Aroudi et al. EURASIP Journal on Audio, Speech, and Music Processing
(2015) 2015:35
DOI 10.1186/5s13636-015-0078-1

© EURASIP Journal on
Audio, Speech, and Music Processing

a SpringerOpen Journal

Speech signal modeling using multivariate @

distributions

Ali Aroudi', Hadi Veisi®", Hossein Sameti® and Zahra Mafakheri

Abstract

Goodness-of-fit (GOF) test

Using a proper distribution function for speech signal or for its representations is of crucial importance in statistical-
based speech processing algorithms. Although the most commonly used probability density function (pdf) for speech
signals is Gaussian, recent studies have shown the superiority of super-Gaussian pdfs. A large research effort has
focused on the investigation of a univariate case of speech signal distribution; however, in this paper, we study the
multivariate distributions of speech signal and its representations using the conventional distribution functions, e.g,,
multivariate Gaussian and multivariate Laplace, and the copula-based multivariate distributions as candidates. The
copula-based technique is a powerful method in modeling non-Gaussian multivariate distributions with non-linear
inter-dimensional dependency. The level of similarity between the candidate pdfs and the real speech pdf in different
domains is evaluated using the energy goodness-of-fit test.

In our evaluations, the best-fitted distributions for speech signal vectors with different lengths in various domains

are determined. A similar experiment is performed for different classes of English phonemes (fricatives, nasals, stops,
vowels, and semivowel/glides). The evaluation results demonstrate that the multivariate distribution of speech signals
in different domains is mostly super-Gaussian, except for Mel-frequency cepstral coefficient. Also, the results confirm
that the distribution of the different phoneme classes is better statistically modeled by a mixture of Gaussian and
Laplace pdfs. The copula-based distributions provide better statistical modeling of vectors representing discrete Fourier
transform (DFT) amplitude of speech vectors with a length shorter than 500 ms.

Keywords: Multivariate distribution of speech signal, Copula-based multivariate distribution, Mel-frequency cepstral
coefficient (MFCQ), Discrete cosine transform (DCT), Discrete Fourier transform (DFT), Linear predictive coefficient (LPC),

1 Introduction
Statistical-based speech processing algorithms have
attracted wide interests during the last three decades in
numerous applications, e.g., speech coding [1], speech
recognition [2, 3], speech synthesis [4], and speech
enhancement [5]. In all statistical-based speech process-
ing algorithms, a probability density function (pdf) is
assumed for the signal or its representation. Therefore,
it is not surprising that proper selection of the pdf has
been one of the challenges persistently addressed in this
area [6-8].

Most of the statistical-based speech processing algo-
rithms assume Gaussian probability distribution density
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for speech signals [2, 9-13]. The simplicity of the formu-
lations and the semi-support of the central limit
theorem are the main motivations for using Gaussian
pdf [14]. Recently, a number of researchers have studied
the distribution of speech signal more precisely using
goodness-of-fit (GOF) test [15, 16] in time domain and
transformed domains, e.g., discrete cosine transform
(DCT) and discrete Fourier transform (DFT). In this
regard, Gazor et al. [14], Martin [6], Shin et al. [7], Chen
and Loizou [17], and Erkelens et al. [18] have shown that
speech signals in various domains are modeled more
accurately by super-Gaussian pdfs than by Gaussian pdf.
Their evaluation results have demonstrated that the pdf
of speech signals for time and DCT features are closer
to Laplace [14], for jointly amplitude and phase of DFT
features are closer to complex Laplace [17], for ampli-
tude of DFT features are closer to Rayleigh [18], and for
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real or imaginary parts of DFT features are individually
closer to either Laplace or Gamma [6]. In addition, Shin
et al. [7] have reported that generalized Gamma pdf
models the distribution of real parts of DFT features
more accurately compared to the Gaussian pdf. Table 1
summarizes the results of the published evaluations in
this field.

All aforementioned publications have aimed to address
the issue of modeling univariate pdf of speech signals for
algorithms using univariate pdf. However, there are
many statistical-based algorithms that take advantage of
multivariate distribution of speech signals, and therefore,
studying the multivariate distribution of speech to ex-
ploit a more proper pdf is a key issue for those speech
processing algorithms too. There are typically several
challenges in the studying and modeling of speech
signals in the multivariate distribution case, e.g., the
non-linear or linear inter-dimensional dependency, and
the sparsity and complexity of the multidimensional
space. These issues may have caused to mostly focus on
the investigation of univariate distribution during the
last two decades, and a small progress has been made in
the multivariate distribution study of speech signal. The
earlier studies on multivariate distribution of speech
signal, performed by Brehm et al. [19] and LeBlancin et
al. [20], suggested the multivariate Gaussian pdf for
speech frames with a length of 5 ms. As the frame length
and the process domain may vary the distribution [14],
the multivariate Gaussian pdf may not be an appropriate
choice for the algorithms using frame length other than
5 ms, e.g., 10 to 35 ms or exploiting process domain
other than the time domain, e.g,, DFT or DCT. In re-
cent studies, Gazor et al. [14] and Jensen et al. [21]
have used the moment test and have shown that
Laplace multivariate distribution models speech signal or
its representations are better than the Gaussian multi-
variate distribution. However, in these studies, the
moment test as a GOF test was applied to each
dimension individually and the possible contribution
of inter-dimensional dependency to the multivariate
distribution was not considered.

