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Abstract

Automatic speech recognition is becoming more ubiquitous as recognition performance improves, capable devices
increase in number, and areas of new application open up. Neural network acoustic models that can utilize
speaker-adaptive features, have deep and wide layers, or more computationally expensive architectures, for example,
often obtain best recognition accuracy but may not be suitable for the given budget of computational and storage
resources or latency required by the deployed system. We explore a straightforward training approach which takes
advantage of highly accurate but expensive-to-evaluate neural network acoustic models by using their outputs to
relabel training examples for easier-to-deploy models. Experiments on a large vocabulary continuous speech
recognition task offer relative reductions in word error rate of up to 16.7 % over training with the hard aligned labels
by effectively making use of large amounts of additional untranscribed data. Somewhat remarkably, the approach
works well even when only two output classes are present. Experiments on a voice activity detection task give relative
reductions in equal error rate of up to 11.5 % when using a convolutional neural network to relabel training examples
for a feedforward neural network. An investigation into the hidden layer weight matrices finds that soft target-trained

information giving better accuracy.

Model compression

networks tend to produce weight matrices having fuller rank and slower decay in singular values than their hard
target-trained counterparts, suggesting that more of the network’s capacity is utilized for learning additional
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1 Introduction

Over the last several years, neural network (NN) acous-
tic models have become an essential component in many
state-of-the-art automatic speech recognition (ASR) sys-
tems, with the most accurate NN acoustic models being
considerably complex in size and architecture. Deep neu-
ral networks (DNNs) have offered big gains on many ASR
benchmarks [1]. Key to the success of DNN is attributed in
large part to modeling tied context-dependent (CD) states
in the output layer, large windows of acoustic input, and
many wide layers of nonlinear units. In addition, tech-
niques developed for Gaussian mixture model (GMM)-
based large vocabulary continuous speech recognition
(LVCSR), such as discriminative training, are now also
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incorporated in DNN training in the form of sequential
training methods [2, 3], improving accuracy further.

In addition to sequential training, use of speaker-
adaptive (SA) features originally designed for GMM-
based systems is becoming widely adopted in DNN-HMM
hybrid systems with good results reported on bench-
mark transcription tasks [3—6]. Feature-space maximum
likelihood linear regression (fMLLR) [7] is a common
choice for reducing interspeaker variability. Beyond the
traditional GMM-based LVCSR techniques, appending
identity vectors (i-vectors), which capture speaker and
channel information in a low-dimensional representation,
to each frame of DNN input has become a promising
approach for making DNN more speaker invariant [8, 9].
Improving DNN noise robustness was explored in [10] by
augmenting DNN input vectors with an estimate of the
noise present in the signal. Naturally, these approaches
require the speaker transforms or augmented features to
be present at both training and test time.
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Complexity of the NN being used in speech process-
ing applications is increasing as well. Graphics processing
units and large distributed systems have made training
DNN with tens of millions of parameters and thousands
of output units routine for many ASR tasks. Alternative,
more complex architectures such as convolutional neu-
ral networks (CNN) offer promising gains over DNN,
especially in joint architectures with DNN trained on SA
features [11]. Furthermore, ensembles of various deep
architectures are also being explored [12]. Larger mod-
els and some newer architectures offer improved accuracy
but are also more difficult to deploy for many applica-
tions due to increased computational cost at recognition
time.

Many of these improvements are, for one reason or
another, difficult to fully take advantage of for online
recognition tasks requiring low latency with computa-
tion and storage limitations. Unless applied in an incre-
mental adaptation approach, SA features require multiple
decoding passes or processing of an entire utterance or
utterances to estimate statistics. In some cases, speaker
identity may be unknown or unreliable at test time. Very
large DNN, or alternative architectures such as CNN,
may simply be too computationally or storage inten-
sive for some desired online applications, massive batch
processing tasks where real-time factor is very impor-
tant, or embedded systems without undergoing extensive
optimization.

With this in mind, we explore a strategy for train-
ing easier-to-deploy DNN acoustic models which begins
by training the most accurate NN for the task without
regards to the constraints for the deployed system. Such
a system may be trained with additional frames of future
context which reduce the word error rate (WER) but
would increase the latency of an online system, for exam-
ple. Various input features, model sizes, and architectures
may be undesirable or infeasible for a given deployed sys-
tem but can play an important role in training a NN that
does meet the necessary constraints. By relabeling train-
ing examples with the outputs from an expensive model,
an easier-to-deploy model can be trained to approxi-
mate the function learned by the expensive model. In
other words, the prediction outputs by trained, expensive-
to-evaluate networks are assigned as soft targets for an
easy-to-deploy network to learn to predict, rather than
training with the original 0/1 labels. The expensive net-
works are not needed at recognition time after training the
easy-to-deploy network. Because the ground truth labels
obtained from forced alignment of the reference tran-
scription are not required, this lets us use large amounts
of untranscribed data to increasingly better approximate
the function learned by the expensive-to-evaluate NN.

The concept of training a NN using the outputs from
another, more accurate NN, or ensemble of NNs has been
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studied using various approaches previously [13-16]. We
refer to the approach taken in this paper as “soft tar-
get training” and feel it offers many opportunities for
improving performance of NNs in situations where low
computational complexity and low memory footprint are
important, and untranscribed data can be obtained at low
cost. The soft target training approach of this paper shares
some similarities with previous works which are described
in detail in Section 2.4.

It is interesting to note that the speech recognition com-
munity actually began work on training NNs with soft
posterior probabilities instead of hard targets generated
from forced alignment a long time ago [17-20]. While this
paper, along with other recent ones, focuses on using soft
targets from a more accurate “teacher” network to train
an easier-to-deploy DNN, these older works were con-
cerned with improving recognition accuracy of a single
NN used during both training and deployment by generat-
ing training targets which more smoothly represented the
transitions between HMM states. Training was an itera-
tive process alternating between rounds of updating NN
parameters using backpropagation and reestimating the
soft targets used for training by performing a soft align-
ment of the data and reference transcription using the
forward-backward algorithm given the current NN. Like
several more recent approaches, a cross-entropy-based
criterion was optimized when training the network with
the soft targets generated by the forward-backward algo-
rithm, though [20] optimized a mean squared error-based
criterion instead.

We evaluate our approach on a LVCSR task using a
110-h subset of the Switchboard-1 corpus, treating the
remainder of the 300 h of data as untranscribed in
order to demonstrate the effectiveness of having addi-
tional untranscribed data. Training a full-sized DNN (30.4
million parameters) with log-mel filterbank inputs using
the outputs from a DNN of the same size which has
been sequence-trained with fMLLR inputs, yields 8.2 and
6.2 % relative reductions in WER compared to a sequence-
trained DNN using hard aligned targets and log-mel fil-
terbank inputs. When reducing the size of the DNN to be
much smaller (3.4 million parameters), 4.6 and 3.3 % rela-
tive reductions in WER are obtained compared to a small,
sequence-trained DNN with hard aligned targets and log-
mel filterbank inputs. When the set of untranscribed data
is augmented with data from the Fisher corpus, relative
reductions in WER are increased to 8.2 and 11.2 % for the
small DNN. Viewed in terms of parameter reduction, this
is a 88.8 % reduction in parameters while actually achiev-
ing a 1.6 and 5.3 % relative reduction in WER compared
to a much larger DNN sequence-trained with log-mel fil-
terbank inputs and hard aligned targets. We also demon-
strate the usefulness of the approach for classifying speech
and non-speech frames in a voice activity detection (VAD)
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task for mobile voice search. Training a multi-layer per-
ceptron (MLP) with soft targets from a CNN gives up to
11.5 % relative reduction in equal error rate compared to
training with hard targets from Viterbi alignment.

The rest of this paper is organized as follows. In the
next section, we describe the basic algorithm for training
with soft targets. LVCSR acoustic modeling experiments
for full-sized DNN with SA and speaker-independent (SI)
features are studied in Section 3, followed by experi-
ments where the network size is reduced in Section 4. We
demonstrate the suitability of the approach in the context
of VAD with soft targets from a CNN in Section 5. Follow-
ing that, we discuss why training with soft targets from a
highly accurate NN can be more effective than with hard
aligned targets. The paper finishes with conclusions and
future work in Section 7.

