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Abstract

We present a novel non-iterative and rigorously motivated approach for estimating hidden Markov models (HMMs)
and factorial hidden Markov models (FHMMs) of high-dimensional signals. Our approach utilizes the asymptotic
properties of a spectral, graph-based approach for dimensionality reduction and manifold learning, namely the
diffusion framework. We exemplify our approach by applying it to the problem of single microphone speech
separation, where the log-spectra of two unmixed speakers are modeled as HMMs, while their mixture is modeled as
an FHMM. We derive two diffusion-based FHMM estimation schemes. One of which is experimentally shown to
provide separation results that compare with contemporary speech separation approaches based on HMM. The
second scheme allows a reduced computational burden.
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1 Introduction
Single-channel speech separation (SCSS) is one of the
most challenging tasks in speech processing, where the
aim is to unmix two or more concurrently speaking sub-
jects, whose audio mixture is acquired by a single micro-
phone. The goal is therefore to decompose the single input
signal into multiple output channels, each dominated by
a single speaker. The core obstacle in such tasks is the
lack of spatial information, and the common statistical
characteristics of the mixed signals.
Single-channel speech separation was studied by sev-

eral schools of thought, where computational auditory
scene analysis (CASA) proved to be among the most
effective. CASA-based methods are motivated by the abil-
ity of the human auditory system to separate acoustic
events, even when using a single ear (although binau-
ral hearing is advantageous). CASA techniques imitate
the human auditory filtering known as cochlear filtering,
where time-frequency bins of the speechmixture are clus-
tered using psychoacoustic cues such as the pitch period,
temporal continuity, onsets and offsets, etc. The cluster-
ing associates each time-frequency bin with a particu-
lar source. The time-frequency bins associated with the
desired source are retained, while those associated with
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the interference are attenuated. Such approaches were
studied by Weintraub [1], Parsons [2], and Brown and
Cooke [3]. Contemporary CASA schemes utilize oscil-
latory correlations [4], and common amplitude modula-
tion [5], but do not utilize prior information regarding
the source signals and their number. All they require is
that each time-frequency bin is dominated by a single
speaker. A probabilistic interpretation of CASA was pro-
posed byWang and Brown [6], and applied by Vincent and
Plumbley [7], who proposed a Bayesian formulation of the
separation based on a harmonic model of the sources.
The association of each time-frequency bin with a par-

ticular speaker is usually referred to as binary or hard
masking. In the ideal case, where the time-frequency bin
association of each source is perfectly known, the mask is
usually referred to as the ideal binary mask (IdBM), and
it was shown by Li and Wang [8] to be optimal in terms
of source to noise ratio (SNR). Yilmaz and Rickard [9]
showed that (ideal) binary masking enables the separation
of up to ten sources from a single mixture.
Alternatively, a soft mask can be used, where each time-

frequency bin is assumed to be associated with multiple
signals (with different weights), and their relative spectral
content in each time-frequency bin has to be estimated.
Blind source separation (BSS)-based approaches are

commonly implemented via independent component
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analysis (ICA), and are widely used in multi-microphone
speech separation. In the SCSS context they are for-
mulated as an undetermined BSS problem [10, 11].
Zibulevsky and Pearlmutter [12] used the Fourier coeffi-
cients to represent speech signals and utilize their sparse-
ness for separation.
Van der Kouwe et al. [13] conducted an experimental

study that compared CASA [4] to multi-microphone BSS
approaches (joint approximate diagonalization of eigen-
matrices (JADE) [14] and second order blind identifica-
tion (SOBI) [15] algorithms), and showed the advantage
of the latter approaches that utilize spatial information.
However, in many important application, such a spatial
information is unavailable.
Recent separation schemes applied non-negative matrix

factorization (NMF), where the magnitude of the Fourier
transformed frames is factorized as the product of two
non-negative matrices. The first comprising the basis
functions, and the second encoding the weights of the
corresponding basis functions. The matrix of basis func-
tions is speaker-adaptive, learned in a training phase. In
the separation stage, the power spectral density (PSD)
of the mixture is modeled by a linear combination of
the basis functions of both speakers. The corresponding
weight matrices are estimated, and utilized to estimate
the underlying sources. Virtanen [16] proposed an NMF
approach that encourages PSD continuity and sparseness.
Smaragdis [17] proposed a convolutive form of the NMF
to model the time dependencies of the PSD. A semi-
supervised real-time NMF algorithm was proposed by
Joder et al. [18]. Only one source is learned from training
data whereas the other source is estimated based on the
recent past of real-time data.
Benaroya et al. [19] express each source as a weighted