Table 1 Proposed super-Gaussian univariate distribution of
speech signal in different domains

Fitted distribution

Domain

Time Laplace [14]

Jointly amplitude and phase
of DFT

Amplitude of DFT Rayleigh [18]

Real and imaginary parts of Laplace, Gamma [6], or generalized
DFT Gamma [7]

DCT Laplace [14]

Complex Laplace [17]
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In this paper, we investigate multivariate distribution
of speech signal in the time and transformed domains.
We consider new plausible distribution candidates to
tackle the multivariate distribution modeling challenges.
Among the candidates, copula-based distributions are
also proposed which are able to model the high-
dimensional non-Gaussian distribution with non-linear
inter-dimensional dependency [22]. The copula-based
distributions have been popular over the last decade in
the statistical fields, e.g., climate research, econometrics,
risk management [22, 23], and finance [24, 25]. The
other possible pdf candidates of speech including multi-
variate Gaussian, multivariate Laplace, the mixture of
Gaussian, and the mixture of Laplace distributions are
investigated in this paper too. We employ the goodness-
of-fit test [15, 16, 26] to evaluate the degree of similarity
between the candidate distribution and the real speech
signal distribution. The GOF test is a tractable three-
step approach to investigate distribution of data. In the
first step, a number of candidates are assumed as the pdf
of the real data. Next, an estimator, e.g., maximum likeli-
hood (ML) is exploited to fit the candidates to the real
data, and finally, the GOF test is performed to quantify
the level of similarity between the fitted candidates and
the real data. It is noted that although a wide number of
GOF tests have been proposed, the most appropriate
GOF test is the one that can highly cover underlying
problem conditions, e.g., in our case study is high
dimensionality of spaces. We briefly present a number of
GOF tests, a summary of their strengths and deficien-
cies, and finally choose the one that has been reported
as the most appropriate for high-dimensional space.

In general, speech processing algorithms using multi-
variate distribution exploit different feature types to
process speech signals. For instance, traditional hidden
Markov model (HMM)-based speech recognition and
synthesis algorithms [3, 27] exploit Mel-frequency cepstral
coefficients (MFCC); HMM-based speaker recognition
[13] systems exploit either linear predictive coding (LPC)
or MFCC; HMM-based speech enhancement algorithms
use LPC, time, DCT, MFCC, or DFT [7, 9, 10]; and
codebook-driven-based speech enhancement algorithms
[28] employ LPC. However, all these algorithms assume
the multivariate Gaussian pdf for extracted features of
speech signals. As the feature type may influence the
distribution [14], the multivariate distribution of the
different feature types including DFT, DCT, time, LPC,
and MFCC is studied in this paper. It is noted that a
number of speech processing algorithms, e.g., proposed by
Martin [6], Shin et al. [7], model the real and imaginary
parts of DFT separately. Thus, we study the real and
imaginary parts of DFT features separately. The whole
study of multivariate distribution in this paper is concen-
trated on clean speech signals.
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The remainder of this paper is structured as follows.
In Section 2, the copula-based distributions are pre-
sented including their formulations and parameter esti-
mation. In Section 3, the GOF tests are briefly reviewed
and among them, the energy test is selected as the most
appropriate one for the multivariate distribution study of
high-dimensional space. Section 4 elaborates candidates’
formulations, their parameter estimation, and an algo-
rithm for exploring the best-fitted candidate. Section 5
presents the evaluation setup and experimental results.
Finally, Section 6 concludes the work.

2 Copula-based distribution

A copula is defined as a multivariate probability distribu-
tion where the marginal probability distribution of each
variable is uniform and is used to describe the depend-
ency between random variables [22, 29-33]. As all the
multivariate joint distributions can be written in terms
of a copula and univariate marginal pdfs [29], copulas
are used as a popular statistical tool for modeling multi-
variate distributions. In this regard, copulas allow to
easily model the distribution of multivariate random
variables by estimating only marginal pdfs and copulas.
A copula-based distribution can capture important char-
acteristics of a vector, e.g., the appropriate pdf for mar-
gins and the appropriate correlation structure with a
possibly simple form.

The purpose of this section is to briefly review the
basic definition of the copula and a number of the most
commonly used estimation methods for fitting the
copula to the real data.

2.1 Copula model

The mathematical basis of the copula was proposed by
Sklar [29] and Hoeffding [33]. To define a copula model, let
x be a d-dimensional random vector x = {xy,..., %), ..., X4}.
Sklar [29] showed that the joint cumulative distribution
function (CDF) of &, Fy(x), can be expressed as a function
of marginal CDFs u; = Fy, (xj), j=1:d, as shown in Eq.
(1), where Cy:[0,1]%—1[0,1] denotes copula function.
Based on Sklar’s theorem [29], any arbitrary multivariate
pdf fx (x) can be expressed as the product of two terms: the
marginal pdf of dimensions f % (x/), j=1:d and the
copula density function cx{.) as shown in Eq. (2). The cop-
ula density function cx(.) can be derived from the copula
function as given in Eq. (3). As the copula density function
characterizes the inter-dimensional dependencies, it is also
called correlation structure in literature [22].

Fx(x) = Cx(ul,...,u,»7...,ud) (1)
d

fx(x)= (foj(xi)>.cx(uh...,uj,...,ud) (2)
=1
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The two most used parametric forms for cx(.) are ellip-
tical and Archimedean [22, 30]. The Archimedean-based
copulas are mostly used in the bivariate form and they
are not practically usable for high-dimensional spaces
due to its high-computational cost [22, 34]. In contrast
to the Archimedean, the elliptical-based copulas, includ-
ing Gaussian and Student-t copula, can be used for
spaces with any number of dimensions [22]. We there-
fore briefly review the Gaussian and Student-t copulas in
the following sections.

2.2 Gaussian copulas

Let us assume the marginal CDFs, u;, are known. Each
u; can be transformed to a standard distributed random
variable y;, by using the inverse of univariate Gaussian
CDF Fle(o,1)(~) as shown in the following equation,

Vi = z_vl(o,l) (”/) = FXII(OJ) (FX/ (x/))~N(0, 1). (4)

As a consequence, the set y=1{y;,...,¥,...,y4} has a
multivariate Gaussian distribution N(0, Zcopuia), Where
Zcopula denotes a symmetric, diagonal, positive definite
matrix with unit diagonal elements. The joint CDF of y
can therefore be expressed by Eq. (5), which can be
interpreted as the copula function of x using terminology
of Eq. (1). By using Egs. (3) and (5), the copula density can
be derived as shown in Eq. (6), where I denotes an identity
matrix and Tr denotes transpose operator. For further
details on this topic, see [22] and [31].

