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Detecting fingering of overblown flute
sound using sparse feature learning
Yoonchang Han1 and Kyogu Lee1,2*

Abstract

In woodwind instruments such as a flute, producing a higher-pitched tone than a standard tone by increasing the
blowing pressure is called overblowing, and this allows several distinct fingerings for the same notes. This article
presents a method that attempts to learn acoustic features that are more appropriate than conventional features
such as mel-frequency cepstral coefficients (MFCCs) in detecting the fingering from a flute sound using
unsupervised feature learning. To do so, we first extract a spectrogram from the audio and convert it to a mel scale.
Then, we concatenate four consecutive mel-spectrogram frames to include short temporal information and use it
as a front end for the sparse filtering algorithm. The learned feature is then max-pooled, resulting in a final feature
vector for the classifier that has extra robustness. We demonstrate the advantages of the proposed method in a
twofold manner: we first visualize and analyze the differences in the learned features between the tones generated
by standard and overblown fingerings. We then perform a quantitative evaluation through classification tasks on six
selected pitches with up to five different fingerings that include a variety of octave-related and non-octave-related
fingerings. The results confirm that the learned features using the proposed method significantly outperform the
conventional MFCCs and the residual noise spectrum in every experimental condition for the classification tasks.

Keywords: Musical instrument, Flute overblowing detection, Unsupervised feature learning, Feed-forward neural
networks, Sparse filtering, Timbre analysis, Music information retrieval

1 Introduction
Tone production on a flute involves the speed of an air
jet across the embouchure and the fingering used [1].
Every pitch on the flute has its own standard fingering
with an appropriate blowing pressure. However, it is
possible to generate a tone that is higher in frequency
than the usual tone by increasing the blowing pressure
[2]; this is referred to as “overblowing” or “harmonic” by
flutists. This implies that it is also possible to generate
the same-pitched sound with different fingerings. For in-
stance, a C6 tone can be produced using a C4 or C5 fin-
gering as well as a C6 fingering. However, each fingering
produces a sound with a slightly different timbre.
Although standard fingering generates a brighter and

more stable tone than an overblown sound, alternative
fingerings are frequently used to minimize mistakes in

note transition or to add a special color to the tone, es-
pecially in contemporary repertoire [3]. On the other
hand, novice players unintentionally produce overblown
sounds because the fingering rules of a flute are not al-
ways consistent. In particular, most of the octave-4 and
octave-5 fingerings are identical except for C, C#, D, and
D#, and thus, many beginner flute players use octave-4
fingerings for octave-5 notes.
Since the timbral differences among the same-pitched

notes with distinct fingerings are not obvious, music
transcription systems typically focus only on detecting
the onset and pitch of a note, discarding the fingering
information. However, it is valuable to figure out which
fingering is used to generate a specific note, particularly
for musical training purposes. Handcrafted audio fea-
tures such as mel-frequency cepstral coefficients
(MFCCs) are commonly used for musical timbre ana-
lysis, but there is an increasing interest in learning fea-
tures from data in an unsupervised manner.
This paper proposes a method that attempts to esti-

mate the fingering of a flute player from an audio signal
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based on sparse filtering (SF), which is an unsupervised
feature-learning algorithm [4]. In our previous work, we
demonstrated that the learned features could be used to
detect the mistakes of beginner flute players [5]. How-
ever, the performance of the learned features was nearly
identical to that of the MFCCs, which are among the
most widely used handmade features for timbre analysis.
Furthermore, the evaluation was limited in that only
octave-related fingerings were considered for binary
classification, and the same flute was used to create all
of the sound samples, thus failing to generalize for all
types of overblowing.
In this paper, we extend our previous work with a

more complete evaluation by developing a fingering
dataset that contains flute sound samples from various
materials and makers. A major motivation for this work
is to determine whether the performance of learned fea-
tures shows a consistent increase in performance over
conventional features under various types of real-world
situations, because learned sparse features have been
shown to outperform handmade features such as
MFCCs for various music information tasks such as
genre classification and automatic annotation [6, 7].
To avoid classification errors caused by the blowing

skill of the performer, we recorded sound samples from
players with a minimum of 3 years’ experience. In
addition, we expanded the dataset to include more target
pitches up to octave 6 and experimented with up to five
different fingerings for each selected note. In terms of
our algorithm, we changed the input for feature learning
from linear-scale spectrogram and MFCCs to a mel-
scale spectrogram. We also added max-pooling to make
the system more robust.
The remainder of the paper is organized as follows.