sum of temporal Gaussian stationary processes, with pos-
itive, slowly time-varying weights. The PSD is approx-
imated by the weighted sum of the variances of the
Gaussian processes, yielding a non-negative representa-
tion, and the sources are recovered utilizing the Wiener
filter. Blouet and Cohen [20] extended this factoriza-
tion [19] to separate speech from speech-music mix-
tures, where the weighted sum of processes approximates
the short-time Fourier transform (STFT) of each source
as complex-Gaussian stationary processes. A sinusoidal
modeling of the time-domain was proposed by Mowlaee
et al. [21], where a codebook is trained for each source and
utilized in the separation stage. This work was extended in
[22], and includes a preceding stage of detecting double-
talk or single-talk frames, as well as a speaker identifica-
tion system.
Machine learning approaches were applied to speech

separation by Bach and Jordan [23]. They proposed
to treat the separation problem in the time-frequency
domain as a segmentation problem and to apply

the relevant segmentation tools to the audio features
extracted from the speech spectrogram.
Deep learning techniques are gaining popularity fol-

lowing their success in single-talker automatic speech
recognition tasks. Essentially, the networks are trained
based on parallel sets of mixtures and their constituent
target sources. They are optimized to predict the source
of the target class, usually for each time-frequency bin.
For example, in [24], the speakers are estimated by jointly
optimizing a soft time-frequency mask layer with deep
recurrent neural networks. However, these works often
assume speaker-dependent models with few target speak-
ers that are known during training. In addition, they
usually work on limited vocabulary and grammar. Yu et al.
[25] proposed a speaker-independent method for multi-
talker speech separation by using permutation invariant
training. It first determines the best output-target assign-
ment and then optimizes the separation regression error
given the assignment. Another speaker-independent tech-
nique is proposed in [26], where contrastive embedding
vectors are assigned to each time-frequency region of
the spectrogram. It results in implicit prediction of the
segmentation labels of the target spectrogram from the
input mixtures. Separation is obtained by optimizing K-
means with respect to the unknown assignment. In [27],
the authors propose to use an ensemble of deep neural
networks and demonstrate the superiority of this struc-
ture over speech separation algorithms based on a single
network.
A plethora of approaches utilize statistical models of

speech signals. In [28], the PSD of each speech frame
is computed by iterating between randomly drawing fre-
quency bins from a mixture of multinomial distributions,
and scaling the histogram of the drawings. Given the
probabilistic models, the minimum mean square error
(MMSE) estimate of the desired source is derived. Essen-
tially, this method is virtually indistinguishable from
methods applying NMF.
Gaussian mixture models (GMMs) and HMMs are ex-

tensively utilized in speech separation tasks. Kristjansson
et al. [29] modeled the log-spectrum of each speaker by
an GMM. They approximate the joint probability density
function (p.d.f.) of the log-spectra of the speakers given
the log-spectrum of the mixture, by a normal distribution.
Using this approximation, the posterior distributions of
the log-spectrum of each speaker are computed, and the
MMSE estimator is derived. GMM-based representations
can be modified to improve the temporal modeling. Such
an approach was proposed by Benaroya et al. [30], where
the variances in the GMM are scaled by time-varying
factors, to incorporate source dynamics.
It is common to apply the GMM and HMM framework

using the log-max approximation, that was first pro-
posed by Nádas et al. [31], in the context of speech
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recognition, and was denoted asMIXMAX. Burshtein and
Gannot [32] reformulated MIXMAX, by assuming that
the log-spectrum of the clean speech segments can be
modeled by GMMs, while the noise log-spectrum is nor-
mally distributed. In particular, the log-spectrum of the
noisy speech is approximated by the maximum of the
log-spectrum of the speech and noise. This result was
extended by Yeminy et al. [33], who proposed a general-
ized formulation, incorporating the correlation between
adjacent frequency bins. Reddy and Raj [34] applied the
MIXMAX model to the speech separation task, where
both input signals were modeled by GMMs, and derived
two estimators. The first optimizes the MMSE, and the
second uses a soft mask, computed using the posterior
probability of the observed log-spectrum to match the
log-spectrum of the desired speech. Radfar andDansereau
[35] used a similar model as in [34] with an additive error
model, assuming that the error is zero-mean and normally
distributed. The log-spectra of the speakers are recovered
by optimizing the MMSE.
Roweis [36] modeled the log-spectra of the two speak-