2 Soft target training
2.1 Training a NN to approximate the function learned by
amore accurate NN

Soft target training utilizes outputs from a more accu-
rate teacher model to train a student model which satisfies
some criteria for deployment (e.g., runs in real time on
a given device). Teacher and student models are NNs in
this work but that need not be the case in general. The
teacher may be a single network or ensemble of networks
from which the outputs are averaged. For simplicity, we
always refer to the teacher as a single NN when describ-
ing the approach. Motivations for this type of training
have typically been (a) approximating a single NN with
a smaller NN and (b) condensing an ensemble of mod-
els down to a single NN having approximately the same
or greater number of parameters as a single NN in the
ensemble but much less than the combination of all mod-
els in the ensemble. In addition to these cases, we allow for
(c) a student to have a “cheaper-to-obtain” input represen-
tation than the teacher, which is another way of making a
deployed model faster to evaluate.

The soft target training approach used in this paper pro-
ceeds as follows. The teacher network is first trained to
minimize the cross-entropy cost function using labeled
data set A with the provided 0/1 labels (“hard targets”).
For training the student network, a possibly much larger
data set B is used. Examples in B need not be labeled.
The fully trained teacher network is then used to pro-
vide soft targets for training examples from data set B by
forward propagating each input in order to obtain the out-
puts which will serve as labels for the corresponding input.
When the output layer has a softmax activation function,
these labels will be a vector of class conditional proba-
bilities summing to 1. The probabilities over all classes
predicted by the teacher are used, rather than the just
the class having the maximum prediction, hence the term
soft targets as opposed to hard targets. As we discuss in
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Section 6, these predictions from the teacher can actually
be much more informative than the original 0/1 class
labels because they impart the relationship between dif-
ferent classes and inputs that has been internalized by
the teacher. Depending on the teacher, training exam-
ples from B may be further transformed or augmented
in some way to obtain the appropriate input feature rep-
resentation for the teacher trained with data set A, for
example, by using unsupervised fMLLR or appending i-
vectors. The training examples from B are then input to
the student which is trained using the corresponding soft
targets obtained from the teacher.

A pair of teacher and student networks is illustrated
in Fig. 1 with softmax outputs y7 and ys at frame #
for teacher and student, respectively. Inputs are given by
x7(n) and xs(n) for teacher and student, respectively,
and may have different representations but are time syn-
chronous. The pre-activation output for the student is
given by as, and C is the cross-entropy cost function.

The next section begins with a description of the stan-
dard training approach for DNN acoustic models and
continues the description of soft target training in greater
detail for the DNN acoustic modeling case.

2.2 Soft target training for DNN acoustic models

DNN acoustic models take multiple frames of acoustic
input and produce HMM state posterior probabilities for
a desired input frame as their output. Input x is pro-
cessed through many layers of nonlinear transformation
before posterior probabilities p(s|x) for CD states s are
obtained from DNN output vector y by applying the
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Fig. 1 Pair of teacher and student networks. Predictions from the
teacher network are used as training targets for an easier-to-evaluate
student network using a large amount of unlabeled data. Teacher
and student networks may have different input representations, sizes,
and architectures
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softmax function element-wise to activations a at output
layer L

1
Y = 2 exp@®), (1)

where a® = (W)Tyl=D 4 pL) with weight matrix
WD, output of the previous layer y~V, bias vector
b®), and softmax normalization term Z. The CD state
posterior probabilities estimated by the DNN with (1)
are divided by the CD state prior probabilities estimated
from the training data to obtain the CD state emission
likelihoods used by the hybrid ASR system.

DNN acoustic model training typically begins with
frame-wise minimization of cross-entropy criterion. The
general form is given by

N S .
=YD Psilx(m)logP(si|x(m)), (2)
n j=1

where P is the “true” posterior distribution, P is the poste-
rior distribution output by the DNN being trained, S is the
number of HMM states modeled in the output layer, and
N is the number of frames in the training set. When CD
state posterior probabilities for training are determined
using a hard alignment of the reference transcription, (2)
simplifies to the familiar form of negative log likelihood
because P(s;|x(n)) = 1 for target state s; and is zero for all
other states at frame #. Training is carried out using the
standard backpropagation algorithm with (2) as the loss
function and the gradient with respect to the pre-softmax
activations in the output layer for a given frame is

aC

— @ _
s =Y b 3)

where t is a one-hot target vector indicating the target
state for the given frame. Frame-discriminative cross-
entropy training is often followed by some form of
sequence-discriminative training [2, 3].

Soft target training also follows from the general form
of cross-entropy in (2), with Py denoting the output dis-
tribution of the teacher and Pg the output distribution of
the student DNN being trained

N S
=Y > Pr(silxy(n)logPs silxs (1)), (4)
n i=1

and the outputs from the teacher network, y7, replace the
one-hot target vector, t, in (3).

This makes soft target training very easy to implement
requiring little modification to existing cross-entropy
minimization code. Furthermore, hyperparameter values
that work well for cross-entropy training with hard tar-
gets also work well for soft targets, in our experience.
One other slight modification is that early stopping is per-
formed by monitoring the cross-entropy cost with soft
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targets from the teacher on a development set, rather than
the frame classification rate or cross-entropy cost with
hard aligned targets.

2.3 Use of untranscribed data

In practice, having a sufficiently large amount of data
seems key for obtaining an accurate student network
when the function learned by the teacher is complex and
the student is constrained. Since outputs from the teacher
network are used to label training examples, the data used
to train the student model does not need to be labeled.
While techniques like generating synthetic data and ran-
domly perturbing examples in the training set are practical
in some circumstances, one of the most attractive ways to
increase the size of the training set for soft target train-
ing is to simply add real, unlabeled data that matches well
with the distribution of the training and test data. Fortu-
nately, large amounts of untranscribed speech data often
exist for many interesting online applications and can be
used during the training of the student network in order
to obtain a better approximation of the function learned
by the teacher network. Furthermore, many feature space
adaptation methods beneficial for DNN acoustic model-
ing such as fMLLR, i-vector, and noise estimates can be
estimated in an unsupervised fashion without requiring a
transcription.

It is worth noting that the use of unlabeled data in soft
target training is different from that of semi-supervised
learning. While specific semi-supervised approaches may
vary, self-training methods are common and can be
described as a process in which an initial DNN is trained
on some labeled data and used to classify unlabeled data,
out of which the examples resulting in the most confi-
dent predictions are selected and added to the pool of
supervised training data. In the case of ASR, recogni-
tion hypotheses for the untranscribed data are obtained
by decoding with an initial DNN trained with transcribed
data and are used as ground-truth transcriptions for sub-
sequent training of the initial DNN. See [21] and [22]
for recent examples. Unlabeled data is used in soft target
training to aid the student network in learning to better
approximate the outputs of a fully trained teacher net-
work. The unlabeled data used for soft target training is
not selected using any confidence measure since the aim
is simply to train the student to make the same predic-
tions as the teacher. In contrast, semi-supervised learning
aims to outperform training with only transcribed data.
Semi-supervised learning could potentially play a role in
the soft target training process as well. Untranscribed
data could potentially be incorporated while the teacher
network is being trained using the self-training method
described above in order to obtain an even more accurate
teacher. The untranscribed data would then be used again
when training the student network with soft targets from
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the fully trained teacher network following the approach
described in Section 2.1.

2.4 Previous work

The idea of using a fast, compact model to approximate
the function learned by a slower, larger, more accurate
model is not a recent one. Zeng and Martinez [13] pro-
posed training a single MLP to approximate an ensemble
of 10 small MLPs for several classification tasks drawn
from the UCI data repository. In their work, the num-
ber of units in the hidden layer was determined for each
MLP and task based on the error rate observed on valida-
tion data with the result that the hidden layer size of the
approximating MLP was always larger (often double) than
that of a MLP trained with the original labels. In contrast
to earlier works, they used the averaged vector of class
probability output by the ensemble to relabel training data
sampled from the original training data set, rather than
the single class having the maximum probability.

Menke et al. [23] trained a small MLP to accurately
approximate a single larger MLP, as opposed to an ensem-
ble. The number of hidden units was reduced from 200
to 100 when predicting phoneme classes for digit recog-
nition on the TI digit corpus with only a slight increase
in WER. While previous works had mostly relied on cre-
ating additional synthetic data in order to increase the
size of the training set for the approximating network,
Menke et al. [23] utilized additional unlabeled data from
the same distribution. Later, Bucilui et al. [14] also studied
training a single MLP to approximate an ensemble, call-
ing the approach “model compression” Several methods
of creating artificial data for training the approximating
model were proposed and compared on different clas-
sification tasks. They found that a diverse ensemble of
models could be accurately approximated by a MLP hav-
ing drastically fewer parameters on the classification tasks
studied.