Fx(x) = Cx(ul, ey U, ..,Ltd)

= FN(O,ECOPula) 1 /T s Ya) (5)
1 1
ex(Uyy ey ttg) = ——= exp<—f (2 - yT’>
|2Copula‘0.5 2 ( P )
(6)

2.3 Student-t copulas

The Student-t copula is defined analogously to the
Gaussian copula; however, the transformed variables y;
are obtained using univariate Student-t CDF inverse
F;(lv> (u,»), where #(v) is a univariate Student-t distribution
with v degrees of freedom. Consequently, y = {y1, ...,y
...¥a follows a multivariate Student-t distribution #(v,
Zcopula) Where Zco,u1, denotes a positive definite matrix
with unit diagonal elements. Similar to the Gaussian
copula function, the Student-t copula function, i.e., joint
CDF of y, is shown by Eq. (7). By using Egs. (3) and (7),
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the Student-t copula density then is computed as shown
in Eq. (8). For further details, see [22] and [31].

Cx(un, oo ta) = Fy( 5, ) (F;<1V>(u1), F;(lv>(ud))
(7)
~ I v+d (2 d
ox(itt, o 40) = [Scopua] (Vif[d(”]v
[r(=H]°re)
_vtd
(1 + %yza})pulayt)
X
d _&1
[I(+%)
j=1 v
(8)

2.4 Fit a copula model

There are several estimation methods proposed for
copula parameters [22, 35-37]. Among them, maximum
likelihood (ML), inference functions for margins (IFM),
and canonical maximum likelihood (CML) techniques
are used more frequently than others [22]. Generally,
these estimators maximize the log-likelihood function of
Eq. (2) with respect to ® = {0, a} in different ways, where
a denotes a set of parameters concerning the copula
density function, e.g., Xcopuias and 0 =1{6;, ..., 0, ..., 0} de-
notes a set of parameters concerning the marginal pdfs,
f e (x,) The log-likelihood function is derived as shown in
Eq. (9) [31] where & | = {«!, ., 2N} denotes a
set of N observation vectors of real data and &' represents
jth component of vector x”.

zd: Infy, (xl”, 9}')

T

H
1 M

|:FX1 xl H 91)

Fy, (xfge,),...,

Fx, (¥3: 6a); vf]
9)

The ML approach estimates the parameters of mar-
ginal pdfs and copula density function jointly using
numerical optimization [22]. This is the only way to
estimate all the parameters consistently [22].

The IFM method is the most used method. It esti-
mates by maximizing Eq. (9) in two steps. First, the
parameters of the margins 6 are individually estimated
as shown in Eq. (10). It is noted that the type of
marginal distributions, e.g., Laplace or Gamma, are
assumed to be determined in advance. The copula
parameters a are then derived as shown in Eq. (11) by

using the estimated 6.
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N
é/‘ = arg maxz Infy (x}’;@,) (10)
n=1

& = arg max {i In C(Fxl (x;’;él),‘..,Fx

n=1

/(x;’; éi), ..., Fx, (xz; éd);aﬂ

(11)

The CML method first empirically estimates in (xl”)
and Fx; ( ) denoted as fX ( ”) and li"x/ (xl") , using

non-parametric methods, e.g., kernel smoothing density
estimator [38]. Thus, it is not needed to determine the
type of marginal distributions in advance, in contrast to
the IFM method. The parameters of copula are then
estimated using Eq. (12).

N
& = arg max [Z Inc (ﬁxl (), ... F

n=1

(12)

In order to estimate the parameters of the copula-
based distribution using one of the discussed methods,
the following issues should be considered:

— The ML method is used for spaces with a small
number of dimensions due to the numerical
complexity issue.

— The IFM method ends up a sub-optimal solution for
parameter estimation since the log-likelihood function
is maximized in two individual steps [31].

— The IFM and CML methods result in closed-form
formulas only for Gaussian copula case [31].

— When one of the values of off-diagonal compo-
nents of the covariance matrix XCopula of either
the Student-t or Gaussian copulas takes 1 or -1,
the estimation procedure of the copula parame-
ters using CML method may fail [39]. It is due to
Cholesky decomposition performed in CML
methods.

In this paper, the parameters of copula-based dis-
tributions are estimated using IFM method and
Gaussian copula density function that result in
closed-form formulas and avoid failing in the esti-
mation procedure. To estimate & = Xcopua of Gauss-
ian given a vector sequence y\ |, = {y!, ..., y", ..., YN}
, the Eq. (6) is plugged into Eq. (11) resulting in Eq.
(13). Regarding the estimation of 6, as the type of
marginal pdfs of copula density function should be
given in advance, it will be discussed in Section 4.
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. 1 .
ZCopula = NZ (y")T y" (13)

3 Goodness-of-fit test

A wide number of goodness-of-fit (GOF) tests depend-
ing on underlying conditions of the case study have been
proposed. In our study, high dimensionality and possible
non-linear inter-dimensional dependency are the most
crucial issues. Although various GOF tests are proposed
for one-dimensional space, only some of them are
extendable for high-dimensional space. As the number
of space dimensions increases, the tests become ineffi-
cient [26]. For instance, the extension of y* test [15] to
higher dimensions suffers from the curse of dimension-
ality [40] caused by the space sparsity unless the sample
sizes are large enough.

There are several GOF tests particularly proposed for
the multivariate case, e.g., the nearest neighbor test which
exploits the nearest neighbors [41], Mardia test which
exploits the skewness and kurtosis [42] and Freidman-—
Rafsky test which exploits the minimum spanning tree
[43]. In this regard, the energy test has also recently been
proposed by Zach and Aslan [44]. The performance
superiority of the energy test has been demonstrated
compared to Mardia, nearest neighbor, %, and Friedman—
Rafsky tests. Accordingly, the energy test is selected as a
more appropriate GOF for underlying conditions of the
study in this paper to evaluate candidates. In the follow-
ing, the energy test is discussed.

