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Abstract

The Farrow-structure-based steerable broadband beamformer (FSBB) is particularly useful in the applications where
sound source of interest may move around a wide angular range. However, in contrast with conventional filter-and-
sum beamformer, the passband steerability of FSBB is achieved at the cost of high complexity in structure, i.e., highly
increased number of tap weights. Moreover, it has been shown that the FSBB is sensitive to microphone mismatches,
and robust FSBB design is of interest to practical applications. To deal with the aforementioned problems, this paper
studies the robust design of the FSBB with sparse tap weights via convex optimization by considering some a priori
knowledge of microphone mismatches. It is shown that although the worst-case performance (WCP) optimization has
been successfully applied to the design of robust filter-and-sum beamformers with boundedmicrophonemismatches,
it may become unapplicable to robust FSBB design due to its over-conservativeness nature. When limited knowledge
of mean and variance of microphone mismatches is available, a robust FSBB design approach based on the worst-case
mean performance optimization with the passband response variance (PRV) constraint is devised. Unlike the WCP
optimization design, this approach performs well with the capability of passband stability control of array response.
Finally, the robust FSBB design with sparse tap weights has been studied. It is shown that there is redundancy in the
tap weights of FSBB, i.e., robust FSBB design with sparse tap weights is viable, and thus leads to low-complexity FSBB.

Keywords: Steerable broadband beamformer; Microphone array; Farrow structure; Robust beamforming; Convex
optimization

1 Introduction
As one of the key technologies for microphone arrays,
broadband beamforming has been used in a wide range
of audio and speech processing applications, such as tele-
conferencing, hearing aids, and audio surveillance [1–6].
The most popular methods for broadband beamform-
ing for microphone arrays are based on the well-known
filter-and-sum structure [2]. In practice, sound source of
interest may move around some angular range. Accord-
ingly, the passband width of a broadband beamformer
usually needs to be designed to cover the whole angular
range of movement of the sound source.1 It is known that,
there is a trade-off between passband width and stopband
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attenuation for a filter-and-sum broadband beamformer,
i.e., the larger the passband width, the worse the stop-
band attenuation, and vice versa.2 As a result, the spatial
filtering performance of filter-and-sum broadband beam-
formers will deteriorate greatly when the sound source
is moving around a wide angular range. To combat this
problem, one promising solution is to design steerable
broadband beamformers, where their passbands can be
adjusted dynamically with a simple scheme, with no need
of redesign of the broadband beamformers.
Recent years have seen great interest in the design of

steerable broadband beamformers for microphone arrays
[7–14]. Among the proposed design approaches, some are
tailored to specific array configurations, such as differ-
ential microphone arrays [7] and spherical microphone
arrays [8]. Comparatively, the Farrow-structure-based
steerable broadband beamformers (FSBBs), also known
as the polynomial beamformers [12], are particularly
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interesting in some applications, since they are applicable
to arbitrary array configurations, and moreover, their
passbands can be steered online with just one single
parameter [10]. In practice, there usually exist some mis-
matches among microphones, such as gain and phase
errors [15]. Unfortunately, the FSBBs are highly sensi-
tive to microphone mismatches. Therefore, the design of
FSBBs robust against microphone mismatches has drawn
attention recently.
Generally speaking, according to whether any priori

knowledge of microphone characteristics is used or not,
the existing design approaches for robust FSBBs can be
classified into two categories. In [9, 12], white noise gain
(WNG) constraint has been utilized to design robust
FSBBs, where no knowledge of microphone characteris-
tics is considered. However, the main problem with the
WNG constraint-based approach is that it is unclear how
to choose the WNG constraint level optimally. To get
over the problem, a robust FSBB design approach based
on the weighted least squares has been proposed in [11],
which takes into account the probability density function
(PDF) of microphone characteristics. By considering the
knowledge of microphone characteristics, no user-tuning
parameters are required any more; thus, it can facili-
tate the FSBB design. Although this design approach has
shown robust against microphone mismatches, the diffi-
culty with the approach is that the PDF of microphone
characteristics may not be easily accessible in practice.
Instead, the bounds of uncertain microphone mismatches
[16, 17] or the limited knowledge of mean and variance
of microphone mismatches [18] may be practically avail-
able to a designer. Therefore, it is necessary to establish
efficient design schemes for robust FSBBs by consider-
ing these types of knowledge of microphone characteris-
tics. Besides the aforementioned robustness problem of
the FSBB in the presence of microphone mismatches,
another problem with the FSBB is that its computa-
tional complexity is particularly demanding in contrast
with its counterpart based on filter-and-sum structure,
which is the price it has paid for the passband steerability.
However, the low-complexity FSBB design has not been
addressed in the literature, which is of interest to practical
applications.
Inspired by our previous work on robust filter-and-

sum beamformer design [16, 18], the robust FSBB design
using convex optimization with some priori knowledge of
microphone mismatches is studied in this paper. More-
over, to reduce the computational complexity of the robust
FSBB, the robust FSBB design with sparse tap weights has
also been studied. To summarize, the contributions of the
paper are threefold:

• For bounded microphone mismatches, the robust
FSBB design based on the worst-case performance

(WCP) optimization criterion has been established. It
is shown that although the WCP optimization has
been successfully applied to the design of robust
filter-and-sum beamformers as in [16, 17];
unfortunately, it may become unapplicable to robust
FSBB design due to its over-conservativeness nature
as analyzed in the paper.

• When limited knowledge of mean and variance of
microphone mismatches is available to a designer,
the robust FSBB design approach based on the
worst-case mean performance (WCMP) optimization
with the passband response variance (PRV)
constraint is developed. Unlike the WCP
optimization-based design, the proposed approach
performs well for robust FSBB design with the
capability of passband stability control of array
response. Moreover, some insights into the properties
of the PRV of robust FSBB have also been revealed.