We present related works in Section 2 and describe the
spectral characteristics of an overblown tone in Section
3. In Section 4, we present the overall structure of the
proposed system, including the preprocessing, feature-
learning, max-pooling, and classification steps. In the
following section, we explain the evaluation procedure,
including the process of dataset construction, in detail.
In Section 6, we present the results of the experiments
and discussions, followed by the conclusions and direc-
tions for future work in Section 7.
The term “flute” is widely used across cultures and can

refer to one of the various types of woodwind instru-
ments. In this paper, “flute” means a modern open-hole
Boehm flute, which is the most common member of the
flute family and a regular member of symphony orches-
tras in the West [8].

2 Related work
A study by Kereliuk et al. [9] and Verfaille et al. [10]
attempted to detect overblown flute fingering using the

residual noise spectrum with principal component
analysis (PCA) and linear discriminant analysis (LDA).
This approach uses energy measurements of multiples
of the fundamental frequency submultiples F0/l where
(l = {2,3,4,5,6}) in the first octave and a half (i.e., be-
tween F0 and 1.5F0). This is where, in their observa-
tion, the most noticeable differences appear [10]. The
spectrum energy is measured using a Hann window
centered on the region of interest. In addition, the re-
searchers use a comb-summed energy measure, which
simply sums the energies of the same harmonic
comb, to reduce dimensionality in the experiment. In
addition, the researchers recorded a flute sound from
a microphone attached to the flute head joint, and
only the attack segments of the notes were used in
the experiment. Their proposed method allows for a
detection error below 1.3 % for notes with two and
three possible fingerings. However, this error dramat-
ically increased up to 14 % for four and five possible
fingerings. Although this system is specifically de-
signed for detecting overblown flute sounds by meas-
uring energy in the region of interest, from the
experimental results, it is possible to say that the sys-
tem does not capture all existing spectral differences
between the sounds from each fingering. We plan to
solve this limitation by replacing hand-designed fea-
tures with sparse feature learning.
It is reported that using learned features has matched

or outperformed handmade features in a range of differ-
ent modalities [4]. Recently, there have been an increas-
ing number of attempts to apply various feature-learning
methods to the music information retrieval field. Henaff
et al. applied a sparse coding algorithm to a single frame
of a constant-Q transform spectrogram for musical
genre classification [11], and Schülter et al. applied re-
stricted Boltzmann machines (RBMs) to similarity-based
music classification [12]. In addition, Nam et al. applied
sparse RBMs to music annotation and piano transcription
[13, 14], and Lee et al. used convolutional deep-belief net-
works for music genre and artist classification [7].
As shown in the works listed above, feature learning

shows promising results in many audio and music infor-
mation retrieval fields when appropriate input data, learn-
ing algorithms, and pre/postprocessing methods are used.

3 Spectral characteristics of overblown tone
Timbre is often described by musicians with adjec-
tives such as full, rich, dull, mellow, and round [15]
because it is associated with the perceived feeling of
the sound derived from various spectral characteris-
tics. A timbral difference between the sound gener-
ated by standard fingering and overblown fingering is
actually very small; thus, it is difficult for non-
musicians to spot the difference. As shown in Fig. 1,
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spectrograms of a D5 tone with proper D5 fingering
and D4 fingering look quite alike. However, flute ex-
perts can easily distinguish the difference. Usually, a
standard tone is described as “clearer,” and an over-
blown flute sound is slightly more “airy” than the ori-
ginal tone. The sound of a regular flute tone is highly
sine-wave-like, and only multiples of F0 are visibly
strong, while the other part of the spectrum has very
low energy. The “airy” timbre of the overblown tone
is mainly caused by the spectral energy existing at
multiples of other than F0. It is difficult, but still pos-
sible, to observe from Fig. 1 that the spectrum of the
overblown sound has strong peaks at multiples of F0
(587 Hz) as well as minor energy around multiples of
F0 of the original fingering (293 Hz) between F0 and
2F0, and 2F0 and 3F0. Interestingly, this tendency is
not clear between 3F0 and 4F0 but appears again be-
tween 4F0 and 5F0 for a D5 tone. As shown above, it
is certain that an airy timbre is caused by residual
noise at multiples of other than F0, but it is difficult
to set a concrete handmade rule for the spectral char-
acteristics to distinguish every fingering.

