
Huang et al. EURASIP Journal on Audio, Speech, and Music Processing  (2015) 2015:7 
DOI 10.1186/s13636-014-0048-z
RESEARCH Open Access
An investigation of supervector regression for
forensic voice comparison on small data
Chee Cheun Huang1,2*, Julien Epps1,2 and Tharmarajah Thiruvaran1
Abstract

Automatic forensic voice comparison (FVC) systems employed in forensic casework have often relied on Gaussian
Mixture Model - Universal Background Models (GMM-UBMs) for modelling with relatively little research into
supervector-based approaches. This paper reports on a comparative study which investigates the effectiveness of
multiple approaches operating on GMM mean supervectors, including support vector machines and various forms
of regression. Firstly, we demonstrate a method by which supervector regression can be used to produce a forensic
likelihood ratio. Then, three variants of solving the regression problem are considered, namely least squares and ℓ1
and ℓ2 norm minimization solutions. Comparative analysis of these techniques, combined with four different scoring
methods, reveals that supervector regression can provide a substantial relative improvement in both validity (up to
75.3%) and reliability (up to 41.5%) over both Gaussian Mixture Model - Universal Background Models (GMM-UBMs)
and Gaussian Mixture Model - Support Vector Machine (GMM-SVM) results when evaluated on two studio clean
forensic speech databases. Under mismatched/noisy conditions, more modest relative improvements in both validity
(up to 41.5%) and reliability (up to 12.1%) were obtained relative to GMM-SVM results. From a practical standpoint,
the analysis also demonstrates that supervector regression can be more effective than GMM-UBM or GMM-SVM in
obtaining a higher positive-valued likelihood ratio for same-speaker comparisons, thus improving the strength of
evidence if the particular suspect on trial is indeed the offender. Based on these results, we recommend least
squares as the better performing regression technique with gradient projection as another promising technique
specifically for applications typical of forensic case work.
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1 Introduction
Forensic voice comparison (FVC) systems have often
employed Gaussian Mixture Model - Universal Background
Models (GMM-UBMs) [1-3] for modelling in forensic case-
work, in which it is common that only a very small speech
database is available for the entire system development.
Other approaches, such as the supervector-based regres-
sion techniques prevalent in numerous face and speaker
recognition studies [4-6], have received little attention in
this context. This therefore motivates a comparative study
of the effectiveness of other modelling approaches in FVC
system performance.
The likelihood ratio is defined as the likelihood that

the evidence would be observed if the same-origin
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hypothesis were true divided by the likelihood that the
evidence would be observed if the different-origin hy-
pothesis were true [7-11].

LR ¼ p EjH soð Þ
p EjHdoð Þ ð1Þ

where LR is the likelihood ratio, Hso is the same-origin
hypothesis and Hdo is the different-origin hypothesis. E
is the evidence or the observed property of a speech
sample. p(E|Hso) denotes conditional probability density
of the evidence given same-origin hypothesis. An FVC
system typically relies on statistical evaluation of input
speech utterances that first involves training or model-
ling of the speaker identity based on an input speech ut-
terance A and a subsequent testing of the trained model
based on an input speech utterance B.
The initial output of the FVC system is defined as a

score s. A higher valued score can be interpreted as
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providing greater support for the same-origin hypothesis
over different-origin hypothesis whereas a lower valued
score can be interpreted as providing greater support for
the different-origin hypothesis over the same-origin hy-
pothesis. This also implies that if identities A and B are
from the same speaker, a higher score should be gener-
ated. Conversely, if identities A and B are from two dif-
ferent speakers, a lower score should be generated. The
absolute value of a score cannot be directly interpreted
as likelihood ratio; however, it can be seen as an inter-
mediate step towards calculating a likelihood ratio, pro-
viding it can adequately account for both similarity and
typicality [12]. Here, ‘similarity’ refers to the similarity of
the pair of suspect-offender recordings, and ‘typicality’
refers to the typicality of the pair of suspect-offender re-
cordings with respect to a model of the relevant popula-
tion. The relevant population is the population to which
the offender belongs and can typically be restricted to
speakers of the same gender, language and dialect and
similar age group as the offender on the basis of the of-
fender recording and that these selection criteria would
not be disputed by either the prosecution or the defence
[9,11,13]. For more detailed discussions on score and
likelihood ratio, readers may refer to [12,14].
In this paper, we present a study comparing methods

for generating scores on the basis of the various model-
ling approaches. In particular, this paper presents a first
study of score generation based on supervector domain
regression for FVC on small data. Methods suitable for
Figure 1 Simplified diagram showing the use of suspect model and b
model and background model in the calculation of forensic likelihood ratio b
the GMM and UBM models at the offender sample value of 60 in this exampl
deriving a likelihood ratio from GMM supervectors
[15,16] are considered herein, including pairwise nearest
neighbour (PNN) and sparse regression techniques.
Further, we investigate the applicability of these methods
to small speech databases that are relevant to forensic case
work, under clean, degraded and mismatched conditions.