• In contrast with filter-and-sum beamformer, the
passband steerability of FSBB is achieved at the cost
of high complexity in structure, i.e., highly increased
number of tap weights. However, it is shown that
there is redundancy in tap weights of FSBB, i.e., robust
FSBB design with sparse tap weights is viable. To this
end, a two-stage approach for the design of robust
FSBB with sparse tap weights using the reweighted
l1-norm constraint optimization has been proposed,
which leads to the design of low-complexity FSBB.

The rest of the paper is organized as follows. In
Section 2, we formulate the problem of robust FSBB
design. In Section 3, we present the robust FSBB design
using the WCP optimization, when the bounds of micro-
phone mismatches are known. In Section 4, we develop
the robust FSBB design using the WCMP optimiza-
tion with the PRV constraint, when the limited knowl-
edge of mean and variance of microphone mismatches
is available. In Section 5, the robust FSBB design with
sparse tap weights is studied. Design examples are pre-
sented in Section 6 to illustrate the performance of the
proposed approaches. Finally, Section 7 concludes the
paper.

2 Problem formulation
Consider a K-element linear microphone array in the
farfield, where the distance the kth microphone and the
center of the array is denoted by dk . The configuration
of the FSBB is shown in Fig. 1. Unlike the well-known
filter-and-sum beamformers, herein, a Farrow structure
consisting ofM finite-impulse-response (FIR) subfilters is
used behind each microphone, where the tap length of
each FIR subfilter is N . The beampattern of the FSBB at
frequency f and angle of arrival θ (defined with respec-
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Fig. 1 The steerable broadband beamformer based on the Farrow structure

tive to the array axis, θ ∈ (0, 180°)) can be expressed as
[11]

P(φd , f , θ) =
K−1∑
k=0

M−1∑
m=0

N−1∑
n=0

Ak
(
f , θ

)
wk,n,me−j2π fdk cos θ/ce−j2π fn/fsDM−1−m

(1)

where Ak
(
f , θ

) = [
1 + ak

(
f , θ

)]
e−jγk( f ,θ) with ak

(
f , θ

)
and γk

(
f , θ

)
being the gain and phase errors of the kth

microphone, wk,n,m denote the weights of the FSBB, c is
the speed of sound, fs represents the sampling frequency,
andD = (φd −90°)/90° with φd being the desired steering
direction of the FSBB.
To simplify notation, (1) can be rewritten in the vector

form

P(φd, f , θ) = wTg(φd, f , θ) (2)

where (·)T denotes the transpose, w = [
w0,0,0, · · · ,

w0,0,M−1,w0,N−1,0, · · · ,w0,N−1,M−1, · · · ,wK−1,N−1,0, · · · ,
wK−1,N−1,M−1

]T is the weight vector of the FSBB, and
g(φd, f , θ) is the array steering vector, which is given by

g
(
φd, f , θ

) = (
A

(
f , θ

) � d
(
f , θ

)) ⊗ e
(
f
) ⊗ s(D) (3)

with

A
(
f , θ

) = [
A0

(
f , θ

)
, · · · ,AK−1

(
f , θ

)]T (4)

d
(
f , θ

) =
[
e−j2π fd0 cos θ/c, · · · , e−j2π fdK−1 cos θ/c

]T
(5)

e
(
f , θ

) =
[
1, e−j2π f /fs , · · · , e−j2π f (N−1)/fs

]T
(6)

s(D) = [
DM−1, · · · ,D, 1]T (7)

where � denotes the Hadamard product, and ⊗ denotes
the Kronecker product.
Given some priori knowledge onmicrophone character-

isticsA(f , θ) and a desired response Pd(φd, f , θ), our prob-
lem is to design an optimal robust beamformer weight
vector w using some criterion such that the beamformer
response P(φd, f , θ) can optimally fit Pd(φd, f , θ) over the
predefined frequency-angle range of interest

(
f , θ

) ∈ �

and the predefined steering direction range of interest
φd ∈ � ⊆ (0, 180°). The advantage of the FSBB is
that its passband can be steered towards arbitrary direc-
tions with no need of redesign of beamformer weight
vector.
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3 Robust FSBBdesign using theWCPoptimization
In this section, we study the robust FSBB design via con-
vex optimization by using the WCP optimization in the
case of bounded microphone mismatches. To proceed,
first, we need to introduce a non-robust design approach
using minimax criterion when there are no microphone
mismatches.

3.1 Non-robust design
When there are no microphone mismatches, the micro-
phone characteristics now become Ak(f , θ) = 1, (k =
0, · · · ,K − 1). Accordingly, (3) reduces to

g
(
φd, f , θ

) = d
(
f , θ

) ⊗ e
(
f
) ⊗ s(D) � g

(
φd, f , θ

)
(8)

where g(φd, f , θ) denotes the steering vector without
microphone mismatches.
The problem for FSBB design using the minimax crite-

rion can be formulated as

min
w

max
(f ,θ)∈�

max
φd∈�

∣∣∣wTg(φd, f , θ) − Pd(φd, f , θ)

∣∣∣ , (9)

which can be recast as the following semi-indefinite con-
vex programming

min
ε,w

ε s.t.
{ ∣∣wTg

(
φd, f , θ

) − Pd
(
φd, f , θ

)∣∣ ≤ ε(
f , θ

) ∈ �,φd ∈ � . (10)

The above problem can be further formulated as a second-
order cone programming (SOCP) problem and thus can
be solved efficiently via the interior point methods [19,
20].

