaining experiments, we used P = 1,

which provided the best performance in the preliminary
experiment.
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Figure 12 Subjective preference scores w.r.t. speech quality
(in caseN = 20, 000). Our method ‘SD-CRBM’ was compared to four
other methods: ‘SD-RBM’, ‘NN’, ‘RNN’, and ‘GMM’.
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Table 1 p values between our method and eachmethod
w.r.t. speaker identity in caseN = 5, 000

SD-RBM NN RNN GMM

p 0.2796 0.1636 0.0013 0.0032

The values that satisfy p < 0.1 are in italics.

5.2.3 GMM-basedmethod
For the GMM-based voice conversion (‘GMM’), we tried
and evaluated five mixtures (8, 16, 32, 64, and 128 mix-
tures) to determine an appropriate number of mixtures.
Figure 5 shows the averaged MCDs over the develop-
ment set when using the GMM with various mixtures.
As shown in the figure, the GMM with 64 mixtures per-
formed the best of all. Therefore, we used mixtures of
64 for ‘GMM’ in the evaluation experiments described in
Section 5.3.

5.3 Evaluation
In this section, we evaluate our method (‘SD-CRBM’)
comparing it with four methods (‘SD-RBM’, ‘NN’, ‘RNN’,
and ‘GMM’) using objective and subjective criteria for
each pair of speakers, by changing the number of training
frames as N = 5, 000, 10,000, 20,000, and 40,000.

5.3.1 Results
Figures 6, 7, and 8 summarize the experimental results
for the test data, comparing each method with respect
to objective criteria for male-to-female, female-to-female,
and male-to-male voice conversion, respectively. As
shown in these Figures, the MCDs decreased as the num-
ber of training data increased in most cases (regardless
of the gender or the method). Furthermore, our approach
outperformed the other methods in every case, except
for the case where N = 20, 000 in the male-to-male
experiment.
Figures 9 and 10 show the results of subjective evalua-

tion comparing each method in terms of speaker identity
and speaker quality, respectively, when we use training
samples of N = 5, 000. Figures 11 and 12 also show the
subjective evaluation results when we use training sam-
ples of N = 20, 000. We also list the p values produced
by pairwise t-testing for each experiment in Tables 1 and
2, and in Tables 3 and 4, in terms of speaker identity
and speech quality, respectively. As shown in Figures 11
and 12, our method performed better than each oppo-
nent method in regard to mean preference score in

Table 2 p values between our method and eachmethod
w.r.t. speaker identity in caseN = 20, 000

SD-RBM NN RNN GMM

p 0.0913 0.4417 0.0913 0.0001

The values that satisfy p < 0.1 are in italics.

Table 3 p values between our method and eachmethod
w.r.t. speaker quality in caseN = 5, 000

SD-RBM NN RNN GMM

p 0.2796 0.4343 0.3096 0.0032

The values that satisfy p < 0.1 are in italics.

terms of both speaker identity and speech quality. How-
ever, as shown in Tables 1, 2, 3, and 4, we could not,
unfortunately, obtain a significant difference between
our method and the other methods in some cases (e.g.,
‘NN’ with respect to (w.r.t.) speaker identity, and ‘SD-
RBM’ and ‘RNN’ w.r.t. speech quality when N = 20, 000
training frames were used). We obtained significant
differences at a significance level of 0.1 in the other
cases.

5.3.2 Discussion
In objective criteria, our approach (‘SD-CRBM’) outper-
formed the other methods, including the popular GMM-
based voice conversion method, in most cases. In sub-
jective criteria as well, we obtained significantly better
performance compared with each opponent, in terms of
speaker identity and/or speech quality (to be specific,
in terms of both speaker identity and speech quality
for ‘GMM’, in terms of only speech quality for ‘NN’, in
terms of only speaker identity for ‘SD-RBM’ and ‘RNN’).
The reason for the improvement is attributed to the
fact that our time-involving, high-order conversion sys-
tem using CRBMs is able to capture and convert the
abstractions of speaker individualities better than the
other methods. In particular, as shown in Figures 6,
7, and 8, our approach achieved high performance in
MCD criteria. This is because the CRBMs captured time-
series data more appropriately and alleviated estimation
errors.
One interesting point is that ‘NN’ and ‘RNN’, which

were based on random initialization in weight parame-
ters, produced unstable performance (e.g., the MCD by
‘NN’ increased even as the number of training frames
increased from 10,000 to 20,000 in male-to-female con-
version, and the MCD by ‘RNN’ also increased as the
number of training data changed from 20,000 to 40,000
in male-to-male conversion). This is caused by a fall
into local minima starting from the randomly-initialized
weights. Figure 13 shows some of the converged weights
in the network, comparing ‘RNN’ and ‘SD-CRBM’, where

Table 4 p values between our method and eachmethod
w.r.t. speech quality in caseN = 20, 000

SD-RBM NN RNN GMM

p 0.4417 0.0913 0.3299 0.0000

The values that satisfy p < 0.1 are in italics.
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(a-1) (a-2) (b-1) (b-2)

(d-1)(c-2)(c-1) (d-2)

Figure 13 Estimated weights of the pre-trained RNN (·-1) and the randomly-initialized RNN (·-2). After 400 epochs (N = 40, 000, J = 72,
male-to-female). (a) The weights from the previous target vector to the current target vectorW y′y , (b) the weights from the second hidden layer to
the current target vectorW yh , (c) the weights from the current source vector to the first hidden layerW xh , and (d) the weights from the first hidden
layer to the second hidden layerW 0.

the weights were pre-trained using speaker-dependent
CRBMs and a concatenating NN followed by fine-tuning
using RNN. As shown in Figure 13, the weights in ‘RNN’
were almost meaningless and messy; meanwhile, we see
that the weights in ‘SD-CRBM’ had a sparse structure
and operative bases. In general, an acoustic feature vec-
tor at the last previous frame (v(t−1)) is very similar to the
feature vector at the current frame (v(t)), and, therefore,
we expect that the conversion matrix from v(t−1) to v(t)

may be close to an identity matrix. The recurrent weight
obtained by our approach shown in Figure 13a-1 indicates
this fact.

6 Conclusion
We presented a voice conversion method that combines
speaker-dependent CRBMs and a NN to extract speaker-
individual information for speech conversion. Through
experiments, we confirmed that our approach is effective,
especially in terms of MCD, compared with the well-
known conventional GMM-based approach, a NN-based
approach, and our own previous work, SD-RBM, (and
recurrent neural network for a reference), regardless of the
gender in conversion.
We also conducted ABX experiments for subjective

evaluation. The results showed that the performance
of our method was not always significantly different
in comparison to NN, RNN, and SD-RBM; however, it
did perform significantly better than these methods in
terms of either speaker identity or speech quality. In

the future, we will work to improve our method so
that it obtains better results in regard to the sense of
hearing.
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