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Abstract

Optimal automatic speech recognition (ASR) takes place when the recognition system is tested under
circumstances identical to those in which it was trained. However, in the actual real world, there exist many sources
of mismatches between the environment of training and the environment of testing. These sources can be due to
the sources of noise that exist in real environments. Speech enhancement techniques have been developed to
provide ASR systems with the robustness against the sources of noise. In this work, a method based on histogram
equalization (HEQ) was proposed to compensate for the nonlinear distortions in speech representation. This
approach utilizes stereo simultaneous recordings for clean speech and its corresponding noisy speech to compute
stereo Gaussian mixture model (GMM). The stereo GMM is used to compute the cumulative density function (CDF)
for both clean speech and noisy speech using a sigmoid function instead of using the order statistics that is used
in other HEQ-based methods. In the implementation, we show two choices to apply HEQ, hard decision HEQ and
soft decision HEQ. The latter is based on minimum mean square error (MMSE) clean speech estimation. The
experimental work shows that the soft HEQ and hard HEQ achieve better recognition results than the other HEQ
approaches such as tabular HEQ, quantile HEQ and polynomial fit HEQ. It also shows that soft HEQ achieves notably
better recognition results than hard HEQ. The results of the experimental work also show that using HEQ improves
the efficiency of other speech enhancement techniques such as stereo piece-wise linear compensation for
environment (SPLICE) and vector Taylor series (VTS). The results also show that using HEQ in multi style training
(MST) significantly improves the ASR system performance.
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1 Introduction

Optimal automatic speech recognition (ASR) takes place
when the recognition system is used under circum-
stances identical to those in which it was trained. How-
ever, in the actual real world, there exist many sources
of mismatches between the environment of training and
the environment of testing. These mismatches can be
due to the sources of noise which include additive noise,
linear filtering, and nonlinearities in transduction or
transmission, as well as impulsive interfering. For this
reason, robust speech recognition in noisy environments
is one of the focus areas of speech research [1, 2]. The
objective of robustness techniques is to provide ASR
systems with robustness against the noise sources.
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Most ASR systems are trained using training data
recorded in typical clean conditions. However, in real
environments, the noise introduces a distortion in the
feature space and due to its random nature, it causes a
loss of information [1]. It usually produces a nonlinear
transformation of the feature space depending on the
speech representation and the type of noise. For ex-
ample, in the case of cepstral-based representations,
additive noise causes a nonlinear transformation that
has no significant effect on high-energy frames but a
strong effect on those with energy levels in the same
range or below that of the noise. Many speech enhance-
ment techniques assume that the distortion is a function
in clean speech and noise sources. Such that the noisy
speech can be expressed as:

Y, = % +f (%2, e, hy)

© 2015 Al-Wakeel et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http//creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13636-015-0059-4&domain=pdf
mailto:ra_roshel@yahoo.com
http://creativecommons.org/licenses/by/4.0

Al-Wakeel et al. EURASIP Journal on Audio, Speech, and Music Processing (2015) 2015:15

where ¢ is the time frame index, x;, 7, and n, are the
clean, noisy, and additive noise Mel frequency cepstral
coefficients (MFCC) vectors, respectively, and /%, is the
corresponding convolutional noise vector. The random
nature of the additive and convolutional noises results in
one to many mappings between clean and noisy feature
spaces and a given clean feature vector can generate
different noisy vectors, and vice versa [3].

Figure 1 shows the effect of noise on the probability
density function of clean speech when the noise is as-
sumed stationary Gaussian noise [2]. The clean speech
has a mean value of 25 and a standard deviation of 10.
The noise has a standard deviation of 2. In general, the
convolutional noise mainly shifts the mean of the coeffi-
cients, whereas additive noise modifies the probability
density function (PDF), reducing the variance of the co-
efficients [3].