4 System architecture
We perform flute-fingering detection using the sys-
tem architecture presented in Fig. 2. The details of
each block in the diagram, including the parameter
values, are explained in this section.

4.1 Preprocessing
Although sparse feature learning effectively learns the
feature from the data, appropriate preprocessing is a pre-
requisite to obtaining a good feature. In addition, we need
to decrease the dimensionality as much as possible without
losing important parts of the information. We perform sev-
eral steps for preprocessing, as described below.

4.1.1 Downsampling
In the first preprocessing step, the input audio is down-
sampled to 22,050 Hz from the original 44,100-Hz sam-
pling rate. Since now the Nyquist frequency of the input
signal is 11,025 Hz, we can get rid of unnecessary noisy
information above this frequency while retaining enough
numbers of harmonics for the highest note of the flute.
This experiment covers frequencies up to the seventh
harmonic of G6.

4.1.2 Time-frequency representation
We compute a discrete Fourier transform (DFT) for the
spectrogram of the input audio with a 25-ms window
and a 10-ms hop size. Then, its linear frequency scale is
converted to a mel scale, and the spectral magnitude is
compressed by a natural logarithm. We chose 128 for
the number of mel-frequency bins, following Hamel’s
[16] and Nam’s work [14]. By using a moderate number
of mel-frequency bins instead of a linear-scale DFT re-
sult, it is possible to reduce the input dimension
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Fig. 1 Log spectrogram example of standard and overblown tone. Standard tone is D5 tone played with regular D5 fingering, and overblown
tone is D5 tone played with D4 fingering with a sharper and stronger air jet
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significantly while preserving the audio content effect-
ively enough. This is very helpful for decreasing the
overall computational complexity of the system because
the DFT of an audio signal generates a high-dimensional
vector, and the next frame-concatenation step multiplies
the number of feature dimensions.

4.1.3 Frame concatenation
As a final stage of preprocessing, we concatenate several
consecutive frames as a single input for feature learning.
This process can be seen as learning temporal informa-
tion within the size of a concatenation for feature learn-
ing and to make the system more robust than when we
use a single frame. We concatenate four frames as a
single-input example. Thus, the time resolution of the
data in this step is now 70 ms according to the window
and hop size mentioned above.

4.2 Feature learning and representation
We learn sparse features from the preprocessed data de-
scribed above. This section explains the sparse filtering
algorithm, activation function, and details about how we
generated the sparse feature representation.

4.2.1 Unsupervised feature learning
Recent efforts in machine learning have sought to define
a method to automatically learn higher-level representa-
tions of input data [17]. Such an approach is extremely
valuable, particularly when designing features by hand is
challenging, and the timbre is an example where it is dif-
ficult to determine a distinctive difference in a sound
spectrum by observation. Many choices are available for
unsupervised feature learning, such as restricted Boltz-
mann machines [18], autoencoder [19], and sparse cod-
ing [20]. These approaches have been successfully

applied to a variety of modalities, but they require exten-
sive tuning of the hyperparameters [4].
From these approaches, we chose to employ sparse fil-

tering as a feature-learning algorithm in the proposed
system because it has only one hyperparameter (the
number of features to learn) and converges more quickly
than other algorithms, especially when the number of in-
put data and the feature dimension are large. This char-
acteristic is suitable for our task because it can be easily
implemented in a real-time score-following system for
mobile applications without fine-parameter tuning for
each device and environment. Furthermore, a short-time
Fourier analysis of audio wave inherently generates a sig-
nificant number of input data.

4.2.2 Sparse filtering algorithm
Sparse filtering first normalizes each feature to be uni-
formly active in total by dividing each feature by its ℓ2-
norm throughout all examples as follows:

f
0
j ¼ f j= f j

��� ���
2

ð1Þ

where fj represents the jth feature value. In a similar
manner, it then normalizes each example by dividing
each example by its ℓ2-norm across all features as
follows:

~f ˜
ið Þ ¼ f

0
ið Þ= f

0
ið Þ

��� ���
2

ð2Þ

where f(i) represents the ith example. By computing
Eq. 1 and Eq. 2, now all values lie in the unit-ℓ2 hyper-
sphere. This feature normalization introduces competi-
tion between features. For example, if one component of
f(i) is increased, other components will decrease because
of the normalization. Finally, the normalized features are
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Fig. 2 Overall schematic of proposed flute fingering detection system. The system takes an audio waveform as an input, and four consecutive frames
of a 128-bin mel-scale spectrogram are concatenated to learn timbral features. Note that features are learned only from training data. Obtained feature
activations are max-pooled and standardized prior to training the classifier
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optimized for sparseness using an ℓ1 penalty, and it can
be written as

minimize
XN
i¼1

~f ˜
ið Þ��� ���

1
¼

XN
i¼1

f
0
ið Þ

f
0
ið Þ�� ��

2

�����
�����
1

ð3Þ

for a dataset of N examples. Consequently, each ex-
ample is represented by a small number of active sparse
units, and each feature is active only for a small number
of examples at the same time. A more detailed descrip-
tion of sparse filtering can be found in [4].
As an activation function, we used t soft-absolute

function shown below:

f ið Þ
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ wT

j x
ið Þ

� �2
≈ wT

j x
ið Þ

��� ���
r

ð4Þ

where w is the weight matrix, x is the visible node (i.e.,
input data), and we set = 10− 8. An off-the-shelf L-
BFGS [21] package is used to optimize the sparse filter-
ing objective until convergence.

4.2.3 Learning strategy and feature representation
We obtained a weight matrix from training data such
that the feature activation of the test data can be simply
obtained by a feed-forward process. As mentioned
above, sparse filtering only has one parameter to tune:
the number of features to learn. To determine the effect
of hidden unit size on the overall detection accuracy, we
used 39, 512, and 1024 for the number of hidden units.
The top 10 most active feature bases for six different
notes (C5, D5, C6, C#6, E6, and G6) are shown in Fig. 3.
It is possible to observe that harmonic partials of the
mel spectrum are distributed into bases.

4.3 Max-pooling
Using short-term features provides high time resolution
but is prone to local short-term errors. Max-pooling is
the process that takes the largest value in the region of
interest such that only the most responsive units are

retained. We apply max-pooling over the time domain
to every two non-overlapping consecutive frames. This
temporal maximum value-selection process is included
to add an extra robustness to the system and to reduce
the computational complexity of the next step, a
classifier.
It is important to note that max-pooling is a nonlinear

downsampling; hence, the time resolution becomes half
of the original resolution when it is pooled every two
frames. In the proposed system, the original time reso-
lution of the spectrogram is 25 ms, and it becomes
70 ms after we concatenate four frames with a hop size
of 10 ms. Since we are pooling over two frames, the time
resolution after max-pooling is 140 ms. Increasing the
size of the max-pooling region might increase the detec-
tion accuracy further, but this is an appropriate reso-
lution for flute transcription because a typical sixteenth
note with 100 beats per minute (BPM) is 150 ms, which
is still greater than our frame size.

4.4 Classification
There are a variety of choices available for classifier. The
support vector machine (SVM) and random forest (RF)
are both highly popular classifiers across various applica-
tions. The underlying idea behind the SVM is to calcu-
late a maximal margin hyperplane that performs a
binary classification of the data [22]. By contrast, RF is
an algorithm that uses a combination of decision trees
that have a randomly selected subset of variables [23].
The performances of the SVM and RF are a highly ar-

guable topic, and there is significant variability in their
problems and metrics [24]. We use both SVM and RF as
classifiers to compare the performance. We first
standardize the values by subtracting the mean and div-
ide them by the standard deviation prior to feeding the
data into the classifier. Thus, the data have their mean
at zero and standard deviation at one. We use a radial
basis function (RBF) kernel for SVM, and the number of
trees for RF is set as 500.
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Fig. 3 Top 10 most active feature bases of each note. It is possible to observe that harmonic partials are distributed into bases. The bases are
learned from sparse filtering with 39 hidden units
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5 Evaluation
5.1 Data specification
We created a dataset that resembles the one in a pre-
vious study by Verfaille et al. [10]. This includes di-
verse overblown fingering cases such as octave-related
to non-octave-related fingerings and “few keys chan-
ging” to “many keys changing” positions, as illustrated
in Table 1. We recorded flute sounds from two expert
performers with more than 20 years of experience
and two intermediate performers with 3 years of ex-
perience. Each performer played six pitches with all
possible fingerings as they appeared in Table 1. The
average length of each tone was 16 s, excluding
noises and silences. The length of the audio recorded
from each performer was 305 s on average, and the
total audio length was 1218 s. For flute tones, per-
formers sustained the target tone for each fingering
without vibrato, special articulations, or melodic
phrases. We extracted 122 K frames of spectrogram
in total using a 25-ms window and 10-ms hop size
before frame concatenation and the max-pooling step.
The flutes used for the recording were modern Boehm