3.2 Robust design
Now, we consider the robust design of FSBB in the pres-
ence of bounded microphone mismatches by using the
WCP optimization-based criterion. Due to microphone
mismatches, there will exist some perturbation in the
steering vector of FSBB, i.e., 	g(φd, f , θ) = g(φd, f , θ) −
g(φd, f , θ). Assume |ak(f , θ)| ≤ δa < 1 and |γk(f , θ)| ≤
δγ < π/2, where δa and δγ are the known bounds. Regard-
ing the perturbation of the steering vector of FSBB, we
have the following proposition.

Proposition 1. The perturbation of the steering vector
of FSBB is bounded by

‖	g(φd , f , θ)‖ ≤√
KN · max

φd∈�

{
1 − D2M

1 − D2

}
· {

(1 + δa)2 − 2(1 + δa) cos δγ + 1
}
.

(11)

Proof. Using (3) and (8), and noting that |D| < 1, it holds
that ∥∥	g(φd, f , θ)

∥∥
= ∥∥[

A
(
f , θ

) � d
(
f , θ

) − d
(
f , θ

)] ⊗ e
(
f
) ⊗ s(D)

∥∥

=
√√√√N · 1 − D2M

1 − D2 ·
K−1∑
k=0

(Ak
(
f , θ

) − 1)2

=
√√√√N · 1 − D2M

1 − D2 ·
K−1∑
k=0

{
(1 + ak)2 − 2(1 + ak) cos γk + 1

}

≤
√
KN · max

φd∈�

{
1 − D2M

1 − D2

}
· {

(1 + δa)2 − 2(1 + δa) cos δγ + 1
}
.

The design of robust FSBB with the WCP optimization
can be formulated as

min
w

max
(f ,θ)∈�

max
φd∈�

max
	g

∣∣∣wT [
g(φd , f , θ) + 	g(φd , f , θ)

] − Pd(φd , f , θ)

∣∣∣.
(12)

With Proposition 1, the problem (12) can be reformu-
lated as the following minimax problem

min
w

max
(f ,θ)∈�

max
φd∈�

∣∣∣wTg(φd, f , θ) − Pd(φd, f , θ)

∣∣∣ + ε‖w‖
(13)

where ε is chosen as the lower bound of 	g given by (11).
By introducing some auxiliary variables, (13) can be recast
as the following convex optimization problem

min
ε,ς ,w

ε s.t.

⎧⎨
⎩

∣∣wTg(φd, f , θ) − Pd(φd, f , θ)
∣∣ ≤ ς

ε‖w‖ ≤ ε − ς(
f , θ

) ∈ �,φd ∈ �

(14)

The procedures of the robust FSBB design using the
WCP optimization are summarized in the following.

Algorithm 1 Robust FSBB design using the WCP
optimization
1) Initialize the user parameters: the bounds of
microphone mismatches δa, δγ ; the desired response
Pd(φd, f , θ), the frequency-angle range of interest �, and
the steering direction range of interest � .
2) Compute the lower bound ε of ‖	g(φd, f , θ)‖ accord-
ing to (11).
3) Solve the convex optimization problem (14) for w.

Remark 1. As we know, although the WCP optimiza-
tion approach has been successfully used in the design



Wang and Chen EURASIP Journal on Audio, Speech, andMusic Processing  (2015) 2015:14 Page 5 of 17

of robust broadband beamformers with the filter-and-
sum structure, it is conservative because the worst sce-
nario that all microphonemismatch errors simultaneously
attain their maximal values rarely occurs in practice.
In contrast, the robust design of FSBB using the WCP
optimization is more conservative since it just consid-
ers the more rarely occurred worst case, which requires
not only that all microphone mismatch errors simultane-
ously attain their maximal values but also that the steering
direction of the FSBB is at the boundary of the steering
direction range of interest (note that (1 − D2M)/(1 − D2)
in (11) achieves its maximal value when the steering direc-
tion is at the boundary of �). As a result, the WCP
optimization-based design for robust FSBB suffers from
outstanding overconstraint problem which may lead to
poor design performance.

4 Robust FSBB design using theWCMP
optimization with the PRV constraint

In this section, we study the robust FSBB design via
convex optimization when the knowledge we have on
microphone mismatches is only their bounded mean and
variance.

4.1 Robust design using theWCMP optimization
Suppose the mean values of microphone gain and phase
mismatches are imprecisely known and are bounded by
some known small constants μa and μγ respectively, i.e.,
|E{ak(f , θ)}| ≤ μa, |E{γk(f , θ)}| ≤ μγ , where E{·} denotes
the mean value. Following the similar derivation as Propo-
sition 1, it holds that themean perturbation of the steering
vector of the FSBB is bounded by

‖E {
	g(φd , f , θ)

} ‖ ≤√
KN · max

φd∈�

{
1 − D2M

1 − D2

}
·{(1 + μa)(1 + μa − 2 cosμγ ) + 1

}
.

(15)

The robust design for the FSBB using the WCMP opti-
mization can be cast as

min
w

max
(f ,θ)∈�

max
φd∈�

max
	g

∣∣∣E {
wT [

g(φd , f , θ) + 	g(φd , f , θ)
]} − Pd(φd , f , θ)

∣∣∣
(16)

Using (15), the WCMP optimization problem can be
reformulated as

min
w

max
(f ,θ)∈�

max
φd∈�

∣∣∣wTg(φd, f , θ) − Pd(φd, f , θ)

∣∣∣ + ε‖w‖
(17)

where ε is chosen as the lower bound of ‖E{	g(φd , f , θ)}‖
given by (15). Alternatively, the optimization problem (17)
can further be recast as the following SOCP problem

min
ε,ς ,w

ε s.t.