Speech enhancement techniques aim to achieve the
robustness of the ASR systems in noisy environments.
Speech enhancement methods can be classified into two
main categories [2]. The first category is feature-domain-
based methods which in turn have been classified into
three approaches, noise resistant features, feature
normalization, and feature compensation. The second
main category is the model-domain methods. In noise-
resistant feature approach, robust signal processing is
employed to reduce the sensitivity of the speech fea-
tures to the environment conditions that do not match
those used to train the acoustic model. Examples of
noise-resistant features include PLP [4, 5] and zero-
crossing peak amplitude (ZCPA) [6], average localized
synchrony detection (ALSD) [7], and perceptual
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Fig. 1 The effect of noise on the probability density function
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minimum variance distortionless response (PMVDR)
[8]. Although these features can usually achieve better
performance than MFCC [9] which is popular in most
of ASR systems, they have a much more complicated
generation process which sometimes prevents them
from being widely used together with some noise ro-
bustness technologies.

Feature moment normalization techniques normalize
the statistical moments of speech features. Cepstral
mean normalization (CMN) [10] is one of the most
popular feature moment normalization techniques. It is
involved in most speech recognition systems. It effi-
ciently reduces the effects of unknown linear filtering in
the absence of additive noise by subtracting the mean of
the cepstral coefficients in order to remove the global
shift of the mean in the cepstral vectors [1]. Another
technique of moment normalization is cepstral mean
and variance normalization (CMVN) [11]. CMVN nor-
malizes the second-order statistical moments. Also,
histogram equalization (HEQ) [1] is classified as one of
this category of methods. It normalizes the higher statis-
tical moments through the feature histogram.

The third subcategory of feature domain speech en-
hancement is feature compensation which aims to re-
move the effect of noise from the observed speech
features. So, a clean version of the speech is recognized
using the clean models. They include, but are not lim-
ited to, spectral subtraction (SS) [12], vector Taylor
series (VTS) [13], stereo piece-wise linear compensation
for environment (SPLICE) [14], and stereo-based sto-
chastic vector mapping (SSM) [15, 16].

The second main category is the model-space methods
[17, 18]. This class of methods attempts to modify the
acoustic model parameters to incorporate the effects of
noise in order to allow them to represent noisy speech
properly. So the noisy speech is recognized using noisy
models [19, 20]. Model space methods only adapt the
model parameters to fit the distorted speech signal. The
model adaptation can operate in either supervised or
unsupervised mode. In supervised mode, the correct
transcription of the adapting speech utterance is avail-
able. It is used to guide model adaptation to obtain
adapted model which is used to decode the incoming
utterances. In unsupervised model, the correct tran-
scription is not available. Two-pass decoding is usually
used. In the first pass, the initial model is used to de-
code the utterance to generate a hypothesis. And then
the updated model is obtained and used to generate the
final decoding result [2]. While typically achieving
higher accuracy than feature-domain methods, they
usually incur significantly higher computational cost. In
addition, this class of methods needs a large amount of
adaptation data. This may be difficult to be available in
many situations.
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Speech enhancement techniques may use a single chan-
nel recording such as VTS and spectral subtraction or
multi-channel recordings such as SSM and SPLICE.

In this work, we are interested in the HEQ method
used to compensate for the nonlinear distortions in
speech representation. HEQ has a set of advantages. It
can be applied in the feature domain, independently
from the recognizer back end, without the need for a
prior information about typical noise or the signal-to-
noise ratio (SNR) to be expected and does not require
voice activity detection (VAD) to estimate noise. Also, it
is computationally inexpensive. In addition to these ad-
vantages, since it can be considered as a feature
normalization technique, it can be applied before or
after other speech enhancement techniques such as
SPLICE and VTS approaches.

In this work, we utilize stereo simultaneous recordings
for the clean and the corresponding noisy speech in
order to train stereo Gaussian mixture model (GMM).
The stereo GMM model is used to compute cumulative
density function (CDF) tables for both clean and noisy
speech. The CDF values are computed using sigmoid
function. We aim to evince the effectiveness of the pro-
posed HEQ method when it is applied either alone or in
combination with VTS and SPLICE approaches. In
addition, we aim to demonstrate its effectiveness when it
is used in a process of multi-style training of the acoustic
recognition models and using the resulted model to
recognize speech processed by HEQ.