flutes with B foot joints made by multiple flute makers
and of different materials. Two intermediate players
used silver heads with nickel body joints (Yamaha). One
expert used a sterling silver flute (Powell), and another
expert used a rose gold flute (Brannen-Cooper). Note
that only the first nickel body flute had a “split E” mech-
anism, which facilitates the production of E6. Every flute
used in the experiment was an open-hole flute without
any cylindrical acrylic plugs.
Flutes made of several different materials are used for

the experiment because not every flutist uses a golden
flute, and the general timbre of the flute changes accord-
ing to the material used in its construction. For instance,
the flute made of gold is often described as having a fuller,
richer, and more liquid timbre, while the silver flute is
more delicate and shrill in the loud and high tones [25].
Although we used the same fingering set as [10],

our data is recorded without attaching a microphone

to the flute head joint. To simulate a real-world situ-
ation, audio samples were recorded using the built-in
microphone of a Samsung NT900 laptop rather than
by using high-end studio microphones. Flute sounds
from four different performers were all recorded in differ-
ent locations. Three performers played their flutes in their
apartment living rooms, and one performer played the
flute in a small office. The dataset is available to download
from (http://marg.snu.ac.kr/DFFD), which includes the
audio files with annotations.

5.2 Experiments
A stratified eightfold cross validation was used to evalu-
ate the performance of the proposed method. As shown
in Table 1, our experiment is composed of six independ-
ent classification problems, and the number of classes
for each note is the number of fingerings. First, we col-
lected flute tones from every performer and partitioned
the data into eightfold that were proportionally repre-
sentative of each class. Then, onefold was used for a test;
the remaining folds were used for training. Note that this
procedure was performed frame-wise, and the order of
the frames was random. In addition, each fold includes
the audio recorded from flutes of various materials and in
various recording environments. The mean and standard
deviation of the detection error probability Pf (i.e., inverse
accuracy) was calculated eight times via repeated cross
validation for each fingering of each selected pitch.
We also evaluated MFCCs to compare them with our

proposed feature representation. To make a fair com-
parison, we used the same experiment settings, such as
identical frame and hop sizes, concatenating four frames
as a single example and standardizing to have a zero
mean and unit variance. Thirteen-dimensional MFCCs
were used with delta and double delta for a total of 39
dimensions. As mentioned previously, we evaluated the
performance of sparse features with 39 hidden units for
a fair comparison with MFCCs, and 512 and 1024 units
are also evaluated in order to determine the effects of in-
creased hidden unit size on the overall classification
accuracy.

6 Results and discussion
The detection accuracy of the proposed flute-fingering
detection method and the effect of parameters, classi-
fiers, and max-pooling are presented in this section. We
compare the performance of sparse feature representa-
tion with existing approaches such as MFCCs and the
PCA/LDA method.

6.1 Comparison with MFCCs
In general, the proposed algorithm outperformed MFCCs
for every fingering set in the same 39-dimensional setting
as indicated in Table 2. The worst detection error rate of

Table 1 Selected fingering set

Played note Fingerings

C5 C4, C5

D5 D4, D5

C6 C4, C6, F4

C#6 C#4, C#6, F#4

E6 A4, C4, E4, E6

G6 C4, C5, E♭4, G4, G6

Played note is a pitch of the note, and each pitch is played with different
fingerings by altering only the blowing pressure. The evaluation is composed
of six independent classification problems, and the number of classes is the
number of fingerings

Han and Lee EURASIP Journal on Audio, Speech, and Music Processing  (2016) 2016:2 Page 6 of 10

http://marg.snu.ac.kr/DFFD


the MFCCs occurred when Pf = 14.91 ± 1.91 % for C5 with
RF; the highest error rate of the proposed method oc-
curred when Pf = 5.71 ± 1.30 % for G6 with SVM.
The proposed system does not use PCA for orthogo-

nalization or dimension reduction. However, the first
and second highest eigenvalues of PCA are computed
from MFCCs and sparse features in order to visualize
two-dimensional feature representation, as shown in
Fig. 4. In addition, we also present a visualization using
the t-SNE algorithm described in [26] in Fig. 4. This
algorithm is capable of learning high-order dependen-
cies. From this figure, it is possible to observe that
MFCCs overlap significantly for all fingerings, whereas
the generated sparse feature, by comparison, overlaps
much less.