⎧⎨
⎩

∣∣wTg(φd, f , θ) − Pd(φd, f , θ)
∣∣ ≤ ς

ε‖w‖ ≤ ε − ς(
f , θ

) ∈ �,φd ∈ �

(18)

Remark 2. Like the WCP optimization-based design,
the WCMP optimization-based design also belongs to
the class of white noise gain constraint-based approaches.
Consider the fact that μa < δa and μγ < δγ , it follows
from (15) and (11) that ε < ε. Therefore, the WCMP
optimization-based design is less conservative than the
WCP optimization-based design and hence is suitable for
robust FSBB design as demonstrated by the simulation
results in Section 6.

4.2 Robust design incorporating the PRV constraint
To enhance the robustness of the FSBB, i.e., to improve
its stability of passband response and hence to reduce
target signal distortion, we hereby consider to incorpo-
rate the PRV constraint into the design procedures by
using the bounded variances of microphone mismatches.
To proceed, we make the following assumptions [15]:
1) microphone gain and phase errors are uncorrelated;
2) all microphones have the same variances Var{a(f , θ)}
and Var{γ (f , θ)} for gain and phase errors, respectively.
The only knowledge we have about Var{a(f , θ)} and
Var{γ (f , θ)} is that they are bounded by some known
constants, i.e., Var{a(f , θ)}≤ σ 2

a and Var{γ (f , θ)} ≤ σ 2
γ .

Theorem 1. The variance of the array response of the
FSBB in the presence of microphone gain and phase
mismatches is given by

Var
{
P

(
φd, f , θ

)} = wTQ(φd, f , θ)w (19)

where the (i, j)th element ofQ(φd, f , θ) is

Q(i,j)(φd , f , θ) ={
[Var(a) + Var(γ )] cos

[
2π f (n1 − n2)/fs

]
D2M−2−(m1+m2), if k1 = k2

0, otherwise

(20)

where n1 = mod (�i/M	 − 1,N), k1 = �(�i/M	)/N	 −
1, m1 = mod (i − 1,M), n2 = mod (�j/M	 − 1,N),
k2 = �(�j/M	)/N	 − 1, m2 = mod (j − 1,M), where
mod (i − 1,M) is the remainder of (i − 1)/M, and �i/M	
denotes the smallest integer larger than or equal to i/M.
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Proof. With (2), (3), and (8), we have

Var{P(φd , f , θ)} = Var
{
wT [

g(φd , f , θ) + 	g(φd , f , θ)
]}

= E

{[
wT	g(φd , f , θ) − E(wT	g(φd , f , θ))

]2}
= wT {

E
[
	g(φd , f , θ)	gH(φd , f , θ)

]
−E

[
	g(φd , f , θ)

]
E

[
	gH(φd , f , θ)

]}
w

= wTQ(φd , f , θ)w
(21)

where the superscript (·)H represents the Hermitian
transpose, and

Q(φd, f , θ) = E
[
	g(φd, f , θ)	gH(φd, f , θ)

]
−E

[
	g(φd, f , θ)

]
E

[
	gH(φd, f , θ)

]
(22)

with its (i, j)th element given by

Q(i,j)(φd , f , θ) = E

[
	gi(φd , f , θ)	g∗

j (φd , f , θ)
]

− E

[
	gi(φd , f , θ)]E[	g∗

j (φd , f , θ)
]

≈ e−jω
[
(k1−k2)fs+(dn1−dn2 ) cos θ/c

]
D2M−2−(m1+m2){

E
[
an1an2

] − E
[
an1

]
E

[
an2

] + E
[
γn1γn2

]
− E

[
γn1

]
E

[
γn2

]}
=

⎧⎨
⎩
[Var(a) + Var(γ )] cos

[
2π f (n1 − n2)/fs

]
×D2M−2−(m1+m2), if k1 = k2
0, otherwise

where the superscript (·)∗ denotes the complex conjugate.
This completes the proof.

Regarding the properties of the PRV of the FSBB, we
have the following remarks.

Remark 3. Given a specific steering direction φd, it is
interesting to note that the PRV of the FSBB is inde-
pendent of angle θ , i.e., the effect of microphone gain
and phase mismatches on the PRV of the FSBB is angle-
invariant. However, the PRV of the FSBB is steering
direction variant. It has been found that the PRV of the
FSBB tends to increase with the steering direction devi-
ating from the array broadside direction as revealed in
Section 6.

Based on (18) and Theorem 1, our proposed robust
design criterion using the WCMP optimization with the
PRV constraint can be formulated as

min
ε,ς ,w

ε + βλ s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣wTg(φd, f , θ) − Pd(φd, f , θ)
∣∣ ≤ ς

ε‖w‖ ≤ ε − ς

wTQ(φd, f , θ)w ≤ λ(
f , θ

) ∈ �,φd ∈ �

(23)

where β > 0 is a trade-off parameter between the mean
deviation of the actual array response from the desired
response and the PRV. It is noted that, when incorporating
the PRV constraint directly from (19), the ill-conditioned
matrix Q(φd, f , θ) may lead to numerical instability prob-
lem. To overcome this problem, the average PRV over the
whole passband has been used instead in the third con-
straint wTQ(φd, f, θ)w ≤ λ, where Q(φd, f, θ) denotes the
average ofQ(φd, f, θ) in the passband.
To summarize, the design approach for the robust FSBB

using the WCMP optimization with the PRV constraint
consists of the following steps.