The paper is organized as follows. Section 2 reviews
the main theory of HEQ. Three HEQ-based approaches
are described. Section 3 introduces a speech enhance-
ment approach based on HEQ. This method depends on
the availability of stereo recordings for the training clean
speech and its corresponding noisy speech. Two ap-
proaches to implement HEQ are presented, the hard
decision HEQ and the soft decision HEQ. The experi-
mental work and results are shown in Section 4, and fi-
nally, in Section 5, the conclusions and future work are
presented.

2 Theory of histogram equalization

The acoustic mismatch between clean reference features
and noisy test features caused by the environmental
noise produces a statistical difference between their cor-
responding probability density functions (PDFs) [21].
HEQ attempts to transform the PDF of the original test
(noisy) feature into its reference (or training) PDF [22-24]
to improve the recognition accuracy. In the implemen-
tation of HEQ, reference and test PDFs are replaced by
their corresponding reference histograms and the test
histogram. The main objective is to find the transform-
ation which achieves the equalization of the CDF of the
noise observed coefficient to the CDF of the clean
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coefficient. HEQ is applied to each feature on a
component-by-component basis. The principle of HEQ
can be clarified using Fig. 2 [25].

Let the random variable y with pdf p(y) and CDF C,(y)
can be transformed to a random variable & = T,(y)
with a probability density function ¢, (%) and CDF C,(x)
which is identical to that of the reference CDF, such as:

Cy(y) = Ci(%) (1)

So the estimated clean speech coefficient can be ob-
tained by applying the inverse of the reference cumula-
tive density function on the noisy CDF:

&= CHG0) 2)

This process is assumed to transform the test data
distribution into the training data distribution.

Clearly, the effectiveness of HEQ is directly related to
the reliable estimation of both reference and test CDFs
[26]. CDF can be estimated efficiently by using a large
amount of sample data. This amount of data can be ob-
tained at the training phase. So, the reference CDF can
be obtained quite reliably. On the other hand, at the test
phase, when short utterances are to be recognized, the
amount of sample data may be insufficient for the reli-
able estimation of the test CDF. In this case, many re-
searches [27, 24, 25] used the order statistics to compute
the test CDF.

2.1 Computing CDF using order statistics

Let W be the test utterance to be recognized. W consists
of N frames. Since HEQ works in a component-by-
component basis, the kth component in all the N frames
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Fig. 2 Principle of histogram equalization. The test data are
transformed such that their cumulative histogram matches the
cumulative histogram of the training data distribution
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is considered. This sequence of values of the kth compo-
nent over all the N frames can be denoted as:

Yi= [yk(l)ayk(z)’ """""" 7yk(N)] (3)

The first step is to sort this sequence of values in as-
cending order such that [24]:

7)<y ([re]) <. <y (IN) (4)

where [r;] and 7, denote the original frame index of fea-
ture component y(/r/), and its rank (respectively) when
the elements of the sequence Y are sorted in ascending
order. The order statistics-based estimate of the test
CDF is as follows:

rk—0.5
5
i~ (5)

CYk (yk[rk}) =

This is the principle of HEQ speech enhancement ap-
proach. Speech enhancement methods based on HEQ
have implemented HEQ in a variety of ways.

2.2 Variations of HEQ
We will briefly describe three effective HEQ-based ap-
proaches in this section.

2.2.1 Table-based histogram equalization (THEQ)

THEQ [28] is a non-parametric method to make the dis-
tributions of the test speech match those of the training
speech. The cumulative histogram is used to estimate
the corresponding CDF value of each feature vector
component y. It has two phases. The first phase is the
training phase, in which the cumulative histogram of
each feature vector component of the training data is
computed resulting in a table of the CDF values for a
number of K bins between the maximum and minimum
values of each feature component.