Despite having been around for quite some time, this
approach has not yet been widely taken advantage of in
the ASR community, even with a boom in the use of
large, increasingly complex, deep architectures and grow-
ing opportunity for online ASR applications. A few newly
published papers have begun to explore the topic. In a
recent work, Li et al. [15] trained a small DNN by mini-
mizing the KL divergence between the output distribution
of the small DNN and large DNN. As noted in their
paper, this is equivalent to minimizing the general form
of cross-entropy (4) with soft targets. Utilizing additional
untranscribed data from the same mobile phone short
message task was found to be effective at reducing the
WER of the small DNN on an internal data set when
the teacher DNN was trained with either cross-entropy
or sequential training criterion. Training a small student
DNN is discussed in more detail in Section 4.
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Ba and Caruana [24] showed that a MLP with a single,
extremely wide hidden layer could be trained to simi-
lar recognition accuracy as deep architectures on TIMIT
phone recognition and CIFAR-10 object recognition
tasks. Rather than the probabilities produced by the soft-
max, the pre-softmax activations (logits) were used as
regression targets for training the approximating MLP,
arguing that this enables the student to better learn the
internal model of the teacher. In contrast to other related
work, the aim of [24] was to explore the interesting
question “Do deep nets really need to be deep?” rather
than obtain an accurate, faster-to-deploy NN. In order
to achieve similar accuracy to the deep architectures on
TIMIT, the number of parameters in the single hidden
layer NN was equal to, or drastically greater than the those
of the deep architectures.

Hinton and Vinyals et al. [16] also refers to the vector
of class conditional probabilities as soft targets and adds
a “temperature” variable to the softmax function in the
output layer in order to produce a softer output distribu-
tion over the classes, as an alternative to using the logits
as targets. In addition to the smoothed probabilities of the
ensemble, the approximating DNN is trained to also pre-
dict the original hard targets using a weighted average of
two cross-entropy objective functions, one with soft tar-
gets from the ensemble and the other with hard targets.
Thus, labeled training data is required. Also, two addi-
tional hyperparameters (temperature and relative weight
of hard target objective function) must be tuned. However,
they were able to obtain the same WER as an ensemble
with a single DNN. A single, large DNN acoustic model
for mobile voice search was trained with the original labels
and soft targets from an ensemble of DNNs having dif-
ferent parameter initializations but the same size, input
features, and training set, and WER was reduced from
10.9 to 10.7 % on a development set, matching the WER
of the ensemble.

We have focused on a setting for soft target training in
which large amounts of untranscribed data are available,
as this is often the situation for many applications we are
interested in. This work adds to the growing empirical
evidence that training with soft targets from an accu-
rate teacher is an effective method of training NNs and
extends the soft target training concept in a new and use-
ful way by pairing teacher and student networks which
have different input representations. While straightfor-
ward to accomplish, we believe this has considerable prac-
tical importance because it opens up a number of other
potential sources for teacher networks, beyond ensem-
bles and simply larger networks, which may be approxi-
mated with easier-to-deploy student networks. Under this
strategy, potential teacher networks include SAT-DNN
with speaker-normalized features [25], networks trained
with i-vectors or noise estimates appended, and networks
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trained with wider context windows than the students, for
example. While previous works on soft target training for
DNN acoustic modeling have mainly relied on internal
data sets, we have experimented on a widely used bench-
mark LVCSR data set and test sets, not just for training a
smaller size DNN but also showing how soft target train-
ing can be effective for training a student DNN having
the same size as the teacher but with cheaper-to-obtain
input features. In addition, we also experiment with trans-
fer across architectures using a single CNN teacher and
MLP student in a new application for soft target train-
ing having only two output classes, VAD for a mobile
voice search system. We confirm that soft targets from the
output distribution of the teacher are more informative
for the student than hard targets based on the class hav-
ing the maximum prediction of the teacher and provide
some interesting insight into the weight matrices learned
by soft target training which suggests they tend to be
fuller rank as a result of the richer information in soft
targets.

We recently learned of related work by Chan et al. [26].
In their newly published work, they looked at using out-
puts from a large recurrent neural network as labels to
train a small DNN and achieved a large reduction in
WER compared to training the small DNN with hard tar-
gets from a forced alignment on the 81 hour Wall Street
Journal corpus of read speech. Their formulation of loss
function for training with soft targets is similar to that of
Li et al. [15] and the one in this paper, but they did not
include any additional unlabeled training data during soft
target training.

3 Improving speaker-independent DNNs via soft
targets from speaker-adaptive DNNs

In this section, we present soft target training experiments
to improve generalization ability of student DNNs on a
LVCSR task. In these experiments, the student DNNs and
teacher DNNs have the same size but the student DNNs
are trained with SI inputs and teacher DNNs are trained
with fMLLR features. The aim of these experiments is
to train the best SI DNN for deployment and we com-
pare two approaches to obtaining a single-pass, SI system
with a fixed DNN acoustic model size. One is a student
DNN trained with soft targets from an accurate, batch-
mode-adapted teacher DNN and the other is a baseline
DNN trained the conventional way with hard targets gen-
erated by Viterbi alignment of the reference transcription.
In Section 4, the method is applied to training of a much
smaller student DNN for parameter reduction.

3.1 General setup

3.1.1 Data

We conducted experiments on the Switchboard-1 cor-
pus which is an English conversational telephone speech
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transcription task. The first 100k utterances from the
training data are used to create a 110-h subset as done in
[3, 5, 25]. The 110-h subset was created primarily to have
the remainder of the 300-h Switchboard corpus left for
use as untranscribed data when studying the effect of
additional untranscribed data in soft target training exper-
iments. Thus, we have a 110-h subset of transcribed data
for use when training the teacher DNNs and baseline
systems and 110- and 300-h data sets for untranscribed
soft target training of student DNNs!. For all DNN train-
ing, the data sets were further split into training and
development sets making up 90 and 10 %, respectively,
with the development set used for hyperparameter search
and early stopping. WER is reported on the SWB por-
tion of the 2000 Hub5 set (Hub5’00-SWB) and the FSH
portion of the Spring 2003 Rich Transcription set (RT03S-
FSH). Hub5’00-SWB acts as a development set in that we
used it to select a language model weight parameter for
RT03S-FSH results.

3.1.2 Baseline GMM-HMM system

The GMM-HMM system was built with the standard
Kaldi recipe for Switchboard [27] using the 110-h tran-
scribed subset. The baseline is trained on 13-dimensional
MECC features. Cepstral mean normalization is applied
per speaker and up to second-order derivatives are
appended. Linear discriminant analysis (LDA) is applied
to project 9 frames of spliced features down to 40 dimen-
sions and then a single semi-tied covariance (STC) trans-
form is estimated. Following [3], we will refer to these
as LDA+STC features. Speaker-adaptive training (SAT)
is performed with a single fMLLR transform estimated
per speaker. The maximum likelihood trained SAT model
has 4179 tied CD states which serve as output classes
for the DNN acoustic model. Trigram language models
trained on Switchboard-1 and Fisher transcripts are inter-
polated and then pruned, giving a language model with
323K trigrams and 552K bigrams.

3.1.3 Speaker-independent DNN baseline
A SI DNN baseline is trained using the 110-h transcribed
subset with 40-dimensional log-mel filterbanks which
have been concatenated to form an input window of 11
frames. Mean and variance normalization are performed
using a rolling window. The DNN has 6 hidden layers
with 2048 sigmoid units in each layer. Both the SI and SA
DNN baselines were initialized with generative pretrain-
ing by stacking restricted Boltzmann machines (RBM).
For details of the pretraining procedure, see [3].
Stochastic gradient descent (SGD) is used to mini-
mize the objective function in all DNN experiments. SGD
was performed with a minibatch size of 256 frames, and
the learning rate was annealed according to the relative
improvement in cost on the 10 % held-out development
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set. Training was stopped when the relative improvement
in cost on the development set was insufficient.

Frame-discriminative cross-entropy minimization with
hard alignments from the GMM-HMM SAT baseline
gives WERs of 19.9 and 25.1 % on Hub5'00-SWB and
RTO03S-FSH, respectively, for the SI DNN baseline. This
result compares favorably to [25] which also performs
speaker-independent experiments with a 110-h subset of
Switchboard-1 and Hub5’00-SWB, so we believe this is a
strong baseline. Key differences with [25] are the use of a
larger DNN and slightly larger language model; however,
Miao et al. [25] used the full 110-h subset for training and
had a separate development set, and mean and variance
normalization were performed per speaker.

Following cross-entropy training, sequential training
was performed using state-level minimum Bayes risk
(sMBR) criterion. We follow the procedure in [3] with
training starting from alignments and lattices generated
using the cross-entropy-trained DNN. After the first
training pass through the full 110-h data set, alignments
and lattices are regenerated and two more epochs are
performed at a constant learning rate. The sequentially
trained SI DNN baseline gave WERs of 18.3 and 22.6 % on
Hub5’00-SWB and RT03S-FSH, respectively.