Algorithm 2 Robust FSBB design using the WCMP opti-
mization with the PRV constraint
1 : Initialize the user parameters: the bounds of mean
values of microphone mismatches μa, μγ ; the bounds of
variances of microphone mismatches σ 2

a , σ 2
γ ; the desired

response Pd(φd, f , θ), the frequency-angle range of inter-
est �, the steering direction range of interest � , and the
trade-off parameter β .
2 : Compute the lower bound ε of ‖E{	g(φd , f , θ)}‖
according to (15).
3 : Calculate the matrixQ(φd, f , θ) according to (20).
4 : Solve the convex optimization problem (23) for w.

5 Robust design of the FSBB with sparse tap
weights

Although the FSBB can be flexibly steered towards any
desired direction, it is at the cost of increased number of
FIR filters in structure, and hence is more computationally
demanding, compared with conventional filter-and-sum
beamformers. An interesting problem now arises: Is there
any redundancy in the tap weights of the FSBB by using
the above design approaches? If so, the constraint on the
sparseness of tap weights of the FSBB can be incorpo-
rated into the robust design approaches to reduce the
computational complexity of the FSBB. To this end, a
two-stage approach for the design of robust FSBB with
sparse tap weights via convex optimization is proposed
in this section. Considering the WCMP optimization-
based design with the PRV constraint is more efficient
than its counterpart based on the WCP optimization for
robust design of the FSBB; as discussed in Section 6, here-
after, we will focus on the WCMP optimization-based
design by incorporating the sparsity constraint on tap
weights.
The first stage of our proposed design approach is to

find potential redundancy in tap weights of the FSBB
using the WCMP optimization-based design approach.
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Based on (17), the problem can be mathematically formu-
lated as

min
w

max
( f ,θ)∈�

max
φd∈�

∣∣∣wTg(φd , f , θ) − Pd(φd , f , θ)

∣∣∣ + ε‖w‖ + μ‖w‖0
(24)

where the l0-norm ‖ · ‖0 is the count of the number of
non-zero elements of its argument, and μ denotes the
user parameter to control the degree of sparsity of the
tap weights. Unfortunately, (24) is a NP-hard optimiza-
tion problem due to the non-convex l0-norm. As it is
known, the l1-norm is the closest convex function to
the l0 norm and the l1-norm is usually able to produce
sparse solutions. To solve the difficult problem (24) effi-
ciently, the iterative reweighted l1-norm constraint [21]
is used instead to approximate the l0-norm constraint in
(24). Explicitly, at the lth iteration, we solve the following
constrained convex optimization problem

min
w

max
(f ,θ)∈�

max
φd∈�

∣∣∣wTg(φd , f , θ) − Pd(φd , f , θ)

∣∣∣ + ε‖w‖ + μ‖D(l)w‖1
s.t. wi = 0,∀i ∈ S(l)

(25)

where ‖ · ‖1 denotes the l1-norm, D(l) = diag{D1,D2, · · · ,
DKNM} with Di = 1/

(
|w(l−1)

i | + ε
)
being the reweight-

ing matrix and ε being a small positive value to provide
numerical stability,w(l−1)

i represents the ith component of
w at the (l − 1)th iteration, and S(l) is the index set of the
sparse tap weights for the lth iteration, which is obtained
by comparing the tap weights w at the (l − 1)th iteration
with a predefined small-valued threshold ξT , in particular,
when the weight |w(l−1)

i | ≤ ξT , then w(l−1)
i should be reset

to zero; otherwise, it will be kept unchanged. By using the
reweighted l1-norm constraint, those tap weights whose
magnitudes are small are imposed larger weightings in the
next iteration and vice versa, and accordingly, the sparsity
of the tap weights is enhanced. For initialization, D(0) is
set to identity matrix and S(0) is set to the null set. The
above convex optimization problem (25) is solved repeat-
edly until the preset maximum number of iterations L is
achieved.
The second stage of the proposed approach is to incor-

porate the PRV constraint in the design procedures. Con-
sidering (23), the design problem can be finally formulated
as the following convex optimization problem

min
ε,ς ,w

ε + βλ s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wi = 0,∀i ∈ S(L)∣∣wTg(φd, f , θ) − Pd(φd, f , θ)
∣∣ ≤ ς

ε‖w‖ ≤ ε − ς

wTQ(φd, f , θ)w ≤ λ(
f , θ

) ∈ �,φd ∈ �

(26)

In summary, the two-stage design approach for the
robust FSBB with sparse tap weights include the following
steps.

Algorithm 3 Robust design of the FSBB with sparse tap
weights
1 : Initialize the user parameters: the bounds of mean
values of microphone mismatches μa, μγ ; the bounds of
variances of microphone mismatches σ 2

a , σ 2
γ ; the desired

response Pd(φd, f , θ), the frequency-angle range of inter-
est �, the steering direction range of interest � , the
trade-off parameter β , μ; the threshold ξT ; the parame-
ter ε for numerical stability; and the maximum number of
iterations L.
2 : Compute the lower bound ε of ‖E{	g(φd , f , θ)}‖
according to (15).
3 : Redundant tap weights finding:

a) Set S(0) = ∅, and D(0) as an identity matrix, and solve
(18) for w(0).
b) Update the index set for the redundant tap weights
S(l) =

{
i||w(l−1)

i | ≤ εT
}
.

c) Solve (25) for w(l).
d) Set l = l + 1, repeat steps b) and c) until l = L.

4 : CalculateQ(φd, f , θ) by (20).
5 : Solve the convex optimization problem (26) for w.