The second phase is the table look-up process in
which the restored value of each feature vector com-
ponent x of the test utterance is obtained by using
its estimated CDF value as the key to finding the
corresponding transformed (restored) value in the
CDF table [29].

2.2.2 Quantile-based histogram equalization (QHEQ)

Instead of the full match of the cumulative histogram
that is implemented by THEQ, QHEQ [30, 3] uses a
quantile-corrective manner to calibrate the CDF of each
feature vector component of the test speech to that of
the training speech [29]. In QHEQ, a transformation
function is estimated by minimizing the mismatch be-
tween the quantiles of the test utterance and those of
the training data. The transformation function is then
applied to each feature component x to make the CDF
of the equalized component match that observed in
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training. The estimation of the transformation function
can be implemented using a single test utterance (or ex-
tremely, a very short utterance), without the need of an
additional set of adaptation data [3]. On the other hand,
in order to find the optimum transformation parameters
for each feature vector component, an exhaustive online
grid search is needed. This search process is very time-
consuming [29].

2.2.3 Polynomial-fit histogram equalization (PHEQ)

PHEQ uses the data fitting scheme to efficiently approxi-
mate the inverse functions of the CDFs of the training
speech for HEQ [29]. Data fitting is a method for math-
ematical optimization. This method takes a series of data
points (u;,v;) with i = 1,..., N and attempts to find a func-
tion G(u;) whose output V; closely approximates v; by
minimizing the sum of the squares error between the
points (u;, V;) and their corresponding points (u;v;) in
the data. N is the number of points. The function G(u;)
to be estimated can be either linear or nonlinear in its
coefficients.

Such data fitting (or so-called least squares regression)
is used in PHEQ to estimate the inverse functions of the
CDFs of the training speech. For each speech feature
vector component of the training data, given the pair of
the CDF value Crpq,(y;) of the vector component y; and
y; itself, the linear polynomial function G(Crain(y;)) with
output y; can be expressed as:

S
G(CTram y, Z CTram y, (6)
s=0

where the coefficients a, can be estimated by minimizing
the squares error expressed in the following equation:

N

E? = Z( i‘j’i)z

i=1

= Z <yi_ Zas(CTrain(yi))s> (7)

“n

Here, N denotes the total number of training speech
feature vectors, and S is the order of the polynomial
function.

However, the polynomial function is efficient in con-
structing the transformation function, it has some limi-
tations. High-order polynomial functions might cause
over-fitting of the training data. In addition, the polyno-
mial function provides good fits for input data points
which exist within the range of values of the training
data, but it would also probably have rapid deterioration
when the input data points exist outside that range [29].
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3 Histogram equalization using stereo databases
In this work, stereo training database (i.e., data that con-
sists of simultaneous recordings of both the clean and
noisy speech) is used to build stereo Gaussian mixture
model (GMM) which is used to estimate both the refer-
ence CDF and the test CDF of each feature vector com-
ponent. The proposed HEQ method uses CDF tables
which are computed using stereo GMM which models
the joint PDF of clean-noise speech. In addition, the
method estimates the clean speech feature using a mini-
mum mean square error (MMSE) criterion. Two ap-
proaches to apply HEQ, hard decision HEQ and soft
decision HEQ, are investigated.

Stereo databases were used with HEQ in earlier work
n [31]. In [31], the stereo database was used to train
two separated GMM models, one to model the test en-
vironment and the other to model the clean speech. The
two models are used to estimate the clean speech in a
MMSE framework.

In this work, the stereo database is used to train a
stereo GMM by concatenating each clean speech frame
together with the corresponding noisy speech feature
vector. Another difference is that cumulative density
function tables for both clean and noisy speech are
computed using the sigmoid function that utilizes the
stereo GMM, so the order statistics is not used to com-
pute the test CDF.

The following sections describe the details of imple-
menting the proposed approach.

3.1 The joint probability distribution

The joint distribution is built using the stereo database.
Let x = (x1, X5,....., Xx) be the clean feature vector where K
is the dimension of the vector. The corresponding sim-
ultaneously recorded noisy representation is y=(y,

Define z = (x, y) as the concatenation of the two chan-
nels. So the dimension of z is 2* K.