3.2 Soft target training from a DNN teacher with fMLLR
DNNs trained with SA features can offer attractive per-
formance improvements over SI features such as log-mel
filterbanks. Although most SA feature approaches were
designed for a GMM-HMM-based system, these features
can give strong results for DNN-based systems as well
[3-6, 28]. In this section, we present work on teacher
networks trained with fMLLR features.

3.2.1 Background

Speaker-normalized features X are produced from initial
feature vectors x by an affine transformation x = M§,
where M; is the fMLLR matrix estimated during adap-
tation and £ is an extended feature vector defined as
£ =[xT1]. A single transform, M, is estimated for each
speaker or speaker cluster s by maximizing the likelihood
of observing the data from s, given the model. The trans-
forms are estimated under a GMM-HMM acoustic model
but the transformed features are routinely used with DNN
acoustic models as well.

For offline applications where all the adaptation data
is available prior to recognition, such as broadcast news
transcription and telephone transcription, multiple pass
architectures running in real-time are common [29, 30].
First an initial SI decoding pass is done to generate
hypotheses used for estimating a fMLLR transform, fol-
lowed by a speaker-dependent decoding pass. Statistics
used for cepstral mean and variance normalization, as
well as fMLLR transform estimation, are computed in
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batch over a whole conversation side. Therefore, this
approach excludes many applications we are interested
in where minimum latency is important and we cannot
wait until all speech has been received before starting
decoding.

Incremental adaptation is an alternative to the batch-
mode approach used for offline transcription tasks. A
method for incremental online fMLLR adaptation was
proposed in [31], and Lei et al. explored incremental
online fMLLR adaptation for DNNs in [32]. In their
approach, the transform is initialized to identity and incre-
mentally updated once there is enough adaptation data for
the speaker. The updated transform is then applied to the
following utterances in the session, eliminating the need
for making multiple decoding passes before outputting
a recognition result. However, initial utterances receive
no adaptation and the benefit is limited compared to the
batch-mode approach where the DNN is trained in the
canonical feature space and all test utterances undergo a
speaker-dependent decoding. On an English mobile voice
search and short message dictation task, online fMLLR
adaptation gave only a 1.7 % relative reduction in WER
compared to the SI DNN in [32]. Furthermore, as noted
in [33], if transform statistics associated with a certain
speaker or device are to be retained for future use, a large,
complex infrastructure is required for carrying out the
associated operations of storing, retrieving, and updating.

Because the teacher DNN is not required for deploy-
ment, a teacher DNN trained on fMLLR features is a good
candidate for soft target training of a student DNN whose
input features do not require additional processing steps
beyond SI feature extraction. In this way, some of the
accuracy gains obtained by the teacher can be leveraged by
the student without the need for multiple decoding passes
or complex infrastructure at time of deployment. There
is likely to be some gap in performance between the SA
input teacher DNN and SI input student DNN. However,
even when fMLLR is feasible for online recognition, the
trade-off between ease of deployment and best possible
accuracy may be acceptable in many situations.

3.2.2 fMLLR DNN baseline results

To serve as a teacher DNN, we trained a SA input DNN
baseline on the 110-h transcribed subset with one fMLLR
transform estimated per speaker using the SAT GMM-
HMM baseline and forced alignments of the reference
transcriptions. These transforms are estimated on top of
the LDA+4STC features described in Section 3.1.2. For
input to the DNN, we create a window of 11 frames
of the 40-dimensional fMLLR features. The features are
zero mean and unit variance normalized using a global
estimate from the 110-h training data. As with the SI
DNN baseline, RBM pretraining was done to initialize the
network.
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The cross-entropy and sequential training procedures
for the fMLLR input DNN are similar to the SI DNN base-
line described in Section 3.1.3. The network trained with
cross-entropy gave WERs of 16.9 and 20.1 % on Hub5’00-
SWB and RT03S-FSH, respectively. By further training
with sMBR criterion for 3 epochs, the WERs were reduced
to 15.1 and 18.2 % on Hub500-SWB and RT03S-FSH,
respectively.

3.2.3 Experimental results

In this section, we present the results of soft target training
using the fMLLR DNN baseline described in the previous
section as a teacher DNN to provide labels for a student
DNN to learn from. The student DNN has the same size
as the SI DNN baseline and teacher DNN. The input fea-
tures to the student DNN are the same as the SI DNN,
11 frames of 40-dimensional log-mel filterbanks which
have been mean and variance normalized using a rolling
window. However, all student DNNs start from random
initialization because RBM generative pretraining was not
beneficial. We experimented with doing layer-wise dis-
criminative pretraining [4], using soft targets from the
teacher instead, but this also did not perform better than
random initialization. Error on the development set was
reduced more rapidly at the onset of finetuning with soft
targets in the pretrained networks but was overtaken after
a few epochs by the network which was not pretrained.
The network without pretraining continued finetuning
with soft targets slightly longer and converged to a solu-
tion with lower cross-entropy error on the development
set.

Soft target training experiments were carried out with
the 110- and 300-h untranscribed data sets. In all exper-
iments where fMLLR transforms are used as inputs to a
teacher DNN for soft target training, the transforms are
estimated in an unsupervised way and the transcriptions
are not used even if we have assumed some portion of the
transcriptions were available when performing supervised
training of the teacher DNN (i.e., the 110-h subset). The
unsupervised transforms are computed from lattices using
3 decoding passes with the SAT GMM-HMM baseline.

The cross-entropy-trained teacher DNN was used to
label training examples, and results for the 110-h and
300-h untranscribed training sets are shown in Table 1,
with results from the cross-entropy-trained SI DNN
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baseline for comparison. When trained with 110 hours of
data, the student DNN reduces WER by 2.0 and 3.6 %
relative (0.4 and 0.9 % absolute) on Hub5’00-SWB and
RT03S-FSH, respectively, compared to the cross-entropy-
trained SI DNN baseline. The improvement using the
110-h subset is modest but when the amount of untran-
scribed data for training the student DNN is increased to
300 h, soft target training is more effective and the WER
is reduced by 7.5 and 9.6 % relative.

Sequential training is often used to obtain the best
results so it is critical that soft target training also outper-
forms a sequentially trained network too. Results for soft
target training with labels from the sequentially trained
teacher DNN are shown in Table 2. With only 110 h of
untranscribed data, the student DNN does not seem to
offer much improvement over the sequentially trained SI
DNN baseline, giving a 2.2 % relative reduction in WER
on Hub5’00-SWB but no improvement on RT03S-FSH.
However, with the 300-h untranscribed training set, rela-
tive reductions in WER of 8.2 and 6.2 % are obtained on
Hub5’00-SWB and RT03S-ESH, respectively.

3.3 Student DNN domain adaptation with untranscribed
data

We were also interested in seeing how even greater
amounts of untranscribed data might impact the effective-
ness of soft target training, especially when an additional
data source may be from a slightly different but highly
similar domain as the one the teacher was trained on.
Approximately 840 h of data was randomly selected from
the Fisher English conversational telephone speech cor-
pus. We then added approximately 825 h of that to the
Switchboard training data to create a 1100-h untran-
scribed training set. The remaining 15 h were added to the
development set.

Experiments using outputs from the cross-entropy-
trained teacher DNN, and sequentially trained teacher
DNN, to label training examples for student DNNs were
performed and results are shown in Table 3. When com-
paring to the SI DNN baseline trained with cross-entropy,
the student DNN trained with outputs from the fMLLR
teacher DNN trained with cross-entropy (“FMLLR-Xent
outputs”) achieves relative reductions in WER of 11.1 and
16.7 % on Hub5'00-SWB and RT03S-FSH, respectively.
When comparing to the SI DNN baseline sequentially

Table 1 WER (%) for 6x 2048 network with soft targets from cross-entropy-trained teacher with fMLLR inputs

Input features Targets Data Hub5'00-SWB RTO3S-FSH
FMLLR Hard alignment 110 h transcribed 16.9 % 20.1%
FBANK Hard alignment 110 h transcribed 19.9 % 251 %
FBANK FMLLR-XEnt outputs 110 h untranscribed 19.5% 242 %
FBANK FMLLR-XEnt outputs 300 h untranscribed 18.4 % 22.7 %
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Table 2 WER (%) for 6x 2048 network with soft targets from sequence-trained teacher with fMLLR inputs

Input features Targets Data Hub5'00-SWB RTO3S-FSH
FMLLR Hard alignment 110 h transcribed 15.1 % 182 %
FBANK Hard alignment 110 h transcribed 183 % 226%
FBANK FMLLR-sMBR outputs 110 h untranscribed 179% 22.6 %
FBANK FMLLR-sMBR outputs 300 h untranscribed 16.8 % 21.2 %

trained with sMBR, the student DNN trained with out-
puts from the fMLLR teacher DNN trained with sMBR
(“FMLLR-sMBR outputs”) achieves relative reductions in
WER of 10.4 and 13.7 % on Hub5'00-SWB and RT03S-
FSH, respectively.