3.1 Energy test
Given a candidate pdf fy, (x) and a sequence of obser-

vation vectors x| = {x!, ., &N} which follow
an unknown pdf fy(x), the energy statistic for the

hypothesis Ho: fX(x) = fo(#) against Hi: f(x)#fyo(x) is
computed by

N NAl[ 1)ZR }x x

t>i

1
M) 2_R(la"-41)

1>n
] NoM
_NMZ ZR ‘x 4 )
=1 j=1
(14)
where g1, = {q', ..., ¢, ..., "'} denotes a sequence of

M observation vectors following f (x) and generated by
Monte—Carlo simulation [45] and R denotes a continu-
ous, monotonically decreasing function, i.e., R(r) = - In(r).
In the limit N— o and M — oo, the statistic ¢pus ap-
proaches minimized value, near zero, if Y, and qj‘i , are
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from the same distribution [44]. For further details, see
the Appendix.

The required steps for performing the energy test are
summarized:

1. The real dataset is segmented, resulting in N vectors
each of length d, &N | = {«!, ..., &, ..., 2N}
Depending on the process domain, ¥’ represents the
segmented real data in that process domain, e.g.,
time, DFT, and DCT.

2. A possible candidate pdf f, (), e.g., either copula-
based or conventional distributions, is hypothesized
and fitted to the real data vectors x!,.

3. The number M of simulated data vectors following
fitted pdf f, (x) is generated using Monte—Carlo.

4. The energy test statistic is computed using Eq. (14)
to determine the level of similarity between the
distributions of real data vectors x, and simulated
data vectors g}/,

4 Multivariate distribution candidates

To study the multivariate distribution of speech features,
two classes of pdfs are considered as the candidates in
this paper: (1) copula-based distributions and (2) con-
ventional distributions. The first pdf class includes five
distributions:

1. Copula-based Laplace distribution (CLD)

2. Copula-based Laplace distribution with mutually
independent dimensions (CLID), i.e., cx(.) = 1

3. Copula-based generalized extreme value distribution
(CGevD)

4. Copula-based Rayleigh distribution (CRD)

5. Copula-based Gamma distribution (CGD).

As formerly mentioned, the IFM method is used to fit
the copula-based distributions to real data. In this re-
gard, marginal distributions of each candidate should be
first determined. The following univariate pdfs are used
as the marginal distributions for each candidate: univari-
ate Laplace pdf as shown in Eq. (15) [14] for CLD and
CLID, univariate generalized extreme value pdf as shown
in Eq. (16) [46] for CGevD, univariate Rayleigh pdf as
shown in Eq. (17) for CRD, and univariate Gamma pdf
as shown in Eq. (18) [21] for CGD. In these equations,
#; and a; denote the location parameters, b;, §;, and o;
denote the scale parameters, and k; and y;represent the
shape parameters. As a consequence, CLD is a copula-
based distribution with marginal distributions of Laplace
and its parameters @Ocyp = {Opaplaces Xcopula) are estimated
using the IFM method given an observation set of vectors
= {x', .. a4, . 4N}, where Oy denotes a par-
ameter set {b,u;} concerning marginal distribution
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S x; Laplace (%), j=1:d and is estimated using Egs. (19)
and (20). The parameter of Gaussian copula density
QCopula is estimated using Eq. (13). Similarly, Orayicign
={v} is estimated using Eq. (21) and Ogamma = {y}» &}
is estimated using Eqs. (22) and (23) [47], where

N
5= 1n<—2x> DY ln(x;?). It is noted that CGD and
n=1

CRD both model one-side distributions and are
therefore proposed as candidates for modeling one-
side distributed random vector, e.g., the amplitude of
DFT feature. For estimation of CGevD parameters
Ocev = {0}, ), k;} using the IFM, as it results in no
closed-form solution [48], the MATLAB function
“fminsearch”, which employs numerical method of
Lagarias [49], is employed.

574
fX,-,Laplace (x]) = % exp | — b]

,l,é
fX/,GEV(xj) = ( ) exp( <1 +k % l"‘/) k7>'<1 Tk (leﬂ,))
(16)
X xz
fXj,Rayleigh (x,») = ﬁ.exp -7 (17)
/ j

fXj,Gamma (x}) (18)

(%) %
kel

f1; = median (x]”) (19)
N
b, :jlv.z - (20)

I
—

n
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B35+ 4/(s- Y +24s | 1 XN 2\ 2

Vi~ \/125 W; (x,) (22)
R 1 X

Ej:y—N ;x," (23)

The following steps summarize the estimation proced-
ure of Gaussian copula.

1. A marginal distribution, e.g., one of Egs. (15)—(18),
is accounted for f;(x;), j = 1:d and parameter set is
accordingly estimated.

2. The corresponding CDF of fy (%) is derlved to
compute 1 = Fy, (%), j = 1: d and Y= N(O 1 (w)
as shown in Eq. (4)

3. The parameter of Gaussian copula density
®Copula = ZCopula 1S estimated using Eq. (13).

The second class of candidate distributions, i.e., con-
ventional distributions, includes five conventional pdfs:
multivariate Laplace (MLD), multivariate Gaussian
(MGD), and three multivariate Gaussian—Laplace mix-
tures (MGLD). The MGD is considered as shown in Eq.
(24) where the full covariance matrix X~ and mean vector
u are estimated using the maximum likelihood method
[16]. Regarding MLD, as the ultimate purpose is to
compute the energy test statistic using simulated vectors
following MLD, the required vectors s, are generated
using Eq. (25) [50] where .
vector following MGD of Eq. (24) and simulated sample
following univariate exponential distribution of Eq. (26),

and w; denote simulated

Table 2 Multivariate distribution candidates considered for experimental setup

PDF class Candidates Description
Copula-based PDF CLD Copula-based distribution with marginal Laplace distribution.
CLID Copula-based distribution with mutually independent marginal
Laplace distribution.
CGevD Copula-based distribution with marginal GEV distribution.
CRD Copula-based distribution with marginal Rayleigh distribution.
CGD Copula-based distribution with marginal Gamma distribution.
Conventional PDF MGD Multivariate Gaussian distribution.
MLD Multivariate Laplace distribution.
MGLD, p=0.25 Multivariate Gaussian-Laplace distribution.
MGLD, p=0.50 Multivariate Gaussian-Laplace distribution.