2 Related work
2.1 Gaussian mixture model - universal background
model FVC
The Gaussian Mixture Model - Universal Background
Model (GMM-UBM) [1-3] is a prevalent speaker model-
ling technique used extensively in FVC and has become
the primary method for modelling and likelihood ratio
calculation in automatic FVC systems, see in particular
[7,17,18]. In the context of FVC, data vectors representa-
tive of the voice recordings of speakers from the relevant
population (i.e. background database) are used to the
train the UBM (i.e. a UBM representing the different-
origin hypothesis), while data vectors representative of
the non-contemporaneous voice recordings from the
suspect (i.e. suspect database) are used to perform MAP
adaptation to form GMMs (i.e. models representing the
same-origin hypothesis). The offender data vectors can
then be evaluated against these two models (by taking
the ratio of the two probability density values corre-
sponding to the GMM and UBM models respectively at
the offender value) to arrive at a likelihood ratio as illus-
trated in Figure 1. This GMM-UBM system, employed
ackground model. A simplified diagram showing the use of suspect
y taking the ratio of the two probability density values corresponding to
e.
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in the current study as a baseline system, is depicted in
Figure 2.
In the case of GMM-UBM modelling, likelihood ra-

tio calculation is performed at the frame level ini-
tially with each frame of the offender recording
producing a single likelihood ratio. Multiple likeli-
hood ratios are therefore obtained in consideration of
all frames within the offender recording at an utterance-
based level. To combine these frame-level likelihood
ratios, the mean of the natural log of these frame-level
likelihood ratios is calculated, and the resulting value is
referred to as a score. A subsequent score-to-likelihood-
ratio transformation is performed by using logistic regres-
sion calibration [14,22,23]. Mathematically, this is shown
in Equation 2 where for a given test utterance from
the sample of questioned origin parameterized into a
sequence of acoustic observations or feature vectors
X = {x1,…,xT}, the score s of the test utterance is often
expressed as

s ¼ 1
T

XT
t¼1

log
p xt jλsoð Þ
p xt jλdoð Þ

� �
; ð2Þ

with λso and λdo denote the probability density function
parameters modelling the same-origin and different-origin
hypotheses, respectively.
It is also common among the automatic FVC commu-

nity to adopt two-stage LR computation first proposed
by Meuwly in 2001 [24] and subsequently used in many
other studies [7,17,18,25]. In the current study, small
databases of a few tens of speakers that are more rele-
vant to forensic case work applications were employed
(similarly to [26,27]), and therefore we adopted a sim-
pler one-stage LR computation structure as depicted
in Figure 2.
Figure 2 Conventional automatic FVC system based on Gaussian Mixtur
2.2 GMM mean supervector and support vector machine
FVC
It is common in speaker recognition studies to employ a
representation of a speaker using stacked d-dimensional
mean vectors mk, k ∈ {1, .., K} of a K-component adapted
GMM into a Kd-dimensional Gaussian supervector Φ
[15]. Before stacking, the means are normalized with the

factor
ffiffiffiffiffiffi
wk

p
Σ−1=2
k , where wk represents the kth Gaussian

weight and ∑k represents the diagonalised covariance of
the kth mixture, to ensure a constant Kullback-Leibler
(KL) distance between each of the supervectors [15,16],
as seen in Equation 3. We will denote the GMM mean
supervector derived from the offender recording as
Φoffender, a GMM mean supervector derived from the
suspect recording as Φsuspect and GMM mean supervec-
tor derived from the background recording as ΦUBM.

Φ ¼

ffiffiffiffiffiffi
w1

p
Σ
−
1
2

1 m1

ffiffiffiffiffiffi
w2
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Σ
−
1
2
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:
:
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K mK
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6666666666664

3
7777777777775

ð3Þ

In speaker recognition, supervectors are typically ap-
plied as inputs to SVM [28,29] or joint factor analysis
(JFA) [30,31]. The latter has been found to be very suc-
cessful for modelling the inter-speaker variability and
hence for compensating for channel or session effects in
the high-dimensional GMM supervector space. The i-
vector technique, a variant of JFA, performs channel
compensation in a low-dimensional total variability
space that is defined by factor analysis [32,33]. Both JFA
and i-vector however are techniques which require
e Model - Universal Background Models (GMM-UBMs), after [19-21].



Figure 3 Simplified diagram showing the concept of support
vector machine in the forensic likelihood ratio calculation. Circle:
suspect vector, squares: background vectors, cross: offender vector.
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independent large databases for training the appropriate
inter-speaker variability models. By contrast, typical FVC
studies have employed small databases, e.g. 68 male adult
German speakers [26] or 27 male speakers of Australian
English [27].
To demonstrate that JFA or i-vector techniques are

ineffective for databases with a low number of speakers,
in preliminary experiments, we attempted JFA and i-vec-
tor techniques based on [31] using the JFA cookbook
(http://speech.fit.vutbr.cz/software/joint-factor-analysis-
matlab-demo) developed by Ondrej Glembek at Brno
University of Technology on our 60 female speaker
forensic database. Out of the 60 speakers available, the
background database was allocated 20 speakers, develop-
ment and test databases were each allocated 10 speakers
and the remaining 20 speakers were allocated for train-
ing the inter-speaker variability models associated with
JFA or i-vector techniques. FVC results obtained were
substantially poorer compared with FVC results from
a GMM-UBM system based on the same 60 female
speaker database, based on the same database alloca-
tion for background, development and test databases
as the JFA or i-vector techniques. Other database ar-
rangements were also investigated such as increasing
the number of speakers assigned to train the inter-
speaker variability models by the additional 20 speakers
using the same 20 speakers from background database,
and hence increasing the total number of speakers
used for training the inter-speaker variability models
to 40 speakers; however, results from JFA showed
similar substantially poorer FVC results compared
with results from the GMM-UBM system. This there-
fore implies that JFA or i-vector techniques will not
perform well in FVC given that the inter-speaker
variability models were based on such a low number
of speakers.
Support vector machine (SVM) [28,34] is a discrimina-