Soft target training continued to be effective as the
untranscribed data set size was increased by adding Fisher
data, yielding WERs substantially lower than training with
only the Switchboard data, even though the teacher DNN
was never trained on data from Fisher. While WERs are
also decreased on Hub5’00-SWB, adding the Fisher data to
the untranscribed training set had a much greater impact
on the WERs for RT03S-FSH. This suggests that soft
target training may be of some use for domain adapta-
tion with untranscribed data. We have already observed
that adding untranscribed data from the same domain
(i.e., Switchboard-1) as the transcribed training set is
effective; but when a teacher DNN performs reasonably
well in another target domain (i.e., RT03S-FSH), untran-
scribed data from that domain can be used to reduce
the mismatch between training and test conditions for
the student DNN, bringing performance of the student
DNN even closer to that of the teacher DNN in the target
domain.

It is also interesting to ask to what extent the gap
in performance between teacher and student can be
closed. In the case of the cross-entropy-trained teacher
DNN, 73.3 and 84.0 % of the improvement in WER was
transfered to the student DNN on Hub500-SWB and
RT03S-FSH, respectively. In the case of the sMBR-trained
teacher DNN, 59.4 and 70.5 % of the improvement in
WER was transferred to the student DNN. The perfor-
mance gap between student and teacher is considerably
less on RT03S-FSH than on Hub5'00-SWB. We believe
this is due to the large amount of untranscribed Fisher
data added, making the student more effective in that
domain.

4 Parameter reduction by soft target training
There is growing interest in ASR for embedded systems,
not just in mobile devices and gaming consoles but also
in wearable devices, automobiles, and smart appliances
to name a few. Accordingly, an increasing demand for
expanded functionality should be expected as well. DNNs
have offered impressive gains in recognition accuracy but
can be considerably more computationally and storage
intensive than the previous paradigm of GMM-HMM,
making them more challenging to deploy in embedded
systems. This section focuses on soft target training as a
way of obtaining compact yet accurate DNN.

4.1 Approaches for faster, smaller DNN

Much effort has gone into finding ways to improve DNN
runtime. Vanhoucke et al. lay out several tools for creating
a highly optimized CPU implementation using fixed-point
arithmetic, SSE instructions, and lazy evaluation of the
softmax layer [34]. Lei et al. [35] applied these optimiza-
tions along with frame skipping [36], which computes
posteriors every nth frame and reuses them for # consec-
utive frames, to a small DNN for embedded recognition
that ran in real-time with large accuracy improvements
over a GMM acoustic model but still had a small foot-
print. However, accuracy was considerably less than that
of a full-size DNN server-based system having an order of
magnitude more parameters.

Trying to reduce the number of parameters in a large
DNN after training, rather than directly training a small
DNN, may result in less loss of accuracy relative to the
original large DNN. Numerous approaches have been
designed around this concept. DNN parameter sparseness
was exploited in [37], allowing for large reductions in
storage. However, non-zero parameters are randomly dis-
tributed in each layer, requiring the use of indices to keep
track of them and the speedup of calculation depends
heavily on the implementation and hardware used.

Table 3 WER (%) for 6 x 2048 network with soft targets and additional untranscribed from Fisher

Input features Targets Data Hub5'00-SWB RT0O3S-FSH
FBANK Hard alignment 110 h transcribed (Xent) 19.9 % 251 %
FBANK FMLLR-Xent outputs 1100 h untranscribed SWBD + FSH 17.7 % 20.9 %
FBANK Hard alignment 110 h transcribed (sMBR) 183 % 226%
FBANK FMLLR-sMBR outputs 1100 h untranscribed SWBD + FSH 16.4 % 195 %
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Alternatively, low-rank matrix factorization can be used
to exploit the redundancy of weight matrices found in
DNN. A linear bottleneck layer can be inserted in between
the last hidden layer and outputs prior to training, as
in [38], or singular value decomposition (SVD) can be
applied to the hidden layer weight matrices after training
the network to produce a low-rank approximation [39].
SVD-based restructuring of DNN may result in the loss
of some accuracy but Xue et al. found that if the approx-
imation is not too drastic, the loss may be recovered by
re-finetuning of the restructured DNN [39]. However, it
may not be possible to realize a large enough reduction
in parameters to shrink a large DNN designed to run on
a server down to the size required for embedded recog-
nition on a device using SVD restructuring without an
appreciable loss in accuracy.

4.2 Training a small DNN with soft targets from a large
DNN

In Section 3.2, we examined soft target training using
a student network having the same size as the teacher
network. A large, highly accurate teacher could also be
used to relabel examples for training a much smaller stu-
dent network. For the small student network, we use a 5
hidden layer, 512 hidden unit network (5x512) with log-
mel filterbank inputs. The 6 hidden layer, 2048 hidden
unit network (6x2048) sequentially trained with fMLLR
input features is used again as the teacher network in this
section. Optimizations like those found in [34] could also
be applied to a network obtained through this approach
for further speed-up. Note that unlike weight matrix
decomposition and node pruning [40] approaches, soft
target training is considerably more flexible because the
input feature type and NN architecture are not restricted
to be the same as the teacher. Furthermore, an ensemble
of networks could be used to relabel inputs for the small
network.

As noted earlier, Li et al. have also recently studied soft
target training for a small-sized DNN [15]. A teacher DNN
having 5 hidden layers with 2048 hidden units was used
to label outputs for a student DNN having 5 hidden layers
with 512 hidden units, giving a reduction in parameters
of approximately 85 % compared to the large DNN and
relative reductions in WER of 5.08 and 2.91 % compared
to a small DNN having the same size but trained with
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hard targets using cross-entropy and sequential training,
respectively. All networks were trained with the same
speaker-independent features, log-mel filterbank inputs
with up to second-order derivatives. The task was a
mobile phone short message dictation task evaluated on
an internal data set.

In contrast, we use a large teacher DNN sequentially
trained with SA features (fMLLR) to train a small DNN
with SI features (log-mel filterbank). We demonstrate that
a small DNN trained in this way cannot only obtain lower
WER than a small DNN sequentially trained with hard
targets but can actually surpass the performance of a
large sequentially trained DNN with SI features having
an order of magnitude more parameters when a substan-
tial amount of untranscribed data is used for training
the small student DNN2. A small baseline DNN having
5 hidden layers with 512 hidden units was sequentially
trained with log-mel filterbank inputs and targets derived
from a hard alignment. Both the teacher and baseline net-
works were trained with 110 h of transcribed data. The
same teacher DNN from Section 3.2 that was sequentially
trained with fMLLR inputs was used to provide soft tar-
gets for the small student which sees log-mel filterbank
inputs. Table 4 shows the WERs for training the small
DNN student with 110 and 300 h of untranscribed data.
When 110 h of untranscribed data is used for soft tar-
get training, the student network performs slightly worse
than the sequence-trained small baseline DNN trained
with hard targets. However, with the additional untran-
scribed training data, the student DNN gives 4.6 and 3.3 %
relative reductions in WER on HUB5’00-SWB and RT03S-
FSH compared to the sequence-trained baseline DNN of
the same size.

4.3 Beyond lossless parameter reduction

Soft target training was effective for training the small
DNN student when the amount of untranscribed train-
ing data was increased from 110 to 300 h. Similar to
Section 3.3, we tried adding additional untranscribed
training data from the Fisher corpus when training the
small DNN student. Table 5 shows the results for the small
DNN student trained with the large untranscribed set
and a large DNN baseline sequentially trained with log-
mel filterbank inputs and the 110-h transcribed subset for
comparison. This allows for a comparison between soft

Table 4 WER (%) for 5x 512 network with soft targets from 6 x 2048 sequence-trained teacher with fMLLR inputs

Input features Targets Data Hub5'00-SWB RT0O3S-FSH
FMLLR Hard alignment 110 h transcribed 15.1% 18.2%
FBANK Hard alignment 110 h transcribed 19.6 % 241 %
FBANK FMLLR-sMBR outputs 110 h untranscribed 20.0 % 24.7 %
FBANK FMLLR-sMBR outputs 300 h untranscribed 18.7 % 233 %
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Table 5 Parameter reduction by soft target training
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Network # of Params Data Hub5'00-SWB RTO3S-FSH
6x2048 (hard align., SMBR) 30.4 mil. 110 h transcribed (SWBD) 183 % 226%
5x512 (soft target-trained) 3.4 mil. 1100 h untrans. (SWBD + FSH) 18.0% 21.4%

target training and parameter reduction methods applied
to a trained network, such as SVD restructuring. Note that
even if we assume no degradation in accuracy when apply-
ing SVD or other methods to reduce the full size log-mel
filterbank model in Table 5 to have the same number of
parameters as the small DNN?3, the small DNN student
trained with soft targets using 1100 h of untranscribed
data still significantly outperforms it. Viewed in terms of
parameter reduction, this is a 88.8 % reduction in param-
eters while achieving 1.6 and 5.3 % relative reductions in
WER. Thus, we believe that soft target training of a small
DNN student can be a very effective method for param-
eter reduction, even when the reduction in parameters is
drastic, as long as the teacher network is very accurate
and the amount of untranscribed data is large. It allows for
very efficient use of parameters in a small model.