MGLD, p=0.75

Multivariate Gaussian—Laplace distribution.
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Table 3 The data set of the second setup of evaluations
File Phoneme class # of phonemes Duration (s) # of frames for each phoneme class (N)
20 ms 30 ms 100 ms 500 ms
1 Semivowel/glide 460 29.77 1489 993 298 60
2 Vowel 1240 12539 6270 4180 1254 251
3 Nasal 298 1857 929 620 186 38
4 Fricative 482 46.16 2309 1539 462 93
5 Stop 1109 56.13 2870 1872 562 13

respectively. For MGLD observations, the simulated

vectors are generated using Eq. (27) where si,,. and

! denote the simulated vectors following distribu-

Gaussian
tions of Egs. (25) and (24), respectively. In this equation,
variable p shows the amount of contribution of Laplace
distribution compared with Gaussian distribution in
generating z'. Three multivariate Gaussian—Laplace
mixtures are considered with corresponding values of
p<€{0.25, 0.50, 0.75}, denoted as MGLD with p=0.25,
MGLD with p =0.50, and MGLD with p =0.75, for the
experimental evaluations.

1 1
Fi Guasion @ = e ep - L ez ) (28)
¢ Jizleny? ( 2 )

AL (25)
1 -W;

fExponential(Wi) = X exp (Tl) (26)

2= Pt + (1-P)%,., (27)

Consequently, eight candidates are considered for
multivariate distribution study of speech features, ex-
cept for amplitude of DFT feature. For the amplitude of
DFT feature, two additional candidates CGD and CRD
resulting in total ten candidates are considered. Table 2
summarizes the candidates.

5 Evaluation results

In this section, the experimental evaluation results of the
multivariate speech distribution study are presented. To
perform the evaluations, 100 sentences, uttered by 11
male and female native English speakers (with New York
City dialect region), with sampling rate of 16 kHz from
TIMIT database [51] were randomly selected (see Additional
file 1). Two experimental setups were considered for eval-
uations. For the first experimental setup, all speech infor-
mation of 100 sentences was exploited for computing the
statistic of the energy test. For the second experimental
setup, phoneme-based evaluations were performed, i.e.,
five classes of English phonemes were used (fricatives, na-
sals, stops, vowels, and semivowel/glides). For each phon-
eme class, the relevant information was first extracted
from the 100 sentences used in the first experimental
setup and then concatenated to produce one file. As a re-
sult, five output files for five phoneme classes were pro-
duced. Table 3 shows the content and the number of
extracted phonemes of each of the five files. The evalu-
ation results of the second experimental setup benefit the
statistical-based speech recognition and synthesis algo-
rithms statistically modeling phoneme classes. As non-
speech information (silence interval) may influence the
distribution [14], it was removed for both experimental
setups. The total duration of the first setup data after
excluding silence intervals was 337.84 s. For the second
setup, the duration of each file is represented in Table 3.

NCLD NCLID
MGLD, p=0.25 X MGLD, p=0.5
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Table 4 Best-fitted multivariate distribution in the sense of energy test for different features and frame lengths of speech signals

Feature (domain) Frame length

20 ms 30 ms 100 ms 500 ms
ADFT CLD CLD CLD MGLD, p=0.50
LPC MGLD, p =025 MGLD, p=0.25 MGLD, p=0.25 MGD
T MLD MLD MLD MLD
MFCC MGD MGD MGD MGD
RDFT MLD MLD MLD MGLD, p=0.75
IDFT MLD MLD MLD MGLD, p=0.75
DCT MLD MLD MLD MGLD, p=0.25

Prior to performing evaluation, the datasets of both
setups were segmented in frames with lengths of 20, 30,
100, and 500 ms. For the first setup, the number of
frames, N, corresponding to the segment lengths of 20,
30, 100, and 500 ms were 13936, 9291, 2788, and 558,
respectively. For the second setup, the number of
frames, N, corresponding to the segment lengths for
each phoneme class is shown in Table 3.

The experimental evaluations were performed for time
features (T), amplitude of DFT (ADFT), real parts of
DFT (RDFT), imaginary parts of DFT (IDFT), DCT,
LPC, and MFCC features. Regarding the LPC and
MECC, 10 and 12 coefficients were extracted from
frames, respectively. The MFCC vectors were extracted
from 23 Mel-frequency filter banks. To set up the energy
test, the value of M was taken equal to N. All the
reported energy test values were computed at a signifi-
cant level of 0.01 using a bootstrap method [44, 52].

Figure 1 represents the experimental results of the
energy test for ADFT features, concerning the first
setup. Fig. 2 illustrates the experimental results of the
energy test for other features including LPC, T, MFCC,
RDFT, IDFT, and DCT features. Regarding Fig. 2, as the
energy test values of some cases were much lower in
comparison with the others, they were scaled up ten
times to be illustrated better and punctuated by * on the
right side of frame length of horizontal axis, e.g., 500
ms *. Moreover, as the energy test values of CGevD for
all features were far greater than the others, they were
schematically removed from Fig. 2 to have a more com-
parative demonstration for the small energy test values.