Gaussian mixtures are used to model the joint prob-
ability p (z). So, p (z) can be estimated as:

M

P =" euN (2t Zeem) (®)

m=1

where M is the number of mixture components, c,,,
Uzom and X, are the mixture weight, mean, and covari-
ance of the mth component, respectively. Also, both the
mean and covariance can be partitioned as

//[x m
= ? 9
,Mz,m <ﬂy‘m ) ( )
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The GMM model can be trained using the expectation
maximization (EM) algorithm [32].

3.2 The use of sigmoid function to approximate CDF
values

As mentioned above, the efficiency of HEQ approach is
directly related to the reliable estimation of the CDF
values. So, our objective now is to find a reliable method
to estimate the CDF values given the stereo GMM.

In probability theory and statistics, the logistic dis-
tribution [33] is a continuous probability distribution
resembles in its shape the Gaussian distribution and
its cumulative distribution function has a similar
shape as the CDF of the Gaussian distribution but it
has heavier tails (higher kurtosis). The CDF of logistic
distribution at the point x is computed using the fol-
lowing formula:

1
1+ exp {—_(x_” l)]

g

Ci(x) = (11)

where y,; and o; are the mean and the standard devi-
ation of the logistic distribution.

In this work, a formula similar to (11) is used to com-
pute the CDF values using the mean and standard devi-
ation of the stereo GMM.

3.3 HEQ using stereo GMM and sigmoid function

In HEQ, it is assumed that speech features are statistically
independent, so it works in a component-by-component
basis. The proposed HEQ approach is implemented in
two phases. In the first phase, tables for the CDF values
are computed using the stereo GMM both for the clean
speech and noisy speech. In the second phase, the CDF ta-
bles are used to transform the observed noisy coefficient
to its clean estimate.

1) Calculating the CDF tables: using each Gaussian
mixture m, 1 < m < M, and for each component
k, 1 < k < K, the cumulative histogram is
estimated by considering a large number of bins
V (e.g., 100) uniform intervals calculated between
Um — 40, and u,, + 40,, where p,, is the mean
and o,, is the standard deviation of the
component at mixture m.

For each bin v, the CDF is calculated using the sigmoid
function
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1

— T (12)
1+ yexp [%}

Q =

The parameter y is a constant, and its value is chosen
experimentally so the approximated HEQ transform-
ation is smooth.

This process is implemented for both clean part
and noisy part of the stereo GMM mixture. In the
following, the notation Q,c is used to denote the CDF
for the clean part and Q,. is used to denote the CDF
of the noisy part. At the end of this phase, the CDF
tables for clean and noisy parts of the GMM are ob-
tained. The tables contain pairs of the bins and their
corresponding CDF values. Each (bin, CDF) pair is
denoted by (v, Qv).

4 Applying HEQ to the test speech
For each component y; in the observed speech feature
vector y, the clean speech estimate can be calculated using
Gaussian mixture 7 as follows. The noise CDF table is
used to detect the interval to which the component y; be-
longs. So, we want to find the nearest two bins v} and v},
to the component Y, so y,.€ [V?’, V:?H].

The value of the cumulative density function at y; C(y) is
computed as a linear interpolation of their CDF values as:

Qpr + Qyr
Cly) = ———+ 5 =

where 1 <i< V.
The computed CDF C(y;) is used to estimate the clean
speech feature X using the clean CDF table, such that

(13)

C C
vj + ij

. (14

%=
where v; and v/,; are the values of the bins whose CDF
values are the nearest to C(yy).

However, in practice, there is no way to decide which
mixture the observed speech vector y belongs to. Two
choices were investigated:

1. Hard decision-based HEQ: in this approach, the
mixture m whose p(y|m) is maximum, is selected:

n = Y 1
i = arg max p(Y|m) (15)

So, the HEQ is implemented using the CDF tables
which are related to mixture 7.