tive classification technique that operates by defining a
decision boundary between two classes separated by a
hyperplane that maximizes the margin of separation be-
tween the two classes. In the context of FVC, data vec-
tors representative of the voice recordings of speakers
from the relevant population (i.e. background database)
are used to form one class, while a data vector repre-
sentative of a particular voice recording from the suspect
(i.e. suspect database) is used to form the other class as
illustrated in Figure 3. In the case of FVC, a binary deci-
sion is not sought but rather a forensic likelihood ratio
indicating the strength of Evidence E. The likelihood
ratio can be obtained by first computing the inner prod-
ucts of an offender vector with the support vectors in a
higher dimensional kernel feature space. The resulting
value from this computation of inner products on the
basis of a kernel function is referred to as a score,
and a subsequent score-to-likelihood-ratio transformation
is performed by using logistic regression calibration
[14,22,23]. The computed score is a similarity measure of
the offender vector to the suspect vector while taking into
account the typicality with respect to the background data
vectors. It should be noted that although the SVM con-
cept may not be completely forensically applicable, as po-
tentially only a subset of background data vectors (i.e. the
background support vectors) is utilized in the score com-
putation rather than all background data, similarity (with
respect to the suspect vector) and typicality (with respect
to the background support vectors) are being appro-
priately evaluated via a relative distance measure to the
offender vector in the score computation. A more positive
valued score is obtained if the offender vector is closer to
the suspect vector than the background support vectors,
and a more negative valued score is obtained if the of-
fender vector is closer to the background support vectors
than the suspect vector.
In particular, consider an example in which an offender

vector lies on the side of the linear separating hyperplane
that contains the suspect vector and is in close proximity
to the suspect vector, with all the background data vectors
on the other side of the linear separating hyperplane. If we
have the offender vector and all the background data vec-
tors fixed in their positions while adjusting the suspect
vector to move in the direction from the linear separating
hyperplane that is further away from both the offender
and background data vectors, then the offender vector
now has a lower similarity (with respect to the suspect
vector) while having the same typicality (with respect to
the background support vectors), and this will result in a
more negative-valued score. Conversely, if we have the

http://speech.fit.vutbr.cz/software/joint-factor-analysis-matlab-demo
http://speech.fit.vutbr.cz/software/joint-factor-analysis-matlab-demo
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offender vector and the suspect vector fixed in their posi-
tions while adjusting all the background data vector to
move in the direction from the linear separating hyper-
plane that is further away from both the offender and
suspect vectors, then the offender vector now has the
same similarity (with respect to the suspect vector),
while having a lower typicality (with respect to the back-
ground support vectors), and this will result in a more
positive-valued score. This approach is employed as an
additional baseline system in our work, using supervec-
tors as the data vectors.
Denoting Φoffender as the offender vector and Φsupport,i

as the ith support vector, then the score generated on
the basis of sequential minimal optimization algorithm
from [35] can be computed (e.g. via the publicly avail-
able toolkit named LIBSVM [36]) as follows

sSVM Φoffenderð Þ ¼
XL
i¼1

αitiΦoffender
tΦsupport;i þ d ð4Þ

Alternatively, the score may be generally expressed as

sSVM Φoffenderð Þ ¼
XL
i¼1

αitiK Goffender;Gsupport;i
� �þ d

ð5Þ

Here,
XL

i¼1
aiti ¼ 0 and αi > 0, tiϵ{+1, − 1} are the

ideal output values, L is the number of support vectors
and both αi and d are learned constants as defined in
[28]. Gsupport,i is the GMM used to create the ith support
vector Φsupport,i. All parameters were obtained from
training the SVM via an optimization process [35]. The
kernel function K(.,.) can be expressed as

K Goffender;Gsupport;i
� � ¼ b Goffenderð Þtb Gsupport;i

� � ð6Þ

where b is a mapping from input space (i.e. GMM model
space) to a higher dimensional kernel feature space
(i.e. GMM mean supervector space), that is b(Goffender) =
Φoffender.

2.3 Supervector-based regression techniques
Sparse representation of signals has been a major re-
search interest in the area of statistical signal processing
[37,38]. One of the significant discoveries in these studies
revolves around the finding that if an optimal represen-
tation of a signal is sufficiently sparse when linearly re-
presented with respect to a dictionary of base elements, it
can be computed by convex optimization [38]. Although
sparse representation can be used for solving a system of
linear equations that are overdetermined as seen in [4],
it has also shown promise for underdetermined systems
as demonstrated in robust face recognition studies
such as [39]. Mathematically, the sparse representation
equation can be represented as y = Ax, in which the dic-
tionary A is used to linearly represent signal y in a sparse
manner.
There are numerous approaches to the solution for

the x in the sparse representation equation. The sparse
solution x will contain mostly zero entries, except those
entries which correspond to the signal y are non-zero.
The approach considered in this study is to treat the
sparse representation equation as a regression-based
problem, for which applicable techniques include least
squares (LS) and ℓ1 and ℓ2 norm minimization [37,39,40].
A technique which uses a mixture of ℓ1 penalty (lasso)
and ℓ2 penalty (ridge regression) on the basis of a tuning
parameter known as the elastic net [41,42] is also con-
sidered. The discriminative nature of these sparse signal
processing techniques has been exploited in numerous
face and speaker recognition studies [4-6], which have
employed dictionaries comprising GMM mean super-
vectors [4,43] or speaker factors [6] and achieved good
experimental success. Other applications of sparse signal
processing in the speaker recognition area include a study
of GMM mean shifted supervectors using learned and
discriminatively learned dictionaries [44] and a study
employing feature vectors as the base elements in the
dictionary [45].
After solving for the regression problem in the sparse

representation equation, four scoring methods are con-
sidered in this paper. The first scoring method directly
utilizes the first coefficient x1 from the vector of coeffi-
cients x as a score, we henceforth named this scoring
method as direct parameter x(1). The remaining three
scoring methods were based on ℓ1 norm ratio and ℓ2
residual ratio introduced in [5] and the background
normalized (BNorm) ℓ2 residual criterion introduced in
[6]. The score generated from any of these methods can
then be converted to likelihood ratio via logistic regres-
sion calibration [14,22,23].