6 Design examples
In this section, some design examples are presented to
demonstrate the performance of the design approaches
proposed above. The CVX convex optimization toolbox
[22] has been used to solve all the convex optimization
problems in the following.
Consider a ten-element uniform linear microphone

array with the inter-element spacing 5 cm. Behind each
microphone, a Farrow structure consisting of five FIR fil-
ters is used, where the tap length of the FIR filters is 20
unless otherwise stated, i.e., K = 10,M = 5, and N = 20.
The steering direction range of interest is [ 40°, 140°], the
normalized frequency range of interest is [ 0.25π , 0.875π ],
and the sampling frequency fs is 8000 Hz. The passband
width, denoted as � , is set to 20°, and for a specific steer-
ing direction φd, the two stopband regions are �

φd
sl =

[ 0°,φd − �/2 − 20°], and �
φd
sr =[φd + �/2 + 20°, 180°],

where two transition bands each with a width of 20°
has been considered. The desired response is defined as
Pd(φd, f , θ) = 1 in the passband and Pd(φd, f , θ) = 0 in the
stopbands. Suppose that all the microphone gain errors
ak(f , θ) have a uniform distribution in [−0.05, 0.05], and
that all the microphone phase errors γk

(
f , θ

)
have a
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uniform distribution in [−π/36,π/36], i.e., corresponding
to E

{
ak

(
f , θ

)} = 0, E
{
γk

(
f , θ

)} = 0, Var
{
ak

(
f , θ

)} =
8.333 × 10−4, and Var

{
γk

(
f , θ

)} = 2.5 × 10−3.

6.1 Example 1: robust design usingWCP optimization
First, we consider the case of no microphone mismatches
when using the WCP optimization, i.e., corresponding to
the non-robust design. Figure 2 shows the array response
of the FSBB using the non-robust design, where the steer-
ing direction, i.e., the direction of arrival of the sound
source of interest, is set to 60°. As can be seen, the
FSBB design based on the WCP optimization performs
well when there are no microphone mismatches, since its
mainlobe can be steered to the desired direction with a
stopband level below −13.7 dB for the stopband region
[ 0°, 30°]∪[ 90°, 180°]. For comparison, the array response
of the well-known least-squares (LS) design based on the
conventional filter-and-sum structure [3] is also shown
in Fig. 3, with the same number of microphones as for
the FSBB. Note that the LS design based on the filter-
and-sum structure is non-steerable; therefore, its pass-
band has to cover the whole direction range of interest
where sound source may be present, i.e., [ 40°, 140°]. Con-
sequently, the passband region is too wide, which will
lead to poor spatial filtering performance. For instance,
when the sound source of interest is impinging on the
array from the angle 60°, the undesired interference
and noise signals within the angular region (90°, 140°)
can not be reduced anymore by the non-steerable
beamformer.
Next, we consider the FSBB design using the WCP

optimization in the presence of microphone mismatches.

Figure 4 shows the corresponding array response of the
FSBB steered to 60°, where the user-defined parameter
ε is set to 1.74 according to (11). The simulation result
is the average over 100 Monte Carlo trials, i.e., by using
100 random samples of microphone mismatches. As we
have discussed above, although the WCP optimization-
based criterion has been successfully applied to the robust
design of filter-and-sum beamformers, it has failed to
work for the design of robust FSBB due to its over-
conservativeness. Therefore, the WCP optimization-
based criterion may not be suitable for the design of
robust FSBB. To justify the overconservativeness of WCP
optimization for FSBB design, the array response of the
FSBB designed by the less-conservative WCP optimiza-
tion with the user-defined parameter ε reduced to 0.02
is shown in Fig. 5. Compared with Fig. 4, it can be
seen clearly that the beamformer performance can be
improved significantly through reducing the effect of con-
servativeness of WCP optimization.

6.2 Example 2: robust design usingWCMP optimization
with the PRV constraint

In the following, we assume that the mean and vari-
ance values of microphone gain and phase errors are
all not precisely known due to practical measurement
errors. That is, the gain and phase errors are not zero-
mean and instead bounded by some small values, i.e.,
|E {

ak
(
f , θ

)} | ≤ 5× 10−6, |E {
γk

(
f , θ

)} | ≤ 8.73× 10−6;
the variance values are also bounded by Var

{
ak

(
f , θ

)} ≤
4.2 × 10−3 and Var

{
γk

(
f , θ

)} ≤ 1.27 × 10−2, respec-
tively, i.e., each is around five times more than the actual
variance of microphone gain/phase errors. All the results
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(b)
Fig. 2 Array response of the FSBB using the WCP optimization without microphone mismatches. The steering direction φd = 60°. a 3D view of the
array response. b Side view of the array response
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(a) (b)
Fig. 3 Array response of the non-steerable LS design based on the conventional filter-and-sum structure without microphone mismatches. a 3D
view of the array response. b Side view of the array response

are the average over 100 Monte Carlo trials with random
samples of microphone mismatches.
Figure 6a and e shows the array response and the PRV of

the robust FSBB based on the WCMP optimization with
the PRV constraint, respectively, where β = 20. While
Fig. 6b and f shows the array response and the PRV of
the robust FSBB based on the WCMP optimization with-
out the PRV constraint, respectively, i.e. β = 0. The
steering direction is set to 60°. To see the results more
clearly, the associated side views are also presented in

Fig. 6c, d, g, and h. Comparedwith theWCP optimization-
based design, i.e., Fig. 4, the design approach using the
WCMP optimization performs well in the presence of
microphone mismatches. Moreover, by imposing the PRV
constraint, the variance of passband array response can
be effectively reduced, especially in the low-frequency
region. Note also that the PRV of the robust FSBB is
nearly invariant with angle θ as demonstrated in Fig. 6g
and h, which is consistent with the theoretical finding in
Remark 3.