6.2 Effect of max-pooling
Performing max-pooling on the obtained feature activa-
tion visibly improved the performance for both MFCCs
and sparse features, as shown in Table 2. It can also be
observed from Fig. 4 that adding max-pooling effectively
removes a significant amount of feature noise. We per-
form max-pooling over two consecutive frames. Increas-
ing the pooling size might increase the performance
further, but we decided not to increase the pooling size
in order to keep the time resolution smaller than the
length of a sixteenth note at 100 BPM (150 ms).

6.3 Effect of the number of hidden units
Although we used 39 dimensions for a fair compari-
son with the MFCCs, we evaluated higher values for
the number of hidden units to determine their effects.
Using additional hidden units means that more bases
are used to describe the input signal. This effectively
decreased the detection error rate. The classification
performance nearly approached saturation at 256
units with a slight improvement up to 1024 units, as
shown in Fig. 5.

6.4 Effect of classifier
It is interesting to note that RF demonstrated generally
matched or better performance for sparse features, and
SVM exhibited superior performance for MFCCs, as
shown in Fig. 6. For example, RF showed a lower error
rate for D5, C6, C#6, E6, and G6 for SF, while SVM per-
formed better for C5, D5, C6, C#6, and E6 for MFCCs.
However, the performance gap between RF and SVM for
MFCCs becomes smaller as the number of possible fin-
gerings increases, while RF constantly returns a better
performance for sparse features. We can conclude from
this result that RF is more suitable for classifying sparse
features, especially for multiclass tasks, and that using
SVM is marginally better for MFCCs when there exist
only a few possible fingerings.

Table 2 Eightfold cross-validation result of the fingering detection system

SVM Random forest

Note Feature (dim.) Pf ± σ2Pf Pf ± σ2Pf (Mp) Pf ± σ2Pf Pf ± σ2Pf (Mp)