3 Supervector regression FVC
3.1 Proposed paradigm
The overall supervector regression-based FVC system is
shown in Figure 4.
To begin, we construct a dictionary A using the

GMM mean supervectors ΦUBM, derived from the
MAP-adapted GMMs using all the recordings from
the background database, which form the model of
the relevant population. To facilitate offender-suspect
pair comparison, an additional GMM mean supervector
Φsuspect derived from one of the suspect recordings is pre-
pended to the beginning of the dictionary, creating the
first column of the dictionary. The supervector Φoffender

derived from a particular offender recording is then



Figure 4 Proposed supervector regression-based automatic FVC system.
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represented as a linear combination of this dictionary of
size n, where n is the total number of ΦUBM supervectors
plus one (since there is an additional Φsuspect supervector
in the first column of the dictionary).
Mathematically, this can be expressed as Φoffender =

Ax per Equation 7 below with the m entries of the
GMM mean supervector Φoffender represented as a linear
combination of the dictionary, and x denoting the vector
of n unknown coefficients that we wish to solve. For any
offender-suspect pair comparison, we would like to use
the dictionary A to linearly represent Φoffender in a
sparse way [4-6,39,43]. After solving Equation 7 below,
ideally if the first coefficient x1 has a value of 1 while the
other coefficients xi,(i = 2,…,n) representing the back-
ground speaker supervectors ΦUBM have values of 0,
then the offender supervector Φoffender and the suspect
supervectorΦsuspect (i.e. the first column of the dictionary)
will have originated from the same speaker. Conversely, if
x1 has a value of 0 while the summation of xi,(i = 2,…,n)
has a value of 1, then the offender supervector Φoffender

and the suspect supervector Φsuspect (i.e. the first column
of the dictionary) should have originated from two differ-
ent speakers. For each new offender-suspect pair compari-
son, the first column of the dictionary and Φoffender are
replaced as needed.

Φoffender 1ð Þ
Φoffender 2ð Þ

⋅
Φoffender mð Þ

0
BB@

1
CCA ¼

Φsuspect 1ð Þ
Φsuspect 2ð Þ

⋅
Φsuspect mð Þ

ΦUBM 1ð Þ1
ΦUBM 2ð Þ1

⋅
ΦUBM mð Þ1

⋅
⋅
⋅
⋅

ΦUBM 1ð Þn−1
ΦUBM 2ð Þn−1

⋅
ΦUBM mð Þn−1

0
BB@

1
CCA

�
x1
x2
⋅
xn

0
BB@

1
CCA

ð7Þ
3.2 Sparse regression solution techniques
3.2.1 Least squares (LS)
As mentioned in the introduction, there are numer-
ous approaches by which the unknown vector of coef-
ficients x in Equation 7 can be solved. One is to treat
the sparse representation problem in Equation 7 as a
LS problem, i.e. minimizing the mean squared error
of our estimate x, with the familiar closed form
solution.

x ¼ ATA
� �−1

ATΦoffender ð8Þ

3.2.2 ℓ1 and ℓ2 norm minimization
In addition to the LS closed form solution, two well-
established algorithms were considered in this study. In
particular, the gradient projection algorithm as proposed
in [40] was considered, which solves the convex uncon-
strained optimization problem as in Equation 9 with τ, a
non-negative parameter empirically defined as 0.01 in
this study.

min
x

1
2

Φoffender−Ax 2
2 þ τ xk k1

���� ð9Þ

Another algorithm, which utilizes efficient coordin-
ate descent methods for fitting the entire lasso or
elastic-net regularization path for linear regression,
logistic regression and multinomial regression models,
was proposed and detailed in [41]. It solves for the
regression problem using ℓ1 penalty (lasso), ℓ2 pen-
alty (ridge regression) or a mixture of the two (i.e.
the elastic net) with a tuning parameter 0 ≤ α ≤ 1.
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The elastic net solves for the following regression
problem [41]

min
β0;xð Þ∈ℝnþ1

1
2m

Xm
i¼1

Φoffender ið Þ−β0−Aix
� �2 þ λPα xð Þ

" #

ð10Þ

Pα xð Þ ¼ 1−αð Þ 1
2

xk k22þα xk k1 ð11Þ

Note that Ai represents the ith row of the dictionary A
from Equation 7, defined as

Ai ¼ Φsuspect ið Þ ΦUBM ið Þ1 ΦUBM ið Þ2… ΦUBM ið Þn−1
� 	

ð12Þ
The penalty defined in Equation 11 is a compromise

between the ridge-regression penalty (α = 0) and the
lasso penalty (α = 1), and α was varied between these
two values in the current study to evaluate on its effect
on FVC system performance. The penalty parameter λ
in Equation 10 was empirically defined as 0.01 in all of
our experiments.

3.3 Sparse regression scoring methods
The four scoring methods discussed in Section 2.3 were
compared, namely the direct parameter x(1) sx(1), ℓ1
norm ratio and ℓ2 residual ratio introduced in [5] and
background normalized (BNorm) ℓ2 residual criterion
introduced in [6]:

sℓ1norm ¼ δ1 xð Þk k1
xk k1

ð13Þ

sℓ2residual ¼
Φoffender−A

Xn

i¼2
δi xð Þ


 ���� ���
2

Φoffender−Aδ1 xð Þk k2
ð14Þ

sBnorm ℓ2 ¼
− Φoffender−Aδ1 xð Þk k2− 1

n−1

Xn

j¼2
ϕjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n−2

Xn

i¼2
ϕi−

1
n−1

Xn

j¼2
ϕj


 �2
r ð15Þ

ϕj;j¼2:n ¼ − Φoffender−Aδj xð Þ�� ��
2 ð16Þ

where

δi xð Þ ¼ x jð Þ ;if i¼j
0 ;if i≠j

n
ð17Þ

3.4 Pairwise nearest neighbour (PNN)
The pairwise nearest neighbour (PNN) technique is a
simple and well-known mathematical procedure that
employs a distance metric based on a calculation of dis-
tances between all pairs of input data. In this study, for
each pair of offender-suspect comparison, the Euclidean
distance between the offender supervector Φoffender and
the first column of the dictionary A which is the suspect
supervector Φsuspect was used as the denominator in
the score calculation, denoted as dsuspect. Similarly,
the Euclidean distances between the offender super-
vector Φoffender and the second to the last columns of
the dictionary A were determined. Three cases for
evaluating these Euclidean distances between offender
and background speaker supervectors are investigated
in this study: namely, we find the minimum, mean and
maximum of these Euclidean distances and they are
subsequently used as the numerator in the score calcu-
lation, i.e.