2. Soft decision-based HEQ: in this approach, the HEQ
algorithm is applied using all the mixtures. The
clean speech estimate is computed in a minimum
mean square error (MMSE) basis using
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% = E[x|y] (16)

The main assumption is that the speech features are
statistically independent. So, in the following, we will de-
note the speech feature as x for clean speech feature and
y for noisy speech feature to indicate they are scalars.
Considering the GMM structure of the joint distribu-
tion, Equation (16) can be further decomposed to:

i = [ plalyyads =Y [ ptwmlyyucs

X

x

y / p(x, m|y)xdx

> p(m|
z g (17)
> p(m|
> p(m|

X

)
») / plxlm, y)eda
)

y)Ex|m, y]

Considering that E[x|m,y] is equal to the clean speech
estimate computed in (14), and setting it as,

Xm = Elx|m,)] (18)
so we reach the following equation,
Xm = Elx|m,)] (19)

where p(m|y) is the posterior probability of the mix-
ture m given the observed vector y. It can be computed
by:

p(ylm)p(m)
S polmp(m)

Soft-HEQ approach requires computing (14) M times,
where M is the number of mixtures, while for hard
HEQ), Equation (14) is computed only once (for the mix-
ture with p(Y|m) is maximum). So, for each component,
soft HEQ requires M(M + 1) multiplications and M? ad-
ditions more than hard HEQ. This computational cost
can be neglected when the number of mixtures is not
large.

p(mly) = (20)

5 Experimental work and results

The experiments presented in this paper have been im-
plemented using CARVUI database recorded inside a
moving car. The data was collected in Bell Labs area,
under various driving conditions (highway/city roads)
and noise environments (with and without radio/music
in the background). About two thirds of the recordings
contain music or bubble noise in the background. A
total of 56 speakers participated in the data collection.
The speech material from 50 speakers is used for train-
ing, and the data from the 6 remaining speakers is used
for test. Simultaneous recordings were made using a
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close-taking microphone and a 16-channel array of first-
order hypercardiod microphones mounted on the visor.
Data from two channels only are used. The first one is
the close-talking microphone (CT) channel. The second
one is a single channel from the microphone array, re-
ferred to as hands-free data (HF) henceforward. The
average SNR is about 21 db for the CT channel and 8 db
for the HF channel. The experiments were implemented
using the part of the database that contains only the
digit utterances.

The data are recorded at 24-kHz sampling rate and
are down sampled to 8 kHz. They are then windowed
with 12.5 ms frame rate and 25 ms frame size. Filter
bank analysis is then applied. The filter bank has 26
channels. MFCCs are calculated by applying DCT to log
filter bank amplitudes to produce 12 cepstral coeffi-
cients. The energy coefficients are also computed and
appended to the cepstral vectors. Therefore, each ceps-
tral vector contains 13 coefficients. During recognition,
delta and delta-delta coefficients are computed on the
fly resulting in vectors of 39 coefficients.

We have implemented speech enhancement using
Gaussian mixtures models with sizes 16, 64, and 256
mixtures.

The recognition models for digits are trained using
about 6500 training clean speech files collected from the
CT microphone and tested using about 800 utterances.
For each digit from O to 9, there is a hidden Markov
model (HMM). The digit 0 has an additional model for
the utterance “oh.” A 12th model is considered to model
silence. Each of these models consists of 6 states. Each
state contains 8 mixtures. The clean speech files are also
used to build the clean speech Gaussian mixture models
that were used in the experiments. Training and recog-
nition is done using HTK [34].

In the HEQ experiments, constant y used in the com-
putation of the CDF in (12) takes the value -1.7.

A baseline set of results for this task is given in
Table 1.

This table shows the evaluation of the recognition sys-
tem in the different test/train conditions. In terms of
sentence error rate (SER), Clean refers to the CT chan-
nel and noisy refers to the HF channel.