(a) (b)
Fig. 4 Array response of the robust FSBB using the WCP optimization in the presence of microphone mismatches, where the user-defined parameter
ε is equal to 1.74. The steering direction φd = 60°. Average of 100Monte Carlo trials. a 3D view of the array response. b Side view of the array response
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(a) (b)
Fig. 5 Array response of the robust FSBB using the less-conservative WCP optimization in the presence of microphone mismatches, with the
user-defined parameter ε being reduced from 1.74 to 0.02. The steering direction φd = 60°. Average of 100 Monte Carlo trials. a 3D view of the array
response. b Side view of the array response

Now, we study the performance of the robust FSBB
using WCMP optimization with PRV constraint in the
presence of larger microphone mismatch errors. Here, we
assume that all microphone gain errors ak(f , θ) have a
uniform distribution in [−0.1, 0.1], and all microphone
phase errors γk(f , θ) have a uniform distribution in
[−π/18,π/18]. Figure 7a and e shows the array response
and the PRV of the robust FSBB based on the WCMP
optimization with the PRV constraint, respectively, where
β = 20. While Fig. 7b and f plots the array response and
the PRV of the robust FSBB based on the WCMP opti-
mization without the PRV constraint, respectively. The
steering direction is set to 60°. For ease of comparison,
the associated side views are also presented in Fig. 7c,
d, g, and h. From the simulation results, we can see that
the robust FSBB still shows satisfactory performance even
in the presence of larger microphone mismatch errors.
Similar to the above case with smaller microphone mis-
matches, by imposing the PRV constraint, the variance of
passband array response of the FSBB beamformer can also
be reduced.
To show the effect of the PRV constraint on the per-

formance of robust FSBB, we first introduce the passband
fluctuation [18], which is defined as the ratio of maxi-
mum mean magnitude response to the minimum one in
the passband. Passband fluctuation is an indicator of the
deviation of the actual mean passband response obtained
from the desired flat-top one. Figure 8a, b, and c shows
the passband fluctuation, the stopband level, and the aver-
age PRV of the robust FSBB with various PRV constraints
in the presence of microphone gain errors [−0.05, 0.05]

and microphone phases errors [−π/36,π/36], where two
cases are considered, i.e., φd = 60° and 90°. As can be
seen from Fig. 8a and c, with more stringent PRV con-
straint, i.e., increasing the trade-off parameter β , the PRV
of the FSBB tends to decrease, while keeping the passband
fluctuation at a lower level. However, this is at the cost of
sacrificing the stopband level as shown in Fig. 8b. There-
fore, a trade-off between the performance of passband and
that of the stopband should be considered during design
of robust FSBB.
As analyzed above, the PRV of the FSBB is dependent on

steering direction. Now, we study the effect of the steering
direction on the PRV of the FSBB. Figure 9a and b shows
the average PRV of the FSBB versus steering direction φd
with β = 0 and β = 20, respectively. Herein, four FSBBs
with different number of microphonesK and different FIR
tap length N have been considered, i.e., K = 7, N = 20;
K = 7, N = 30; K = 10, N = 20; and K = 10, N = 30.
As expected, it can be seen from Fig. 9 that the PRV of the
FSBB is varying with steering direction. Interestingly, the
average PRV tends to increase with the steering direction
deviating from the array broadside.

6.3 Example 3: robust design with sparse tap weights
Now, we study the performance of the robust FSBB design
with sparse tap weights by using Algorithm III. The user
parameters are set as: the trade-off parameter μ = 5 ×
10−7, the threshold parameter ξT = 10−6, the parame-
ter for numerical stability εT = 10−6, and the maximum
number of iterations L = 4. The remaining user param-
eters are set same as in Example 2. All the results are the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 6 Performance of the robust FSBB using the WCMP optimization with the PRV constraint. Microphone gain errors (−0.05, 0.05) and phase errors
(−π/36,π/36). The steering direction φd = 60°. Average of 100 Monte Carlo trials. a Array response of the FSBB with PRV constraint. b Array
response of the FSBB without PRV constraint. c Side view of a. d Side view of b. e PRV of the FSBB with PRV constraint (β = 20). f PRV of the FSBB
without PRV constraint. g Side view of e. h Side view of f
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 7 Performance of the robust FSBB using the WCMP optimization with the PRV constraint. Microphone gain errors (−0.1, 0.1) and phase errors
(−π/18,π/18). The steering direction φd = 60°. Average of 100 Monte Carlo trials. a Array response of the FSBB with PRV constraint (β = 20).
b Array response of the FSBB without PRV constraint. c Side view of a. d Side view of b. e PRV of the FSBB with PRV constraint (β = 20). f PRV of the
FSBB without PRV constraint. g Side view of e. h Side view of f
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(a)

(b)

(c)
Fig. 8 Effect of the PRV constraint on the performance of the robust
FSBB based on the WCMP optimization with the PRV constraint.
Average of 100 Monte Carlo trials. a Passband fluctuation versus β . b
Stopband level versus β . c Average PRV versus β

(a)