sPNN min ¼ dUBM;min

dsuspect
ð18Þ

sPNN mean ¼
dUBM;mean

dsuspect
ð19Þ

sPNN max ¼ dUBM;max

dsuspect
ð20Þ

4 Methodology
4.1 Database of 60 female speakers of standard Chinese
The first database used in the present study is available
from http://databases.forensic-voice-comparison.net/. It
consists of voice recordings of 60 female speakers of
Standard Chinese (i.e. Mandarin/Putonghua). Each speaker
was recorded twice with each recording approximately
10 min long. All speakers were first-language speakers
of Standard Chinese from Northeastern China, aged
between 23 and 45. The nature of the speech was spon-
taneous, collected from an information exchange task
over a telephone. Recordings were made at 44.1 kHz 16-
bit using flat-frequency response lapel microphones
(Sennheiser MKE 2 P-C) together with the use of an exter-
nal soundcard (Roland® UA-25 EX) under studio-clean
conditions. Furthermore, each of the approximately
10-min length recording was also post-processed
using SoundLabeller [46] to remove of silence segments
such that only the speech-active segments of about 2 to 5
min are used in our experiments. For more details on the
database, readers may refer to section 6.3.1 of [47].
The data collection protocol for this database used in

our study was an attempt to produce data highly typical
of forensic case work conditions, refer to [48] for details
of the protocol. For more details on database selection
for FVC systems, readers may refer to discussions in
[9,13] and section 2.4.1 and section 2.11 in [47].
A degraded mobile-to-landline version of the high-

quality recordings of these 60 female speakers was also
created by transmitting these high-quality recordings
through a typical mobile-landline telephone transmission
system. For implementation details of the setup of these

http://databases.forensic-voice-comparison.net/
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degraded versions of recordings, readers may refer to
[49]. The effect of the mobile-telephone system on the
original speech signal is often associated with data com-
pression which can vary from moment to moment and
can result in different transmission rates in the range
of 4.75 to 12.20 kbits/s. The mobile-telephone system
has a bandpass filter with a lower limit of 100 Hz to
an upper limit of up to 3.6 kHz, whereas a landline-
telephone system has a bandpass filter in the range of
300 to 3,400 Hz together with lossless compression
and decompression algorithms with 64 kbits/s transmis-
sion rate [50].
A mismatched condition was further created by using

a combination of high-quality studio-clean and degraded
mobile-landline recordings in the forensic voice com-
parison system. In particular, the mismatch setting that
was employed involves having background database and
suspect data from both development and test databases
comprised of studio-clean recordings and offender data
from both development and test databases comprised of
degraded mobile-landline recordings. This mismatched
setting is more relevant for forensic applications since
in a typical forensic casework, it is very likely and for-
ensically realistic to have an offender voice recording
collected from a telephone intercept which has an
inherently degraded speech recording caused by the
telephone-transmission system. Moreover, it is also
very likely and forensically realistic to have suspect
recordings collected at a different quality in comparison
with the offender recordings as suspect recordings are
typically being recorded in a controlled environment
(such as a police interview) and with high-quality direct
microphone.
The background, development and test databases were

allocated evenly in three partitions, with each having 20
speakers. In particular, the initial 20 speakers (identifica-
tion numbers: 01 to 04, 09 to 20, 22, 25, 26, 28), the next
20 speakers (29 to 48) and the last 20 speakers (49 to
68) were used for the background, development and test
databases. Moreover, in the current study, a cross valid-
ation experiment was also performed by permuting the
composition of the background, development and test
databases, creating six permutations.

4.2 Database of 90 male speakers of standard Chinese
Another database of voice recordings of male speakers
of Standard Chinese (i.e. Mandarin/Putonghua) was
evaluated in this study. The male speaker database has a
total of 90 speakers, with each speaker having two re-
cordings. Apart from the gender difference, all other
aspects of the male recordings such as the nature of the
recordings, duration and recording conditions, equip-
ment used for collection and post-processing of the re-
cordings were exactly the same as those for the female
recordings. For details of the data collection protocol,
refer to [48].
The background, development and test databases were

allocated evenly in three partitions, with each having 30
speakers. In particular, the initial 30 speakers (identifi-
cation numbers: 01 to 30), the next 30 speakers (31 to 60)
and the last 30 speakers (61 to 90) were used for the back-
ground, development and test databases. Similarly to the
female database, a cross validation experiment was also
performed by permuting the composition of the back-
ground, development and test databases, creating six
permutations.