Table 4 summarizes the best-fitted candidate for differ-
ent speech features and frame lengths according to Figs. 1
and 2 evaluation results. According to Figs. 1 and 2 and
Table 4, the following conclusions are conducted:

— The best-fitted candidate in the sense of the
energy test for the T, RDFT, IDFT, and DCT features
with frame length of 20, 30, and 100 ms is MLD,
despite the often used assumption of multivariate
Gaussian distribution in the speech enhancement

algorithms [8—10], but consistent with the univariate
Laplace distribution proposed by Martin [6] and
Gazor et al. [14].

— The univariate Rayleigh distribution has been
proposed for ADFT feature with a short frame length.
Maybe as a consequence, it was expected that
multivariate Rayleigh distribution (CRD) would be
superior in modeling the multivariate distribution of
ADFT; however, the energy test evaluation results
proposed the CLD as the best-fitted candidate for
frame lengths shorter than 500 ms.

— Regarding statistical modeling of ADFT features
with short frame length, although CLD and CLID
are both Laplace-based distribution, CLD was
proposed as the best-fitted candidate. As the copula
density function cx{.), which models inter-dimensional
dependency, is non-unit for CLD and unit for CLID,
the superiority of CLD over CLID shows how the
modeling of inter-dimensional dependency contributes
to the proper multivariate statistical modeling.

— Increasing frame length to 500 ms caused the best-
fitted candidate corresponding to ADFT, RDFT,
IDFT, and DCT features to be shifted from either
CLD or MLD toward MGLD. This finding suggests
that the Gaussian distribution contributed to the
actual multivariate distribution of those domains
when the frame length sufficiently increased, which
is also supported by the central limit theorem.
Similarly, varying the best-fitted distribution for LPC
features from MGLD (with p = 0.25) to MGD
verifies this contribution, too.

— The best-fitted candidate for the MFCC with different
frame lengths is MGD, consistent with the assump-
tion of multivariate Gaussian distribution used in
most speech recognition algorithms [2, 3].

A: First best-candidate B: Second best-candidate

C= Energy test value of A D= Energy test value of B

Fig. 3 Values of cells in each block of Tables 5, 6, 7, 8,9, 10, and 11
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Table 5 Best-fitted multivariate distribution based on the energy test for ADFT coefficients of five phoneme classes in different

frame lengths

Phoneme  Frame length

class 20 ms 30 ms 100 ms 500 ms

Semivowel/ MGLD, p=0.75 MGLD, p=050 MGLD, p=0.75 MGLD, p=050 MGLD, p=050 MGLD, p=025 CGevD CGD

glide 0.05 006 003 004 002 002 000 001

Vowel MGLD, p=075 MGLD, p=050 MGLD, p=0.75 MGLD, p=050 CGevD MGLD, p=0.75 MGLD, p=050 MGLD, p=0.25
0.04 0.05 0.04 0.05 0.03 0.04 0.02 0.02

Nasal MGLD, p=050 CGevD MGLD, p=050 MGLD, p=075 MGLD, p=025 MGD MGLD, p=025 MGLD, p=0.50
0.04 0.04 0.02 0.02 0.03 0.03 0.00 0.00

Fricative MGLD, p=0.75 CGD MGLD, p=050 MGLD, p=025 MGLD, p=050 MGLD, p=025 MGD MGLD, p=0.25
0.04 0.04 0.02 0.02 0.03 0.03 0.00 0.00

Stop CGD CGevD CGD CGevD MGLD, p=0.50 MGLD, p=0.75 MGLD, p=025 MGLD, p=0.50
0.06 0.08 0.07 0.09 0.03 0.03 0.00 0.00

According to the conclusions, representative frames of
speech signals containing T, RDFT, IDFT, or DCT
features that are often used in statistical model-based
speech enhancement algorithms [9, 10, 28] can be better
statistically modeled by the MLD than MGD distribu-
tion. Furthermore, if the statistical-based algorithm
exploits MFCC and ADFT, the energy test proposes
MGD and ADFT, respectively.

Tables 5, 6, 7, 8, 9, 10, and 11 present the evaluation re-
sults of the energy test for the second experimental setup.
In each table, there are 15 blocks surrounded by bold lines
belonging to each phoneme class with a determined frame
length. Each block in these tables contains four cells,
as shown by Fig. 3. The A and B cells show the first
and the second best-fitted candidates, respectively,
and C and D cells indicate the energy test value cor-
responding to the first and the second best-fitted can-
didates, respectively.

According to Tables 5, 6, 7, 8, 9, 10, and 11, the fol-
lowing conclusions are conducted:

— The univariate Rayleigh distribution has been
proposed for statistical univariate modeling of ADFT
feature. Maybe as a consequence, it was expected
that multivariate Rayleigh distribution (CRD) would
be also superior in modeling multivariate
distribution of ADFT; however, the evaluation
results proposed MGLD, CGD, or CGevD as the
best-fitted candidates.

— The best-fitted candidate in the sense of the energy
test for all phoneme classes in T, RDFT, IDFT, and
DCT features with different frame lengths was either
MLD or MGLD (with p € {0.25, 0.50, 0.75}). In
particular for frame lengths of 20 and 30 ms, which
are mostly exploited in speech processing, either
MLD or MGLD with p =0.75 dominated. As a

Table 6 Best-fitted multivariate distribution based on the energy test for LPC coefficients of five phoneme classes in different frame

lengths

Phoneme Frame length

class 20 ms 30 ms 100 ms 500 ms

Semivowel/ MGLD, p=050 MGLD, p=025 MGLD, p=025 MGD MGLD, p=025 MGLD, p=050 MGD MGLD, p=0.25

glide 007 0.08 0.00 0.00 0.00 0.00 002 002

Vowel MGLD, p=025 MGLD, p=050 MGLD, p=025 MGLD, p=050 MGLD, p=025 MGD MGLD, p=025 MGD
001 001 001 001 001 001 000 000

Nasal MGLD, p=025 MGD MGLD, p=025 MGD MGD MGLD, p=025 MGD MGLD, p=0.25
000 0.00 000 0,00 000 001 000 000