5 Voice activity detection experiments

5.1 Problem description

When the training targets are tied context-dependent
HMM states, one can readily imagine what kind of infor-
mation about the structure of the data is passed on from
teacher to student via the teacher’s predictions. These pre-
dictions may reveal similarities between states within a
triphone HMM, between triphones sharing a common
center phone, and relative relationships all the way up to
broad classes, such as vowels and consonants, conceiv-
ably. In this section, we turn from an application with
thousands of output classes resulting from decision tree
clustering to the other extreme, to see if soft target train-
ing is useful in a binary classification task that is also
germane to ASR.

VAD is an integral front-end component in many speech
processing systems and is used for identifying speech and
non-speech frames in an audio signal. While there may
be several ways to approach VAD [41], we have chosen
to formulate the problem as a binary classification task
using neural networks to differentiate between speech
and non-speech at the frame level, similar to [42]. Sev-
eral recent examples of neural network-based VAD can be
found in relation to the DARPA RATS program with noisy
communication channels [43, 44].

5.2 System description

The teacher network in these experiments is a CNN.
CNNs provide shift, scale, and distortion invariance
to some extent through use of local receptive fields,

shared weights, and spatial or temporal sub-sampling [45].
When applied to speech processing, CNN can compen-
sate for distortions in the frequency domain and show
improvements over DNN [11]. However, computing the
activations of a convolutional filter (unit) is much more
expensive than a traditional hidden unit in an DNN. We
use a convolutional architecture similar to the one used
in [28] which is as follows. There are 2 convolutional lay-
ers with the first one having 256 filters with 9x9 receptive
fields, followed by max pooling in frequency with a pool-
ing size of 1x3. The second layer has 256 filters with 3x4
receptive fields. Outputs from this layer are input to 2 fully
connected feedforward layers having 1024 hidden units
with a sigmoid non-linearity. The CNN was trained using
the PDNN library [46].

The architecture for the student model is a MLP hav-
ing 2 hidden layers with 1024 sigmoid hidden units each.
Input features are 40-dimensional log-mel filterbanks
(spanning 0—-8 kHz) with delta and delta-delta features
appended. The 5 preceding and 5 following frames are
included giving a 1320-dimensional input vector. The fea-
tures are zero mean and unit variance normalized using
a global estimate from the training data. All networks
are trained using these features, in contrast to the acous-
tic modeling experiments in Section 3 where teacher and
student networks were trained on different input features.

5.3 Experiments and results

This work studies VAD as a front-end component of
a mobile voice search system. As such, we are primar-
ily interested in using VAD for identifying non-speech
periods which can be dropped from the input of the
speech recognizer, as well as deciding when the utterance
has ended. We evaluate the approach using an internal
Yahoo! Japan mobile voice search and voice dialog data set.
The CNN teacher and MLP baseline were trained using
approximately 320 h of data with hard targets. We trained
MLP student networks with approximately 320, 640, and
960 h of unlabeled data using soft targets from the CNN.
A development set of 4000 utterances was used for sys-
tem development and early stopping of training based on
relative reduction in the cost. A minibatch size of 256 and
momentum of 0.9 were used. Ground truth labels for our
VAD experiments were obtained using human-annotated
start and end times of speech and word transcriptions.
Non-speech frames at the beginning and end of all utter-
ances are determined using human-annotated start and
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end times of speech. Short pauses in speech occurring
within the duration of speech are detected by aligning the
portion of an utterance annotated as speech, along with
a small margin of silence at the start and end boundaries,
using the word transcription and GMM-HMM baseline.
CD state labels for each frame in the alignment are then
converted to speech and non-speech frame labels by map-
ping them to speech and silence classes. Long periods of
silence are not expected to occur within the duration of
speech as the average length of the utterances is very short
(around 3 s).

Evaluation is done using four held-out test sets referred
to as “Mob-1,” “Mob-2;” “Mob-3,” and “Mob-4” Mob-1 and
Mob-4 consist of mobile voice search data. Mob-2 and
Mob-3 consist of voice dialog data. Each test set contains
approximately 10,000 utterances. Note that Mob-1 con-
sists of data collected from noisier conditions than the
other three test sets. It has a considerably lower average
signal-to-noise ratio, making it more challenging. Equal
error rate (EER) serves as the performance metric. To
calculate EER, we must first determine the false rejec-
tion rate (FRR) and false acceptance rate (FAR), which are
the percentage of speech frames which were misclassified
as being non-speech, and the percentage of non-speech
frames which were misclassified as speech, respectively.
EER is the operating point at which these two types of
errors occur equally.

Results on the four test sets are shown in Table 6. The
CNN considerably outperforms the MLP baseline trained
on hard targets, making it a good candidate for a teacher
network. With the same amount of training data, the MLP
student network with soft targets from the CNN is able
to surpass the MLP baseline on all four test sets. This
is interesting since there are only two target classes to
learn compared to the acoustic modeling case where we
expect the student’s learning to be enriched by the intri-
cate relationships between output classes found in the
teacher’s outputs. Nonetheless, learning to generalize like
the CNN is quite beneficial for the MLP student. When
the amount of unlabeled training data is increased from
320 to 640 h, EER of the MLP student network is even
further decreased. The trend continues when unlabeled
training data is increased to 960 h, giving relative reduc-
tions of 7.2-11.5 % compared to the MLP baseline. With

Table 6 EER (%) for 2x 1024 network with soft targets from CNN
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this amount of unlabeled data, the MLP student is able
to recover between 88.9 and 97.0 % of the gain achieved
by the CNN despite not having any convolutional layers
itself.

6 Analyzing soft target training

6.1 Interpretation of soft targets

The wisdom of the teacher is in its outputs. The outputs of
the teacher reflect what it has learned about the relation-
ship between specific inputs and similar output classes
over the course of training. As noted in [16], the rela-
tive strengths of the teacher’s outputs imply the extent to
which a given input appears similar to examples belong-
ing to other classes and this is important information for
learning how to generalize well. Consider a DNN acoustic
model with outputs corresponding to tied CD states. The
set of states that will be modeled are determined by deci-
sion tree clustering which produces a large number of tied
CD states, many of which differ in only a small but still sig-
nificant way, such as left or right context, or by the state’s
position within a HMM. Given that the states are struc-
tured in this way, it is understandable that many inputs are
likely to appear to the teacher to be somewhat similar to
examples from several different classes of states.

Examining bar plots of the posterior probability output
by the teacher network from Section 3.2.2 illustrates this
idea clearly. To create the plots shown in Fig. 2, we have
selected two inputs to forward propagate through the fully
trained teacher network. We refer to the two inputs as
“frame A” and “frame B” for simplicity but each one is
a single, 11-frame window of unsupervised fMLLR fea-
tures. The center frames of both inputs are from state
“1238,” which would be the training label for both inputs
if hard targets were generated from a forced alignment of
a reference transcription. Frames A and B were spoken
by different speakers, “speaker 1” and “speaker 2,” respec-
tively. These inputs were taken from the Switchboard
300-h untranscribed data set used for training student
DNNs in our experiments.