4.3 Forensic voice comparison system configuration
All automatic FVC systems used in the present study
were built based on all speech-active segments within
each recording of the 60 female speakers or 90 male
speakers.
The baseline automatic FVC system, based on Gaussian

Mixture Model - Universal Background Model (GMM-
UBM) [1-3], had K = 512 mixture components. All
automatic FVC systems employed d = 32 dimensional
mel-frequency cepstral coefficients (MFCCs) [51-53]
(16 static coefficients and 16 delta coefficients [54])
extracted from 20-ms frames overlapping by 10 ms with a
20-ms Hamming window [51]. Feature normalization was
performed via cumulative distribution mapping [55],
and no channel or session compensation technique
was applied.
For the regression-based techniques, the supervector

had dimension m = K × d = 16,384. There were 40 re-
cordings (two recordings per speaker with 20 UBM
speakers) assigned for UBM training for the 60 female
speaker database, whereas there were 58 recordings (two
recordings per speaker with 30 UBM speakers, excluding
session 2 of both speakers 85 and 86 as they were lower
quality recordings mis-recorded at a sampling frequency
of 11.025 kHz) assigned for UBM training for the 90
male speaker database. Each of these recordings was
subsequently adapted from the trained UBM to derive a
conventional adapted GMM and then converted to
GMM mean supervector. The dictionary therefore had a
total of n = 41 supervectors (one Φsuspect supervector
and 40 ΦUBM supervectors) for the 60 female speaker
database and n = 59 supervectors (one Φsuspect super-
vector and 58 ΦUBM supervectors) for the 90 male
speaker database.
To solve the regression problems as detailed in Section

3.2.2, many variants of the state-of-the-art solvers for
the sparse regression problem in Equation 7 are available
publicly. In particular, we implemented the publicly
available gradient projection for sparse reconstruction
(GPSR) solver (http://www.lx.it.pt/~mtf/GPSR/) for the
gradient projection algorithm as detailed in [40] and we

http://www.lx.it.pt/~mtf/GPSR/
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implemented the publicly available Glmnet solver (http://
www-stat.stanford.edu/~tibs/glmnet-matlab/) for the co-
ordinate descent algorithm as detailed in [40].

4.4 Score to likelihood ratio conversion
For conversion of a score to an interpretable likelihood
ratio via an affine transform, logistic regression calibration
with equal priors can be used [14,22,23]. Same-origin and
different-origin scores, sdev, from the development data-
base are used to train the calibration weights, i.e. the
intercept and regression coefficient of the logistic re-
gression model, and subsequently these calibration
weights can then be used to calibrate scores from the
test database. The pooled procedure for calculating the
calibration weights was adopted (refer to [19] for details)
in this paper. For a detailed tutorial on logistic regression
calculation in converting a score to an interpretable likeli-
hood ratio, refer to [12].

4.5 Evaluation metrics
The validity and reliability (i.e. accuracy and precision)
of the forensic voice comparison systems employed in
the current paper were evaluated using the log-likelihood-
ratio cost, Cllr (mean procedure [19]) as proposed by
Brümmer [14], and 95% credible interval (CI) as proposed
by Morrison et. al. [9,20,56,57], denoted as 95% CI (para-
metric procedure and with orders of magnitude expressed
in log base ten). The log-likelihood-ratio cost has been
applied in numerous FVC studies as seen in [23,58-60]. It
should be noted that for all the above metrics, smaller
values indicate better performance.
Tippett plots, which provide a graphical representation

of the cumulative distribution function of log-likelihood
ratios for same-origin and different-origin hypotheses
[9,61], were also used in current study.

5 Results and discussion
5.1 Regression and scoring methods
The pooled values across the six permutations for Cllr

mean and 95% CI based on the different sparse re-
presentation regression solutions and scoring methods
evaluated on the 60 female speaker database and 90 male
speaker database under studio clean conditions are given
in Figure 5 (top and bottom row, respectively).
Examining the results from Figure 5, when considering

systems that performed well irrespective of database
composition, there were two systems (as highlighted in
dashed red circle in Figure 5a,d) that performed consist-
ently better in comparison with the baseline GMM-
UBM and SVM systems: gradient projection with sx(1)
and LS with sx(1). Further, there were two systems (as
highlighted in dashed red circle in Figure 5e,h) that
showed equally promising results with only slight degrad-
ation in validity in comparison with the baseline SVM
system when tested with the 90 male speaker database:
gradient projection with sℓ1norm and LS with sℓ1norm.
The relative improvements in pooled results of Cllr

mean and 95% CI across the six permutations for these
four best systems: gradient projection, sx(1), LS, sx(1),
gradient projection, sℓ1norm and LS, sℓ1norm over the
baseline GMM-UBM and SVM systems were substan-
tial, evaluated on both the 60 female speaker and 90
male speaker databases under studio-clean conditions
as tabulated in Table 1. In particular, the four systems
showed improvements over the GMM-UBM baseline
system in the order of 45% to 80% improvement in
terms of the Cllr-mean metric and in the order of
15% to 45% improvement in terms of the 95% CI
metric. Similarly, the four systems also showed substan-
tial improvements over the SVM baseline system in the
order of 10% to 75% improvement in terms of the
Cllr-mean metric albeit a slight degradation of about
19% for the gradient projection, sℓ1norm and LS, sℓ1norm
systems when evaluated on the 90 male speaker data-
base and in the order of 5% to 30% improvement in
terms of the 95% CI metric.
One possible explanation for the good performance

achieved by the familiar least squares regression technique
in comparison with the state-of-the-art sparse regression
techniques such as ℓ1 and ℓ2 norm minimization that have
featured among speaker recognition studies is that the dis-
criminative nature of sparse regression techniques implies
an indirect manipulation of the weights in the entries
of the regression solution to ensure sparseness of the
solution in such a way that this manipulation could
be disrupting the original or intrinsic weightings of
the individual speakers. As an example, for the case
of ℓ1 norm minimization, the entries of the regression
solution were forced to contain mostly zero entries,
that is the technique forces the weights of the
speakers from background set who are least similar to
the test speaker to zero, and thus ignores the contri-
bution of those speakers in the likelihood computa-
tion. In other words, ℓ1 norm minimization ignores
those speakers from the background set who are least
similar in comparison to the test speaker by forcing
their weights to zero to ensure sparseness. This ef-
fectively reduces the number of background speakers
and only the most similar speakers to the test speaker
are used for typicality evaluation in the likelihood ra-
tio calculation; and subsequently, an undesirable tigh-
ter restriction on the test conditions for typicality is
imposed and hence the system performance will be
poorer in this respect. However, in the least squares
regression case, all the speakers in the background set
are included in the likelihood ratio calculation and
their weights are not being altered directly to ensure