The first result shows the SER when clean speech is
recognized using systems trained using clean database.
The second result shows the result when the recognition
system is trained and tested using noisy speech. The

Table 1 The base line recognition results
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error rate is low in the two cases. This is because the en-
vironment of testing is similar to the environment of
training. However, when the system is trained using
clean speech and tested using noisy speech the recogni-
tion performance degrades severely. This is clear in the
third experiment of Table 1 which shows how the system
would perform in practical situations when the system is
trained using clean speech and tested using observed
speech. We can see dramatic degradation in performance
due to the noise, 31.72 SER in noisy environment vs. 12.94
SER in clean environment.

Applying compensation techniques to the noisy speech
improves the recognition results.

The SPLICE, VTS, and HEQ are applied to the MFCC
coefficients before CMN. After applying the compensa-
tion, CMN was performed then the delta and delta-delta
coefficients were computed.

Table 2 shows the results obtained by applying SPLICE
and first-order vector Taylor series (VTS) technique.

We see that the best result obtained with the number
of mixtures is 256. In this case, SPLICE represents about
13 % relative improvement to the baseline, and VTS rep-
resents about 9 % relative improvement.

The next set of experiments test the performance of
the proposed hard and soft HEQ approaches in compari-
son with THEQ, QHEQ, and PHEQ approaches. Table 3
shows the results of these experiments.

From results in Table 3, we can see that the proposed
approach outperformed the other HEQ approaches
which did not provide significant improvement com-
pared with the baseline system. Also, we can see the su-
periority of soft HEQ over the hard HEQ approach
which achieved a relative 25.5 % reduction in SER over
the baseline using 64 mixtures while the hard decision
HEQ achieved only 9 % relative improvement in the SER
using 256 mixtures.

The next set of experiments tested the effect of com-
bining soft HEQ with other speech enhancement
methods. Table 4 shows the results of applying SPLICE
and VTS speech enhancement methods to the soft HEQ
processed noisy speech.

From results shown in Table 4, we can see that apply-
ing SPLICE and VTS after HEQ achieves better results
than the case when the SPLICE and VTS are applied dir-
ectly on the noisy speech. Applying HEQ to the noisy
speech before SPLICE introduces improvement to the
performance of SPLICE by about 16 %. And in case of

Condition SER Table 2 SER after SPLICE and VTS speech enhancement
Clean/Clean 12.94 16 64 256
Noisy/Noisy 1679  SPLICE 29.85 2848 2749
Clean/Noisy 3172 VTSHirst order 31.84 3047 28.86
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Table 3 SER after histogram equalization

16 64 256
THEQ 3143
QHEQ 31.68
PHEQ 30.39
Hard HEQ 29.85 29.85 28.86
Soft HEQ 26.87 2363 24.38

VTS, the improvement was about 13.6 % of the SER ob-
tained by VTS alone.

In the last set of experiments, the soft HEQ was evalu-
ated with the multi style trained (MST) recognition
models. This is done in two steps:

a) Applying soft HEQ to the noisy training data to
yield HEQ enhanced speech.

b) Constructing the training database by merging the
clean speech database with the SSM-enhanced
speech database. The new database is used to train
the recognition models.

The resulted models are used to recognize HEQ proc-
essed noisy speech and noisy speech processed by
THEQ, QHEQ, PHEQ, soft HEQ followed by VTS, and
soft HEQ followed by SPLICE. Table 5 shows the results
of these experiments.

The first row of Table 5 shows the SER obtained when
the noisy unprocessed speech is recognized using multi-
style trained recognition models.

The next three rows show the SER when the noisy
speech is processed by THEQ, QHEQ, and PHEQ and
then recognized by the multi-style trained HMM model.
The last three rows show the SER when the soft HEQ is
applied alone and with SPLICE and VTS speech en-
hancement methods.

THEQ, QHEQ, and PHEQ approaches achieve only
13.55, 13.46, and 15.5 % (respectively) improvements in
the SER relative to the baseline. However, in case of 64
mixtures, the improvement in the SER achieved in case
of MST when the noisy speech is processed by only soft
HEQ was about 50 % relative to the baseline. When the
noisy speech is processed by HEQ then by SPLICE the
improvement was 48.6 % in case of 64 mixtures and this
percentage is decreased when the number of mixtures
increased to 256. When the noisy speech is processed by
HEQ then by VTS, the improvement was about 39 %.