(b)
Fig. 9 Effect of the steering direction on the PRV of the robust FSBB
using the WCMP optimization with the PRV constraint. Average of 100
Monte Carlo trials. a Average PRV versus φd , with β = 0. b Average
PRV versus φd , with β = 20

average over 100 Monte Carlo trials with random samples
of microphone mismatches.
First, we demonstrate the complexity-reducing impact

of the sparsity constraint on the robust FSBB. Figure 10
shows the performance comparison of the sparse FSBB
and its non-sparse counterpart with N = 30, where the
steering direction is φd = 60°, and there is no PRV con-
straint (i.e., β = 0). Herein, the non-sparse FSBB refers
to the FSBB designed by Algorithm II, which has a full
active tap weights, i.e., no zero-valued tap weights. For the
sparse FSBB, the number of the active weights is reduced
to 738, i.e., over 50% tap weights of the non-sparse FSBB
are nullified. The array response of the sparse and non-
sparse FSBBs is shown in Fig. 10a and b, while the PRV
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 10 Performance comparison of the sparse robust FSBB and its non-sparse counterpart. For the non-sparse FSBB, the number of active weights
is 1500; while for the sparse FSBB, the number of active weights is 738, i.e., over half of tap weights have been nullified. The steering direction
φd = 60°. Average of 100 Monte Carlo trials. a Array response of the sparse FSBB. b Array response of the non-sparse FSBB. c Side view of a. d Side
view of b. e PRV of the sparse FSBB. f PRV of the non-sparse FSBB. g Side view of e. h Side view of f
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 11 Performance comparison of the sparse and non-sparse robust FSBBs with comparable amount of active tap weights. For the sparse FSBB,
the number of active weights is 738; while for the non-sparse FSBB, the number of active weights is 750. The steering direction φd = 60°. Average of
100 Monte Carlo trials. a Array response of the sparse FSBB. b Array response of the non-sparse FSBB. c Side view of a. d Side view of b. e PRV of the
sparse FSBB. f PRV of the non-sparse FSBB. g Side view of e. h Side view of f
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of the sparse and non-sparse FSBBs is shown in Fig. 10e
and f. In order to see the results more clearly, the corre-
sponding side views are also presented in Fig. 10c and d
and g and h, respectively. As can be seen from Fig. 10c and
d, although over one half of tap weights are nullified, the
beampattern of the resultant sparse FSBB has nearly unaf-
fected compared with the beampattern of its non-sparse
counterpart. Moreover, the variance of passband array
response of the sparse FSBB has only varied slightly com-
pared with that of its non-sparse counterpart, as shown
in Fig. 10g and h. Therefore, it has justified our statement
that there are redundancy in the tap weights of an FSBB,
and a lower-complexity FSBB can be designed via impos-
ing the sparsity constraint without producing a significant
degradation of performance.
Next, we show another advantage of the sparse FSBB

over the non-sparse FSBB with similar computational
complexity. Figure 11 shows the performance compari-
son of sparse and non-sparse FSBBs with a comparable
amount of active tap weights, i.e., with a similar computa-
tional complexity, where the steering direction is φd = 60°
and there is no PRV constraint. For the sparse FSBB, the
number of the active weights is 738, with N = 30. For the
non-sparse FSBB, the number of the active weights is 750,
with N = 15. Note here that, for the purpose of ensur-
ing a fair comparison, the active weights of the sparse
FSBB is chosen slightly less than that of the non-sparse
FSBB. The array response of the sparse and non-sparse
FSBBs is shown in Fig. 11a and b, while the PRV of
the sparse and non-sparse FSBBs is shown in Fig. 11e
and f. To see the results more clearly, the correspond-
ing side views are also plotted in Fig. 11c and d and
g and h, respectively. For the spare FSBB, the stopband
level and passband fluctuation are −7.988 and 2.043 dB,
respectively, with the average PRV 0.005. For the non-
sparse FSBB, the stopband level and passband fluctuation
are −7.802 dB and 2.408 dB, respectively, with the aver-
age PRV 0.011. Comparatively, the sparse FSBB is superior
to the non-sparse FSBB with a similar computational
complexity.
Finally, we consider the effect of the PRV constraint

on the robust FSBB with sparse tap weights. Figure 12
shows the performance of the sparse FSBB under vari-
ous PRV constraints. For comparison, the performance
of non-sparse FSBB with a comparable number of active
weights is also shown in Fig. 12. Here, the simulation set-
tings are same as in Fig. 11. Moreover, the case with the
steering direction φd = 90° is also considered. As can be
seen from Fig. 12, the sparse FSBB outperforms its non-
sparse counterpart under various PRV constraints. Similar
to the case of non-sparse FSBB shown in Fig. 8, the PRV of
the sparse FSBB will decrease with a more stringent PRV
constraint, and this is also at the cost of the stopband level
increasing as shown in Fig. 11b.

(a)

(b)

(c)
Fig. 12 Effect of the PRV constraint on performance of the sparse
robust FSBB. Average of 100 Monte Carlo trials. a Passband fluctuation
versus β . b Stopband level versus β . c Average PRV versus β
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7 Conclusions
In this paper, the study of robust FSBB design with
sparse tap weights via convex optimization has been con-
ducted by incorporating some priori knowledge of micro-
phone mismatches. It has been shown that due to the
over-conservativeness of the WCP optimization crite-
rion, it may become unapplicable to the robust FSBB
design, though it has been successfully applied in the
robust filter-and-sum beamformer design. When the lim-
ited knowledge of mean and variance of microphone
mismatches is available, the robust FSBB design approach
based on the WCMP optimization with the PRV con-
straint has been presented. Compared with the WCP
optimization-based design, it performs well in the pres-
ence of microphone mismatches; moreover, it has the
capability of passband stability control of array response.
Some insights into the PRV properties of FSBB are also
revealed to better understand the robustness charac-
teristic of FSBB. It was also shown in the paper that
there exists redundancy in the tap weights of the robust
FSBB. To further reduce the computational complex-
ity of the robust FSBB, a two-stage design approach
based on the reweighted l1-norm constraint optimiza-
tion has been proposed to sparsify the tap weights
of robust FSBB. Several design examples have been
presented to illustrate the performance of the presented
approaches.

Endnotes
1The passband is also known as the mainlobe of a

beamformer.
2The stopband is also known as the sidelobe of a

beamformer.
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