Figure 2 shows the posterior probability output by the
teacher DNN for frames A and B. Due to the large num-
ber of states being modeled, state IDs for only the top five
states with the highest posterior probabilities are shown
next to their corresponding bars. As expected, many of

Network Targets Data Mob-1 Mob-2 Mob-3 Mob-4
CNN Hard alignment 320 h labeled 4.10 % 251 % 246 % 277 %
MLP baseline Hard alignment 320 h labeled 4.46 % 2.75% 2.79% 3.09 %
MLP student CNN outputs 320 h unlabeled 426 % 261 % 2.60 % 291 %
MLP student CNN outputs 640 h unlabeled 4.19% 2.55% 2.52% 2.85 %
MLP student CNN outputs 960 h unlabeled 4.14 % 252 % 2.47 % 2.79 %
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Fig. 2 Teacher DNN outputs for inputs from the same class. Posterior probability outputs by a teacher DNN for two inputs belonging to the same tied
CD state are shown with state IDs for the five states having the highest posterior probability shown next to their corresponding bars. Even though
the center frame belongs to the state, the output distributions are markedly different for the two inputs from different speakers, revealing different
notions of similarity to other states learned by the teacher. This information can be conveyed to the student through soft targets but not hard targets

these correspond to states having the same center phone
and HMM state position as state “1238,” which has center
phone “n” and HMM state position 0. While state “1238”
was correctly given the highest posterior probability in
both cases, we can see that the output distributions look
quite different. Different sets of states had relatively high
non-zero probabilities and this is important information
for instructing the student how to generalize well. This
information can be conveyed to the student through soft
targets but not hard targets.

Figure 2 also demonstrates that outputs from the
teacher can sometimes have high entropy. We measured
the average entropy of this teacher’s outputs on the full
Switchboard data set to get a better idea of the teacher’s
predictions as a whole. The average entropy was 1.49
which suggests that outputs from this network often place
a probability of well below 0.9 on any particular class for
each input.

When inputs are particularly difficult for the teacher to
classify, the teacher’s outputs will have a higher entropy
which signals to the student network not to be too sure
about predicting a single class for the given input. This
acts as a kind of regularization by making the target func-
tion the student should learn smoother. Training with
hard targets in cases where similar inputs are mapped
to dissimilar targets using 0/1 labels requires learning

a highly nonlinear function [47]. We believe that the
regularization effect of soft targets can be particularly
important for avoiding overfitting in such cases.

We examine this idea further in the context of
speech/non-speech classification for VAD by drawing an
analogy to the thought experiment in [47]. Caruana et al.
[47] provided a clear example of how functions with 0/1
targets can result in regions where similar inputs are
mapped to dissimilar targets, even when the training set is
sampled from a simple probability distribution. We have
adapted it for our discussion here. While this is an obvious
simplification, we believe it is useful for illustrating how
soft target training can be beneficial even in a binary clas-
sification task, such as VAD. Suppose a frame of acoustic
data x is labeled as containing speech with probability
p and non-speech with 1 — p, determined by the func-
tion shown in Fig. 3 and a training set with speech or
non-speech labels is sampled from this distribution.

Where the probability assigned to x is low, there will
be many non-speech frames and where the probability
is high, there will be many speech frames. We may sup-
pose these values of x correspond to frames which occur
within long stretches of non-speech or speech, respec-
tively, and can usually be classified fairly easily by the
teacher network. On the other hand, values of x lying in
the relatively flat region of Fig. 3 are labeled as speech
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for each value of acoustic data x. When a training set is sampled from this distribution, similar values of x are likely to be mapped to different 0/1
(non-speech/speech) targets in the shaded region. The resulting function will be highly nonlinear in this region and difficult to learn using hard
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or non-speech with nearly equal probability, resulting in
a situation where similar inputs are frequently mapped
to dissimilar targets. We may suppose these frames lie
near the boundary of transitions between speech and non-
speech and can be difficult to classify correctly. Under the
traditional training scheme, these inputs are labeled with
hard targets and the network must learn a function that
is highly nonlinear in this region. However, with soft tar-
get training, a teacher network can assign higher entropy
outputs to these frames, which may be closer to the actual
probability distribution. This would result in a less non-
linear function for the student compared to 0/1 labels,
making the function smoother and possibly reducing the
overfitting which can accompany the learning of highly
nonlinear functions.

6.2 Soft vs. hard targets from teacher

In semi-supervised approaches, the transcribed data is
augmented with additional untranscribed data and a
supervised training signal is generated by labeling the
untranscribed data with 0/1 labels based on the class
having the maximum prediction output by the current
network. In our experiments, we have also found adding
additional untranscribed data to the training set very ben-
eficial but with the distinction that labels are assigned
using the soft targets from a teacher network. We have
argued that important information is transferred in the
soft targets which improves generalization of the student
network, resulting in the lower WERs and EERs observed

in Sections 3, 4, and 5. If the teacher was used to assign
0/1 labels instead of soft targets, such information would
not be present. We verified this assertion by comparing
the two alternatives for labeling untranscribed data using
a teacher network.

The fMLLR input DNN sequence trained with the 110-h
transcribed subset of Switchboard served as a teacher net-
work and two student networks were trained with log-mel
filterbank inputs and 300 h of untranscribed Switchboard
data using outputs from the teacher network. One stu-
dent DNN was trained with soft targets and the other was
trained with hard targets generated by assigning a pos-
terior probability of 1.0 to the class having the strongest
prediction by the teacher. All networks had 6 hidden layers
and 2048 hidden units.

The results for the soft target-trained student, and the
student trained with outputs from the teacher which have
been converted to hard targets, are shown in Table 7. We
can see that the student DNN trained with soft targets
from the teacher obtained WERs that were substantially
lower than the student DNN trained by converting the

Table 7 WER (%) for students trained with soft vs. hard targets
from teacher

Targets Hub5'00-SWB RTO3S-FSH
Hard 17.9 % 224 %
Soft 16.8 % 21.2 %
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teacher’s outputs to hard targets. Relative reductions in
WER of 6.1 and 5.4 % on HUB5'00-SWB and RT03S-FSH
resulted from using the predictions directly output by the
teacher instead of converting the teacher’s outputs to 0/1
labels. This improvement can only be attributed to the
use of soft targets. This should dispel a potential point of
doubt by confirming that the output distribution provided
by the teacher in our experiments is sufficiently soft and
not so peaked as to be indistinguishable from hard targets
based on the class of the teacher’s maximum prediction.
Therefore, the gains observed in our experiments can-
not solely be the result of using additional untranscribed
data and passing the inputs through a another network
and making the same hard predictions. These soft targets
carry some relevant information that is not conveyed with
only a maximum prediction from the teacher.

6.3 Rankand information content of student weight
matrices

Clearly, there is a fair amount of redundancy in the param-
eterization of very large neural networks. Denil et al
showed that given a few weight values it is possible to pre-
dict many of the remaining values [48]. When many of
the weights are highly correlated, much of the capacity of
large NN is not really being used effectively. Under such
conditions, SVD parameter reduction approaches [39] are
very successful for large DNNSs. If we accept that soft tar-
get training provides additional information that is more
useful than hard targets, then it follows that learning this
extra structure is accompanied by a fuller utilization of
DNN capacity, meaning less redundant parameters. To
measure this, we look at the rank of the weight matrices
of networks trained with soft targets. The rank of a matrix
is often interpreted as indicating its “information content”
in applied settings such as image compression. Intuitively,
a matrix with lower rank has lower information content
compared to a matrix having the same order but higher
rank, in the sense that it is more easily compressed with
fewer elements needed for representation.

The ranks of the hidden layer weight matrices for the
6 hidden layer, 2048 hidden unit (6x2048) and 5 hidden
layer, 512 hidden unit (5x512) networks are shown in
Table 8. Ranks of input and output layers are not shown.
The networks were trained with the 110-h subset using
either soft targets from the fMLLR teacher DNN or the
original hard targets. We can see that being trained to
generalize like the teacher network using soft targets pro-
duces hidden layer weight matrices having fuller rank than
training with hard targets. Even for the 6x2048 network,
which is a large network for the 110-h subset, the soft
target-trained weight matrices are nearly full rank, indi-
cating much greater information content coming from the
soft targets. In this sense, soft target training has bet-
ter leveraged the available capacity of the large network.
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Table 8 Rank of hidden layer weight matrices for networks
trained with soft vs. hard targets using 110 h of data

. 6x2048 5x512
Hidden layer
Soft Hard Soft Hard

1 2043 943 511 511
2 2040 731 511 510
3 2040 562 512 499
4 2039 483 512 498
5 2042 487 - -

While the information content is much greater, it is not
necessarily all relevant and it is difficult to assess to what
extent it is necessary for good recognition performance.
We are not able to observe this effect as readily in the
weight matrices of the smaller networks since they have
very limited capacity and are already nearly full rank with
just hard targets.

In addition to the rank of the hidden layer weight matri-
ces, we can also examine the distribution of singular
values. The relative information content (RIC) [49] of the
singular value decomposition of matrix W is defined as:

k .
RIC(k) = # ®)

i=10i

where k is the number of singular values o retained out
of N total singular values. Having an RIC value near one
indicates that nearly 100 % of the information contained
in the original W is retained in a low-rank approximation
with the first k singular values.