Fricative ~ MGLD, p=025 MGD MGLD, p=025 MGD MGLD, p=025 MGLD, p=050 MGD L
000 0.00 000 0.00 000 0.00 002 003

Stop MGLD, p=025 MGLD, p=025 MGLD, p=025 MGLD, p=050 MGLD, p=025 MGD MGD MGLD, p=025
002 002 001 001 000 0.00 000 0.00
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Table 7 Best-fitted multivariate distribution based on the energy test for time coefficients of five phoneme classes in different frame

lengths

Phoneme  Frame length

class 20 ms 30 ms 100 ms 500 ms

Semivowel/  MLD MGLD, p=0.75 MLD MGLD, p=0.75 MLD MGLD, p=0.75 MGLD, p=0.25 MGLD, p=0.50

glide 001 002 001 002 0.00 001 0.00 0.00

Vowel MLD MGLD, p=075 MLD MGLD, p=075 MLD MGLD, p=075 MGLD, p=075 MGLD, p=050
0.01 0.02 0.00 0.02 0.00 0.01 0.00 0.01

Nasal MGLD, p=075 MGLD, p=050 MGLD, p=075 MGLD, p=050 MGLD, p=050 MGLD, p=050 MLD MGLD, p =025
0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.01

Fricative MLD MGLD, p=0.75 MLD MGLD, p=0.75 MLD MGLD, p=0.75 MGLD, p=0.25 MGLD, p=0.50
000 001 000 001 0.00 0.00 0.00 0.00

Stop MLD CLD MLD CLD MGLD, p=075 MLD MLD MGLD, p=0.25
0.08 0.12 0.05 0.08 0.01 0.01 0.00 0.00

consequence, the Laplace distribution contributes
more compared to the Gaussian distribution in the
statistical multivariate modeling of T, RDFT, IDFT,
and DCT features with short frame lengths.

— The best-fitted candidates for different phoneme
classes with LPC feature was mostly MGD or MGLD
with p=0.25. As a consequence, the Gaussian
distribution contributed more in the statistical
multivariate modeling of LPC feature compared to
the Laplace distribution.

— As the first or second best-fitted candidates for

assumption of multivariate Gaussian distribution used
in most speech recognition algorithms [2, 3].

— The only copula-based distribution proposed by
the energy test evaluation results was CGD for
statistical modeling of the stop phoneme class in
ADFT domain with frame lengths of 20 and
30 ms, and CGevD for semivowel/glide with
frame length of 500 ms.

— Based on the evaluation results, in the sense of
the energy test, the copula-based distributions using
[FM method were mostly overcome by conventional

different process domains of a phoneme class with a
fixed frame length mostly varied between MLD and
MGLD (with p € {0.25, 0.50, 0.75}), the statistical

distributions in the second experimental setup. As
only one of parameter estimation methods of
copula-based distribution, IFM method, was taken

modeling of phonemes with a mixture of Gaussian
and Laplace distributions is proposed.

— The best-fitted candidate for most phoneme classes
with MFCC features extracted from frames of length
less than 500 ms is MGD, consistent with the

into account in the experimental evaluation, and
the IFM method ends up a sub-optimal solution
for parameter estimation, it is difficult to have a
generic conclusion on copula-based distribution’s
benefit in statistical modeling of speech frame.

Table 8 Best-fitted multivariate distribution based on the energy test for MFCC coefficients of five phoneme classes in different

frame lengths

Phoneme Frame length

class 20 ms 30 ms 100 ms 500 ms

Semvowel/  MGD  MGLD, p=025 MGD _ MGLD,p=025 _ MGD MGLD, p=025  MGD MGLD, p=025

glide 000 000 000 000 0.00 0.00 0.00 0.00

Vowel MGD  MGLD,p=025 MGD  MGLD, p=025  MGD MGLD, p=025  MGD MGLD, p =0.25
000 001 000 001 001 001 0.00 0.00

Nasal MGD  MGLD,p=025 MGD  MGLD, p=025  MGD MGLD, p=025  MGLD, p=075  MGLD, p=050
000 001 001 001 0.00 0.00 0.00 001

Fricative MGD  MGLD,p=025 MGD  MGLD, p=025  MGD MGLD, p=025  CLD LD
000 001 000 000 0.00 0.00 003 003

Stop MGD  MGLD,p=025 MGD  MGLD, p=025 MGLD, p=025  MGD LD MGD
000 000 000 000 0.00 001 0.00 001
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Table 9 Best-fitted multivariate distribution based on the energy test for RDFT coefficients of five phoneme classes in different

frame lengths

Phoneme Frame length

class 20 ms 30 ms 100 ms 500 ms

Semivowel/  MLD MGLD, p=075 MLD MGLD, p=075 MLD MGLD, p=075 MGLD, p=075 CLD

glide 0.00 001 0.00 001 0.00 001 0.00 0.00

Vowel MLD MGLD, p=075 MLD MGLD, p=075 MLD MGLD, p=075 MGLD, p=075 MLD
0.00 001 0.00 001 0.00 0.00 0.00 0.00

Nasal MGLD, p=075 MLD MGLD, p=075 MGLD, p=050 MGLD, p=075 MGLD, p=050 MGLD, p=075 CGevD
0.00 001 0.00 001 0.00 0.00 001 001

Fricative MGLD, p=075 MLD MGLD, p=075 MLD MGLD, p=075 MGLD, p=050 MGLD, p=050 MGD
001 001 0.00 001 0.00 0.00 0.00 0.00

Stop MLD LD MLD LD MGLD, p=075 MLD MGLD, p=025 MLD
0.06 0.10 0.04 008 001 001 0.00 0.00

One of future work perspective might therefore
be to study the power of statistical modeling of
copula-based distribution of speech frame using
optimal parameter estimation methods.