C5 MFCCs (39) 9.87 ± 1.57 8.07 ± 1.00 14.91 ± 1.91 12.20 ± 1.05

SF (39) 0.55 ± 0.47 0.20 ± 0.27 0.68 ± 0.52 0.13 ± 0.24

SF (1024) 0.26 ± 0.24 0.00 ± 0.00 0.36 ± 0.24 0.07 ± 0.19

D5 MFCCs (39) 7.43 ± 1.30 8.21 ± 0.82 10.16 ± 1.59 10.20 ± 2.42

SF (39) 2.20 ± 0.78 1.41 ± 1.12 1.48 ± 0.54 0.40 ± 0.51

SF (1024) 1.67 ± 0.72 1.18 ± 0.68 1.00 ± 0.36 0.39 ± 0.38

C6 MFCCs (39) 8.47 ± 0.86 6.91 ± 1.48 11.78 ± 1.59 8.91 ± 0.82

SF (39) 2.08 ± 0.88 1.50 ± 0.80 1.30 ± 0.50 0.67 ± 0.40

SF (1024) 0.76 ± 0.42 0.13 ± 0.17 0.56 ± 0.34 0.04 ± 0.12

C#6 MFCCs (39) 7.01 ± 0.62 5.47 ± 0.90 9.31 ± 1.01 6.02 ± 0.98

SF (39) 1.39 ± 0.72 1.07 ± 0.82 1.26 ± 0.52 0.56 ± 0.33

SF (1024) 0.31 ± 0.29 0.08 ± 0.15 0.29 ± 0.27 0.04 ± 0.11

E6 MFCCs (39) 6.36 ± 0.78 4.56 ± 0.90 7.43 ± 0.96 4.80 ± 1.27

SF (39) 2.35 ± 0.79 1.74 ± 0.76 2.03 ± 0.46 1.31 ± 0.51

SF (1024) 1.06 ± 0.48 1.11 ± 0.30 1.02 ± 0.37 0.34 ± 0.24

G6 MFCCs (39) 13.80 ± 1.14 12.77 ± 1.28 13.76 ± 1.12 10.63 ± 0.96

SF (39) 5.71 ± 1.30 4.49 ± 0.76 4.62 ± 1.26 3.22 ± 0.58

SF (1024) 1.53 ± 0.53 1.06 ± 0.54 1.55 ± 0.36 1.06 ± 0.44

Mean and standard deviations of detection error (Pf ± σ2Pf) probabilities (%) using MFCCs and sparse filtering (SF) for 39 and 1024 units. SVM and random forest
were used for the classifications, and probabilities are given for features without and with max-pooling (Mp)
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6.5 Comparison with PCA/LDA method
A direct comparison of the PCA/LDA method from
Verfaille et al. [10] with the proposed method would be
inappropriate because Verfaille recorded sounds from a
microphone attached to the flute head joint and used
the mean energy measured from the initial 100 ms of
the attack segment only. In our proposed system, we
used entire notes rather than attack segments because
attack parts do not exist when the notes are played with
a slur during the actual flute performance. Further, to
simulate a real-world smart-device application, we used
a laptop’s built-in microphone at a distance to record,
rather than attaching an extra microphone to the flute.
However, it is meaningful to observe that the error prob-
abilities of the proposed method were less than 5.71 %
for 39 sparse feature units and less than 1.11 % for 1024
units with max-pooling applied to four- and five-
fingering configurations. The error rates of the PCA/
LDA method were below 1.3 % for two and three finger-
ings; however, these rates dramatically increased to
13.3 % for four and five fingerings in the eightfold cross
validation.
This performance improvement was a consequence of

the spectral differences between signals successfully cap-
tured by sparse feature learning, as visualized in Fig. 7.
From the magnitude response plot of C#6 in Fig. 7, it
can be observed that the eighth basis is activated for
C#4 fingering; however, the eighth basis was not acti-
vated for C#6 and F#4. We can see that this eighth basis
effectively captures the spectral characteristics of the
C#4 fingering between the first and third octave and is
particularly clear around 1348 and 1905 Hz, which are

annotated with blue circles. Similarly, 1855 Hz of the
32nd basis, annotated with a red circle, is significantly
activated for C#4 and F#4 fingering; however, it is not
significantly activated for C#6 fingering. This occurs be-
cause the sounds from C#4 and F#4 fingerings have
strong energy in this region with a peak at 1905 and
1806 Hz, respectively, whereas C#6 has no significant
energy in this region.
The handmade feature of [10] uses energy measure-

ments of the multiples of the fundamental frequency
submultiples between the first octave and a half (i.e., F0/
l where l = {2,3,4,5,6} between F0 and 1.5F0) because this
is where different acoustical characteristics appear the
most significant in their observation, as mentioned
above. The proposed system achieved improved per-
formance by learning spectral characteristics with sparse
features and describing the sound spectrum with activa-
tions of learned bases rather than by restricting a region
of interest and measuring energies at certain points.

7 Conclusions
We designed a flute-fingering detection system based on
the sparse feature learning method. The results obtained
in this study indicate that the learned sparse features de-
livered improved performance compared with other con-
ventional features for flute-fingering detection, especially
as the number of possible fingerings increased. The per-
formance gap between the MFCCs and sparse features
for flute-fingering detection was not significant in our
previous study [5]; however, the more complicated task
with a larger dataset described in this paper confirmed
that the learned sparse features were able to capture the
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spectral differences among the same-pitched notes with
distinct fingerings and outperformed the conventional
features such as MFCCs that focus on the spectral
envelope.
The proposed method achieved a detection error rate

of less than 5.71 % for all cases, while the error rate of
the existing PCA/LDA method dramatically increased to
13.3 % for four and five fingerings. Increasing the num-
ber of units and adding max-pooling to the generated
feature further improved the performance and achieved
error rates of up to 1.18 % for all cases. In addition, a
comparison of classifier performance between SVM and
RF showed that RF is generally more suitable for sparse
features and is more robust against the number of
classes.
The proposed system is well suited for potential use as

a flute-fingering detection application for flute educa-
tion. The window/hop size for the spectrogram and the
max-pooling size for the feature activation were deter-
mined while considering real-time flute transcriptions.
This could be used in multiple recording environments
with mobile devices because the system does not require
excessive computational power or extensive parameter
tuning related to the recording environment. In addition,
this framework can be easily applied to other instru-
ments or timbre analysis tasks with minor changes be-
cause it does not use the deterministic rule but learns
the differences from the input signal.
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