http://www-stat.stanford.edu/~tibs/glmnet-matlab/
http://www-stat.stanford.edu/~tibs/glmnet-matlab/
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Figure 5 Pooled results for validity and reliability across the six permutations. Pooled results for validity (Cllr mean) and reliability (95% CI)
across the six permutations for the various sparse regression solutions utilizing the sx(1) (i.e. a-d), sℓ1 (i.e. e-h), sℓ2 (i.e. i-l), and sBnormℓ2 (i.e.m-p) scoring
methods, evaluated on the 60 female speaker database under studio-clean (top row), degraded mobile to landline (second row from top) and mismatched
(third row from top) conditions and 90 male speaker database under studio-clean (bottom row) conditions. The various configurations are denoted as
follows: circle: GMM-UBM, square: sSVM, upward-pointing triangle: coordinate descent (CD) α = 0, downward-pointing triangle: coordinate descent (CD) α = 1,
right-pointing triangle: gradient projection (GP), left-pointing triangle: LS, plus: sPNN_mean, asterisk: sPNN_max, cross: sPNN_min. Note that the GMM-UBM, sSVM,
sPNN_mean, sPNN_max and sPNN_min configurations do not change across the plots in the same row, as these do not use sparse representation regression methods.
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sparseness. This means that in the least squares regression
case, all the entries of the regression solution preserve the
original speaker weightings, and all speakers in the back-
ground set in this case are used for typicality evaluation in
the likelihood ratio calculation; and hence, there is no
restriction in terms of test conditions for typicality in
comparison with the ℓ1 norm minimization case. The
performance of the system for the least square regression
case therefore should be better since we are evaluating the
system with no constraint on typicality. This effect was also
empirically verified by varying the non-negative parameter
τ of the gradient projection for sparse reconstruction
(GPSR) solver (i.e. in Equation 9) to have values greater
than 0.01 that is defined in this paper. Experimental re-
sults from this setup showed an inverse relationship in
that as τ was increased, the performance of the FVC
system was seen to become poorer. This result was in
agreement with our previous discussion in that: if the



Table 1 Improvements over the GMM-UBM and SVM baseline systems in relative percentage terms

60 female speaker database 90 male speaker database

Validity (Cllr mean) Reliability (95% CI) Validity (Cllr mean) Reliability (95% CI)

GMM-UBM Gradient projection, sx(1) 48.5% 21.5% 63.5% 33.8%

LS, sx(1) 49.7% 19.1% 63.6% 31.3%

Gradient projection, sℓ1norm 75.0% 32.3% 50.5% 41.5%

LS, sℓ1norm 75.1% 32.7% 50.8% 41.5%

sSVM Gradient projection, sx(1) 48.9% 14.1% 11.6% 9.1%

LS, sx(1) 50.1% 11.5% 11.8% 5.7%

Gradient projection, sℓ1norm 75.1% 26.0% −19.9% 19.7%

LS, sℓ1norm 75.3% 26.4% −19.1% 19.7%

For the pooled results of validity (Cllr mean) and reliability (95% CI) across the six permutations for the four best systems: gradient projection, sx(1); LS, sx(1);
gradient projection, sℓ1norm; and LS, sℓ1norm evaluated on both databases under studio-clean conditions.
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parameter τ was increased, we put more emphasis on
the ℓ1 norm minimization which then leads to a poorer
FVC performance; and if parameter τ was decreased, we
put more emphasis on the least square regression tech-
nique which then leads to a better FVC performance.

5.2 Degraded and mismatched conditions
The corresponding results for the degraded mobile to
landline and mismatched conditions are displayed in the
second and third rows from the top in Figure 5. These
results for degraded and mismatched conditions were
evaluated on the female speaker database solely as no
degraded version of the male database was available.
Considering the results from Figure 5, there were two

systems (highlighted by the dashed red circle in Figure 5f,g)
that performed consistently better under degraded and
mismatched conditions in comparison with the baseline
GMM-UBM and SVM systems: gradient projection with
sℓ1norm and LS with sℓ1norm . In particular, under both
degraded mobile and landline and mismatched condi-
tions evaluated, the two systems showed substantial
improvements over the GMM-UBM baseline system
(as tabulated in Table 2) in the order of 20% to 40%
in terms of the Cllr-mean metric and in the order of
0% to 7% in terms of the 95% CI metric. Similarly, the
two systems also showed substantial improvements over
Table 2 Improvements over the GMM-UBM and SVM baseline

60 female speaker database (degraded

Validity (Cllr mean) Reliability (9

GMM-UBM Gradient projection,
sℓ1norm

35.1% 0.3%

LS, sℓ1norm 37.9% 1.1%

sSVM Gradient projection,
sℓ1norm

38.9% 11.4%

LS, sℓ1norm 41.5% 12.1%

In terms of percentage for the pooled results of validity (Cllr mean) and reliability (9
sℓ1norm; and LS, sℓ1norm evaluated on 60 female speaker database under degraded an
the SVM baseline system in the order of 10% to 45% in
terms of the Cllr-mean metric and in the order of 2% to
13% in terms of the 95% CI metric. The other two systems
that performed well under studio-clean conditions, gradi-
ent projection with sx(1) and LS with sx(1), were ob-
served to perform more poorly under degraded
(Figure 5b) and mismatched (Figure 5c) conditions
relative to the two systems: gradient projection with
sℓ1norm and LS with sℓ1norm.
The experiments also demonstrated that under mis-

matched conditions, the relative performance of the SVM
baseline system can be considerably better than the GMM-
UBM baseline system than for the case of under degraded
conditions. This was depicted in the third row from top in
Figure 5 which shows the SVM baseline system performing
much better than GMM-UBM system under mismatched
conditions. An implication of this is that the SVM baseline
system may be more resilient to undesirable channel arte-
facts such as recording noise and in particular could be a
more robust system than a GMM-UBM system under the
scenario where there is a mismatch in recording condi-
tions of the suspect and offender recordings.