Table 4 SER SPLICE and VTS compensation applied on soft
histogram equalized speech

16 64 256
SPLICE 23.88 23.88 23.89
VTS-first order 2944 26.34 27.11
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Table 5 SER after HEQ evaluated by multi-style trained recognition

models

16 64 256
Noisy unprocessed 2749
THEQ 2742
QHEQ 2745
PHEQ 26.88
Soft HEQ 1642 158 1741
Soft HEQ then VTS 20.27 1947 194
Soft HEQ then SPLICE 16.29 16.29 25.88

The results of the experiments also show that the im-
provement achieved when the soft HEQ is implemented
alone is better than the case when it is combined with
SPLICE and VTS which provide a computationally an
effective noise reduction approach.

6 Conclusions

In this paper, we proposed a speech enhancement-method
based on HEQ. HEQ attempts to eliminate the nonlinear
distortions of noise by transforming the PDF of the ori-
ginal noisy feature into its reference training PDF to im-
prove the recognition performance. In this work, we used
stereo speech recordings to build stereo GMM to model
the joint probability of clean and noisy speech. The stereo
GMM is used to compute the CDF tables using the sig-
moid function. Two approaches to implement the HEQ
method were investigated. The first is hard decision HEQ
and the second is soft decision HEQ. The experimental
work shows that soft decision HEQ notably achieves bet-
ter speech recognition results than hard decision HEQ.
Both soft HEQ and hard HEQ provided better perform-
ance than the other HEQ approaches such as THEQ,
QHEQ, and PHEQ using clean speech trained and multi-
style trained recognition models.

Also, the HEQ approach achieves better performance
than SPLICE and VTS methods and applying HEQ to
the noisy speech before SPLICE and VTS speech en-
hancement methods improves the performance of such
enhancement methods but did not achieve better results
than the results of applying HEQ alone.

The best recognition results are obtained when using
number of mixtures in the GMM equal to 16. When
used larger number of mixtures, the percentage of
achieved performance improvement decreases. May
using larger training data set provide better perform-
ance for larger number of mixtures?

Finally, more improvements to the recognition per-
formance of ASR are obtained when the HEQ is used to
enhance a set of noisy speech and incorporating this
new speech data to the training speech corpus in a multi
style training framework.
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It is obvious that histogram normalization is computa-
tionally attractive as it does not require a process of
noise estimation before applying the enhancement ap-
proach such as VTS. It also does not need the computa-
tion of correction vectors like SPLICE. In addition, since
HEQ is implemented in a component-by-component
manner, it does not require matrix operations in its im-
plementation which is very time consuming. One add-
itional advantage of HEQ is that it can be easily
incorporated with most feature representations and
other enhancement techniques without the need of any
prior knowledge about the actual distortions caused by
various kinds of noises.

On the other hand, HEQ has some limitations. The
proposed HEQ approach makes use of large CDF tables
which must be available during the testing of the recog-
nition systems. This requires a large storage space.

Another limitation is that the HEQ operates in a
component-by-component basis as it assumes that the
MECC features are independent. However, this assump-
tion is used only for the simplicity and ease of imple-
mentation and in fact the MFCC features are correlated.
Hence, there is a need to find a way to consider the cor-
relation between the speech features in HEQ.

In this work, we have used sigmoid function to esti-
mate CDF. Other methods of computing CDF can be de-
veloped and tested with HEQ approach.

Recently, deep neural network (DNN) [35, 36] has
provided superior performance than GMM for speech
recognition systems. So we suggest for future work to
implement the proposed approach using DNN-HMM
instead of GMM-HMM.

We also suggest for future work to estimate the clean
speech using a maximum a posteriori (MAP) approach
which has shown to outperform the MMSE approach.
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