Representative plots of RIC are shown in Fig. 4 for
the fourth and third hidden layer weight matrices of the
6x2048 and 5x512 networks, respectively. Plots for the
other square hidden layer matrices in these networks look
similar. The soft target-trained networks were trained
with 300-h untranscribed data using outputs from the
fMLLR teacher DNN. The hard target-trained networks
were trained with 110-h transcribed data. To confirm
that the difference in RIC curves of the 6x2048 net-
works is not merely a result of 110 h of transcribed data
being insufficient for that network size, we also included
a 6x2048 SI input DNN trained with 300-h transcribed
data. As with the rank, the RIC curves look similar for
the small network, but the curves for the 6x2048 show
very different distributions of singular values for the soft
and hard target-trained networks. Unlike the hard target-
trained networks in which the RIC rapidly increases and
approaches 1.0 with only 500 singular values, the increase
in RIC is much more gradual for the soft target-trained
network meaning many more singular values will be
important for representing the weight matrix of this layer.
Indeed, with only 500 singular vectors, the RIC of the hard
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Fig. 4 Distribution of singular values of hidden layer weights. RIC shown for 6x2048 and 5x 512 networks trained with hard and soft targets. Soft
target-trained networks have a slower decay in singular values, requiring more singular values to be retained for a given value of RIC compared to

hard target-trained networks

target-trained network is already nearly 1.0, compared to
approximately 0.62 for the soft target-trained network. We
attribute this to richer information learned by the soft
target-trained network required in order to generalize like
the teacher network. As with rank, differences in RIC are
harder to observe in the 5x512 networks due to their lim-
ited capacity. Nonetheless, useful information is acquired
by the small network through soft target training. We have
confirmed this empirically in Section 4 by observing lower
WERs with the soft target-trained 5x 512 network as more
untranscribed data is added. However, it is not apparent
based only on rank and RIC.

7 Conclusions

We have explored a strategy for training easier-to-deploy
DNN acoustic models using outputs from more accurate
NNs that may be too expensive-to-evaluate for deploy-
ment. The prediction outputs by the fully trained, teacher
network are assigned as soft targets for the less com-
plex, student network to learn to predict, rather than
the original labels. Having a highly accurate teacher net-
work and large amount of additional untranscribed data
are important for obtaining the best student network
with this approach. Thus, it is best suited for settings in
which a large amount of additional untranscribed data

is available. We have extended this soft target training
framework in a new and useful way by pairing teacher
and student networks that have different input repre-
sentations. Soft target training offers many opportunities
for leveraging some of the gains obtained through state-
of-the-art NN approaches while balancing the potential
constraints of computational complexity and low memory
footprint required for a specific deployed system. This is
increasingly important as demand for online ASR grows
in resource-constrained systems.

On a LVCSR task using the Switchboard-1 corpus, we
demonstrated how accuracy of a speaker-independent
DNN can be improved using soft targets from a DNN
of the same size but trained with fMLLR inputs. Rela-
tive reductions in WER of 8.2 and 6.2 % were obtained
over a sequence-trained DNN using hard aligned tar-
gets and log-mel filterbank inputs. Furthermore, when
the untranscribed data set for soft target training was
augmented with data from the Fisher corpus, WER was
further decreased, giving relative reductions of 10.4 and
13.7 %, even though the teacher DNN was never trained
on data from Fisher.

In Section 4, we studied parameter reduction using soft
target training. A small student DNN having 3.4 mil-
lion parameters trained with soft targets from a larger,
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sequence-trained DNN obtained 4.6 and 3.3 % relative
reductions in WER compared to a small DNN of the
same size, sequence-trained with hard aligned targets and
log-mel filterbank inputs. Having an adequate amount of
untranscribed data for soft target training is important.
Accuracy of the small student DNN was greatly improved
when the set of untranscribed data was increased further
with data from the Fisher corpus, giving relative reduc-
tions in WER of 8.2 and 11.2 %. Viewed in terms of
parameter reduction, this is a 88.8 % reduction in param-
eters while actually achieving a 1.6 and 5.3 % relative
reduction in WER compared to the 30.4 million parame-
ter DNN sequence-trained with log-mel filterbank inputs
and hard aligned targets.

We also studied a new application for soft target train-
ing, VAD for a mobile voice search system. We found that
transfer across architectures was very successful when
training a MLP for classifying speech and non-speech
frames with soft targets from a CNN. Relative reductions
in EER of 7.2-11.5 % were obtained compared to training
with hard targets from Viterbi alignment.

While between 88.9 and 97.0 % of the gain in perfor-
mance obtained by a CNN could be transferred to an MLP
student in our VAD experiments, the gap in performance
between teacher and student was considerably larger in
some of the SA feature experiments from Sections 3
and 4. Results have shown that the gap continues to be
reduced as more untranscribed data is added for soft tar-
get training, but it would be interesting to see to what
extent the gap between teachers with SA inputs and stu-
dents with SI inputs can be eliminated with even more
untranscribed data or better soft target training objective
functions besides cross-entropy.

In Section 3.2.3, Table 2, no improvement was observed
on RT03S-FSH when the 110-h training set was used to
train the student with the outputs from a sequentially
trained teacher relative to the baseline DNN sequen-
tially trained with hard targets. Moreover, in Section 4.2,
Table 4, when the 110-h training set was used to train
a small student with the outputs from a large sequen-
tially trained teacher, a degradation in accuracy relative
to the small baseline DNN sequentially trained with hard
targets was observed. While we were able to obtain sub-
stantial reductions in WER in both these cases when
additional untranscribed data was used, it appears that
it is more difficult to train a student using the cross-
entropy loss function with soft targets from a teacher
which has been sequentially trained. This is evidenced
by comparing the gap in performance between student
and teacher when the teacher is either trained with cross-
entropy or sequentially trained. From Table 3, and given
the WER of the teacher networks, we can calculate that
approximately 73 and 84 % of the reduction in WER seen
when comparing the cross-entropy-trained teacher to the
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hard target-trained baseline DNN on Hub5’00-SWB and
RTO03S-FSH, respectively, was transferred to the student.
However, when the student was trained with soft tar-
gets from the sequentially trained teacher, only around 59
and 70 % of the reduction in WER seen when comparing
the sequentially trained teacher to the hard target-trained
baseline DNN on Hub5’00-SWB and RT03S-FSH, respec-
tively, was transferred to the student. Nonetheless, we
believe that using cross-entropy to train a student with
soft targets from a sequentially trained teacher is a rea-
sonable approach to take when additional untranscribed
data is available based on the results we have observed.
More effective loss functions for soft target training with
outputs from a sequentially trained teacher may be worth
investigating in the future.

Along the same line of thought, we may consider apply-
ing sequential training to the student after training with
soft targets from the teacher using cross-entropy has
converged. We performed a few iterations of sequential
training using the sMBR criterion with a small learn-
ing rate on student DNNs following soft target training
with cross-entropy. This was done in a supervised set-
ting using hard targets with the 110-h transcribed training
set. Adding sequential training with hard targets from
transcribed data after soft target training with outputs
from the sequentially trained teacher was not very use-
ful for the small 5x512 DNN. Adding sequential training
yielded reductions in WER ranging from 0.1 to 0.3 %
absolute for the small student DNN trained with 110
and 300 h of untranscribed data but degraded WER on
the small student DNN which had been trained with the
large untranscribed data set augmented with data from
the Fisher corpus. Results were somewhat better for the
larger, 62048 student DNN which saw reduction in WER
ranging from 0.2 to 0.4 % absolute but still experienced a
degradation in WER on RT03S-FSH for the student DNN
which had been trained with the large untranscribed data
set augmented with data from Fisher.

Finally, the ensembles of networks used in other recent
soft target training studies have been fairly homogeneous
in terms of architecture and training data [16, 24]. While
not in the context of soft target training, combinations of
various architectures for ASR are being studied. In [12],
an ensemble of several kinds of networks was created with
the outputs combined in a final hidden layer and applied
to phone recognition. DNN and CNN were jointly trained
in [50] for a LVCSR task. With architectures like CNN and
recurrent neural networks looking promising for LVCSR
and speech processing tasks, creating a teacher ensem-
ble with diverse combinations of different architectures
and training data could be an interesting area to explore.
However, increased training time associated with training
all the component networks, as well as generating their
outputs for student training, could be an obstacle.
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Endnotes

'In Sections 3.3 and 4.3, we augment the untranscribed

set further with data from the Fisher corpus to create a
much larger untranscribed data set.

2We emphasize that were are not talking about the

student DNN surpassing the teacher DNN which was
trained on SA features.

3We suspect that this is a very large reduction of

parameters to try to achieve using SVD restructuring.
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