— In some cases, where the energy test values of
the first and second best-fitted candidates are
almost the same, there is almost no superiority in
the sense of energy test between the first or sec-
ond best-fitted distributions, e.g., the case of frica-
tive phoneme in time domain with different frame
lengths in Table 7.

6 Conclusions

In this paper, the multivariate distribution of speech
features in various domains, e.g., time, DFT, DCT,
MECC, and LPC, was studied and a framework was
proposed for exploring the best-fitted distribution
among different candidates. Ten plausible candidates
including five conventional distributions, e.g., the multi-
variate Gaussian, multivariate Laplace, and the mixture

of Gaussian—Laplace distributions (in three forms), and
five copula-based distributions with marginal Laplace,
independent marginal Laplace, Rayleigh, Gamma, and
generalized extreme value (GEV) distributions were con-
sidered to explore the effect of feature type, phoneme
class (for English language), and frame length on the
distribution.

The evaluation results of the test energy showed
that the multivariate Laplace distribution statistically
better models time and DFT features of speech
signals compared to the multivariate Gaussian dis-
tribution. For the amplitude of DFT features, the
copula-based distribution with marginal Laplace dis-
tribution was proposed as the best-fitted candidate.
For the MFCC features, the best-fitted candidate was
MGD, consistent with the assumption of multivariate
Gaussian distribution used in most speech recogni-
tion algorithms. For multivariate statistical modeling
of different phoneme classes, the first or second
best-fitted candidates for different domains (and also

Table 10 Best-fitted multivariate distribution based on the energy test for IDFT coefficients of five phoneme classes in different

frame lengths

Phoneme class Frame length

20 ms 30 ms 100 ms 500 ms
Semivowel/glide  MLD MGLD, p=0.75 MLD MGLD, p=0.75 MLD MGLD, p=0.75 MLD CGevD
0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00
Vowel MLD MGLD, p=0.75 MLD MGLD, p=0.75 MGLD, p=0.75 MLD MGLD, p=0.75 CLD
0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01
Nasal MGLD, p=0.75 MGLD, p=050 MGLD, p=0.75 MLD MGLD, p=0.75 CLD MLD CLD
0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01
Fricative MGLD, p=0.75 MLD MLD MGLD, p=0.75 MGLD, p=0.50 CLID MGLD, p=0.75 CLD
0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00
Stop MLD CLD MLD CLD MGLD, p=0.75 MLD MGLD, p=050 CLD
0.08 0.12 0.04 0.08 0.01 0.01 0.00 0.01
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Table 11 Best-fitted multivariate distribution based on the energy test for DCT coefficients of five phoneme classes in different

frame lengths

Phoneme  Frame length

class 20 ms 30 ms 100 ms 500 ms

Semivowel/ MLD MGLD, p=075 MLD MGLD, p=075 MGLD, p=075 MLD MGLD, p=075 MLD

glide 0.00 001 0.00 001 0.00 0.00 0.00 0.00

Vowel MLD MGLD, p=075 MLD MGLD, p=075 MGLD, p=075 MLD MGLD, p=075 MLD
0.00 001 0.00 001 001 001 001 001

Nasal MGLD, p=0.75 MGLD, p=050 MGLD, p=075 MLD MGLD, p=0.75 MGLD, p=050 MGD MGLD, p =0.50
0.00 001 0.00 001 0.00 001 0.00 0.02

Fricatve ~ MGLD, p=075 MLD MGLD, p=075 MLD MGLD, p=050 MGLD, p=075 MGLD, p=075 MGLD, p=050
001 001 0.00 001 0.00 001 0.00 0.00

Stop MLD fels) MLD fels) MLD MGLD, p=075 MGLD, p=075 MGLD, p=050
005 0.10 0.04 008 001 001 0.00 0.00

for different frame sizes) mostly varied between MLD
and MGLD (with p €{0.25, 0.50, 0.75}), i.e., a mixture
of Gaussian and Laplace distributions. The future
work of this study can lead toward the development
of statistical speech processing algorithms exploiting
Laplace, mixture of Laplace and Gaussian, or copula-
based multivariate distribution, depending on the fea-
ture type, phoneme class, and frame length.

Although the copula-based distribution was pro-
posed as the best-fitted distribution for the modeling
of amplitude of DFT, it is not the case for other
features. It means that the copula-based approach
requires more investigation in numbers of ways.
First, the practical issues, e.g., the computational cost and
the lack of sufficient amount of data for parameter estima-
tion of some phoneme classes, e.g., stops, are needed to be
considered. Second, as the IFM method used for
parameter estimation of copula-based distribution ends
up in a sub-optimal estimate, developing an optimal par-
ameter estimation method for large vector dimensions is
needed to have a fair evaluation of the copula-based distri-
bution power in the statistical modeling of speech signals,
e.g., compared to the optimal parameter estimation
method used for MLD and MGD.

7 Appendix

The quantity ¢, the energy, is defined as the difference
between two pdfs fy (x) and fx(x) by

5 | @@, )R G

4 frwreyon

Vdxdx
f, (£) -2 (0, (x )R(x,% )| drdx
(28)

where the weight function R is a monotonically decreas-
ing function of Euclidian distance and the integrals

extend over the full variable space [44]. As the product
of same distribution occurs in the first and second
terms, it is not necessary to draw two different samples
of the same pdf, and thereby, the first two terms can be
neglected. The remaining third term has the form of
expectation value of R and can be computed from the
mean of all combinations &, = {#!, ..., «/, ..., ¥} following
an unknown pdf fix) and simulated Monte—Carlo sam-
ples g¥, = {q", ..., ..., 4"} following fy(x), thus the
energy statistic can be given by Eq. (29).
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It is noted that since the evaluation of ¢ requires a
summation over integrals, which is typically difficult, f; is
preferred to be represented by a set of samples generated
through a Monte—Carlo simulation.

8 Additional file

Additional file 1: List of speakers and sentences from TIMIT dataset
used in the evaluations.
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