5.3 Tippett plot results
The actual LR distributions when Hso (blue lines) and Hdo

(red lines) are respectively true across the six permutations
systems

conditions) 60 female speaker database (mismatched conditions)

5% CI) Validity (Cllr mean) Reliability (95% CI)

23.1% 7.0%

24.0% 6.8%

10.6% 2.8%

11.6% 2.5%

5% CI) across the six permutations for the two systems: gradient projection,
d mismatched conditions.
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based on the two baseline systems: GMM-UBM and SVM
and the two best systems: gradient projection with sℓ1norm
and LS with sℓ1norm , evaluated on the 60 female speaker
database under studio-clean (top row), degraded mobile to
landline (second row from top) and mismatched (third row
from top) conditions and 90 male speaker database under
studio-clean (bottom row) conditions are given in Figure 6.
Comparing the studio clean (first row in Figure 6)

recording conditions with noisy conditions (second and
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Figure 6 Tippett plots showing the actual LR distributions. Tippett plo
(red lines) are respectively true for different systems evaluated on the 60 fe
to landline (second row from top) and mismatched (third row from top) co
row) conditions. The solid lines represent the Cllr values, and dashed lines t
values. GMM-UBM: (a-d). SVM: (e-h). Gradient projection, sℓ1norm: (i-l). LS, sℓ
third rows from top in Figure 6) on the female speaker
database, the overall trend observed for all the four
systems is that Tippett plots become narrower in separ-
ation between cumulative distribution plots for Hso (blue
lines) and Hdo (red lines), indicating poorer performance
with poorer recording conditions as expected.
Comparing the performance of the four systems on any

one particular recording condition, however, reveals that
the two systems based on gradient projection with sℓ1norm
(i) (m)

(j) (n)

(k) (o)
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and LS with sℓ1norm respectively perform much better than
baseline systems with much wider separation between the
blue and red solid lines (e.g. compare Figure 6m with
Figure 6a) for the cumulative distribution plots for Hso

(blue lines) and Hdo (red lines) indicating better system
accuracy and much narrower dashed lines to the left and
right of the solid lines indicating better precision or
reliability based on the 95% CI values.
This improvement was observed to primarily stem

from the same-origin comparisons as the cumulative
distribution plot for Hso (blue lines) moved further to
the right favourably and not from the different-origin
comparisons as the cumulative distribution plot for Hdo

(red lines) moved slightly to the left unfavourably (this
can be seen, for example, in Figure 6m, the solid red line
reaches full saturation point at log10(LR) of −6, whereas
the solid red line in Figure 6a reaches it at log10(LR) of
approximately −9 and the more extreme case in
Figure 6p compared with Figure 6d).
This implies that scores generated from same-origin

comparisons are substantially higher valued if based on
the supervector regression method than conventional
GMM-UBM or SVM methods. These results therefore
give a clear indication to the strength of supervector
regression method in that it is able to generate much
stronger same-origin comparison scores based on re-
gression than the conventional GMM-UBM approach
based on a ratio of probability densities.
From a practical standpoint, this translates to the

supervector regression method giving a much higher
valued likelihood ratio (i.e. a much stronger strength of
evidence) by generating a more accurate and greater
support for the same-origin hypothesis than the different-
origin hypothesis if the particular suspect on trial is indeed
the offender.
The process of implementing the supervector regres-

sion method in an actual court case could be as follows.
In practice, forensic scientists may only have one of-
fender recording to compare against several suspect re-
cordings. To generate meaningful likelihood ratios from
this one offender recording with other suspect record-
ings, they perform database selection to collect a data-
base of homogenous nature (as described in Section 4.1)
suitable for the particular court trial and split the data-
base into background, development and test databases
for FVC system development. It is at this stage of system
development that forensic scientists can choose the
modelling stage to be based on the supervector regres-
sion method rather than the conventional GMM-UBM
for better system accuracy and precision. After the FVC
system has been properly calibrated (i.e. using logistic
regression calibration from scores from development
database as discussed in Section 4.4) and evaluated on
the test database to be performing well based on the
collected homogenous database, this FVC system is then
ready to test on the actual unique offender recording
with the suspect recording to generate a likelihood ratio
to be presented in court as strength of evidence.

6 Conclusion
This paper has investigated the use of supervector
regression methods in automatic FVC systems, for the
specific database conditions that are relevant to forensic
case work applications. In comparison with GMM-UBM-
and SVM-based forensic-voice-comparison systems, super-
vector regression techniques consistently resulted in a large
improvement in both validity and reliability. Among the
many techniques considered in this study, the best was
from the familiar least squares regression technique, com-
bined with the ℓ1 norm ratio scoring method. On both
male and female databases under studio-clean conditions,
substantial improvements from the least squares configur-
ation relative to GMM-UBM baseline were observed.
Similar substantial improvements were observed from the
least squares configuration relative to SVM baseline with
only a slight degradation in validity over the SVM baseline
in one condition tested; that of the 90 male speaker data-
base. Evaluation under degraded mobile to landline and
mismatched conditions again demonstrated that LS with
sℓ1norm performed well and gave consistent gains in both
validity and reliability over the GMM-UBM and SVM
baselines. From the practical viewpoint, supervector re-
gression was demonstrated to be capable of generating
improved strength of evidence by providing a more accur-
ate and greater support for the same-origin hypothesis
than the different-origin hypothesis if the suspect on trial
is the true offender in a court case as compared with
GMM-UBM or SVM systems. As future work, other
speech databases that are relevant to forensic applications
could be tested to validate our experimental observations.
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