ers as the output of HMM processes. Using the log-max
approximation, the log-spectrum of the mixture signal is
approximated by the maximum between the correspond-
ing outputs of the two underlying HMMs, and is modeled
by an FHMM. The compound state of the log-spectral
vector of the mixed signal consists of two states, corre-
sponding to the speakers. A variant of the Viterbi algo-
rithm, denoted as factorial Viterbi algorithm, is used to
reconstruct the log-spectra of the speakers, while a binary
mask is applied to recover the source. This approach was
extended by Radfar et al. [37], to the case where the mix-
ture of the two sources is a weighted sum of the noise-free
speech signals. The gain factors are recovered by an iter-
ative formulation of the FHMM, resulting in improved
experimental results. However, in [37], the complexity of
the algorithm is quadratic in the number of states, and
the speaker-to-speaker ratio range must be an input of
the algorithm. Hu and Wang [38] proposed an iterative
separation scheme that estimates the gain factor with-
out any prior knowledge. An HMM is trained for each
source, where the utterances of the sources are scaled to
have a known equal energy. The mixing model is the log-
max approximation and the compound states are inferred
using factorial Viterbi algorithm. Each loop of the algo-
rithm consists of several steps. A separation phase, where
the sources are estimated. Then, the speaker-to-speaker
ratio is assessed using the estimated sources. Eventually,
the pre-trainedmodels of the speakers and themixture are
adapted to the estimated gain factors. It was reported in
[38] that best results were obtained when the separation
was based on the MAP estimation.
Hershey et al. [39] also proposed to utilize both FHMM

and log-max approximation. The FHMM encodes the

grammar dynamics of the sources, when the structure
and vocabulary of each unmixed speech are known in
advance. At each grammar state, the dynamics of the
acoustics of each source is encoded by an GMM which
is based on the log-max approximation. The grammar
dynamics takes into account temporal long-term compo-
nents of the speech, with respect to the acoustic dynamics,
yielding improved experimental results, that in some sce-
narios even outperform human listeners. Weiss and Ellis
[40] proposed a similar model, where the speech char-
acteristics are unknown a priori, but adapted iteratively.
Ming et al. [41] proposed a data-driven technique that
is also based on long-term temporal dynamics, intended
for the general scenario in which the vocabulary and
grammar are unknown. A combined FHMM and NMF
approach was presented byMysore et al. [42], and denoted
non-negative hidden Markov model (N-HMM). For each
source, several small spectral dictionaries are learned.
Their evolvement in time is also learned via HMM. The
composite signal of the two sources is separated by apply-
ing a soft mask, generated by an estimation-maximization
(EM) procedure that estimates the contribution of each
source at each time-frequency bin. Good separation per-
formance is reported for this N-HMM technique. A
related work is [43], where a new model called facto-
rial scaled hidden Markov model (FS-HMM) combines
Gaussian scaled mixture model and NMF. The FS-HMM
is utilized in [43] for speech separation and polyphonic
audio representation.
The high dimensionality of the log-spectral vectors

and the large number of states of the factorial model,
imposes high computational burden for the FHMM infer-
ence. Roweis proposed to mitigate the high computational
burden by detecting pairs of states with the highest obser-
vation likelihood, and limiting the factorial Viterbi cal-
culations to their corresponding paths. In [38], the beam
search [44] is used to speed up the inference process. A
band quantization approach that reduces the number of
HMM states, was proposed by Rennie et al. [45] to reduce
the computational complexity.
An efficient belief propagation technique for the infer-

ence, rather than the exact factorial Viterbi algorithm was
proposed by Hershey et al. [39] for the temporal infer-
ence. They also presented two methods that together
efficiently compute the acoustic likelihood estimation of
the observed mixed signal, which is required for the tem-
poral inference. The first is called band-quantization, and
it suggests to approximate some of the acoustic GMM
states that differ only in a few features. Each Gaussian
is approximated using a shared set of a smaller num-
ber of Gaussians in each frequency bin. The second
technique is joint-state pruning, which utilizes the fact
that several states pairs have significantly larger proba-
bilities than the rest of joint-states. This feature stems
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from the sparseness of the model. Those states can be
used to explain the observations, rather than using all
of the possible pairs of states. Rennie et al. [46] applied
a similar model able to separate up to four speakers
using loopy belief propagation and variational inference
that reduce the inference complexity. The max-sum algo-
rithm, which is also a belief propagation technique, is
also employed by [47] to track multiple pitch trajecto-
ries described by an FHMM. Reyes-Gomez et al. [48]
proposed to group several frequency bins into frequency
bands, such that each frequency band is modeled by an
HMM.
Dimensionality reduction schemes were also applied to

speech separation. Michalevsky et al. [49] applied the dif-
fusion framework [50] to speaker identification, where a
feature vector consisting of the mel frequency cepstral
coefficients (MFCC) and their first temporal derivative
is used to parameterize the manifold of each speaker, by
embedding them into a lower dimensional space. Samples
are classified by a k-nearest neighbors (k-NN) classifier
applied to the embedding of the corresponding feature
vector.
In this work we propose the following contributions:

First, we derive a novel non-iterative speech
separation approach based on the diffusion
framework [50], to compute HMM and FHMM
models. A comprehensive set of experimental results
exemplify the applicability of the proposed method.
It is shown that the proposed scheme provides
separation results that compare with contemporary
speech separation approaches.
Second, by analyzing the asymptotics of Markov
random walks, we show that the proposed scheme
allows to directly estimate the states of the HMMs
and FHMMs, without having to assume any
underlying observation model, nor to apply
EM-based iterative training. Hence, the estimation of
the Markov states and transitions is decoupled from
the estimation of the emission p.d.f.s, and their
corresponding parametric model. Thus, we propose
two FHMM-based approaches that estimate the
underlying HMM in the diffusion domain. The first,
provides a direct extension of the FHMM, where the
underlying HMMs are computed in the diffusion
domain, and the Gaussian observation models utilize
the log-max approach applied in the original domain.
We denote this approach hybrid FHMM (HFHMM),
as it utilizes both the temporal and diffusion
domains. In the second approach, denoted dual
FHMM (DFHMM), we estimate the emission p.d.f.s
in the diffusion domain, without assuming an explicit
emission p.d.f. model. The underlying HMMs are
computed similarly to the HFHMM approach.

Last, we propose to utilize the diffusion embedding
as a nonlinear projection of the input mixture onto
the manifolds spanning each of the speakers. Thus,
we aim to utilize the diffusion embedding as a
manifold-adaptive projection operator, where the
states of each speaker are detected by an FHMM in
its manifold. The HFHMM is experimentally shown
to compare with previous results [36], and is shown
to outperform DFHMM. The latter requires low
computational cost, and can be applied alongside
other approaches [39] in the low-dimensional space
to further reduce the computational complexity.

The remainder of this paper is organized as follows.
Section 2 formulates the monaural speech separation
problem of two equi-power and pre-trained sources.
The diffusion framework, the Nyström extension [51]
and the HMM inference using the diffusion maps are
surveyed in Section 3. The proposed diffusion-domain
speech separation schemes are presented in Section 4,
where we detail the separation and training procedures,
and propose two alternative mask functions. The pro-
posed approaches are experimentally verified in Section 5,
and their performance is compared with contemporary
schemes. The computational complexity of the HFHMM
and the DFHMM schemes is discussed in Section 6,
while conclusions and future directions are discussed in
Section 7.

2 Problem formulation
The speaker separation problem is often formulated as an
FHMM problem. Let a[ n] and b[ n] be the speech signals
of the first and second speakers, respectively, where n is
the discrete time index.We assume that the speech signals
are of equal power

∑

n
a2[ n] =

∑

n
b2[ n] = 1, (1)

and that a[ n] , b[ n] are zero mean and statistically inde-
pendent. For the unequal power model, the reader is
referred to [37, 38]. The observed signal is a mixture of the
two speakers

z[ n]= a[ n]+b[ n] , (2)

and the objective of the separation scheme is to compute
the estimates, â[ n], b̂[ n] of a[ n] and b[ n], respectively,
given z[ n]. Let A(�, k) be the STFT of a[ n], where � is the
temporal frame index and 0 ≤ k ≤ K − 1 is the frequency
index. Denote a� as theK/2+1 dimensional vector, whose
kth element is

ak� = log |A(�, k)| ; k = 0, 1, . . . ,K/2.

Hence, a� is the log-spectrum of a[ n], and b� is the
respective log-spectrum of b[ n].
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The core assumption of our approach is that a� and
b� are the observed outputs of two separate HMMs, one
per speaker, denoted HMMa and HMMb, respectively.
Let Sa be the number of states in HMMa, and sa� be
the state of HMMa at time frame �. The probabilistic
attributes of HMMa are given by the initial probabili-
ties Pr

(
sa1 = si,a

) = πa
i , i = 1, . . . , Sa, where si,a is the

ith state of the first speaker. The transition probabilities
are given by Pr

(
sa� = sj,a|sa�−1 = si,a

) = paij; the emission
p.d.f. is p

(
a�|sa� = si,a

) = N
(
a�; μa

i ,Qa
i
)
, i.e., normally

distributed with mean vector μa
i , and a covariance

matrixQa
i .

HMMb is defined mutatis mutandis such that
there are Sb states with Pr

(
sb1 = si,b

)
= πb

i ;

Pr
(
sb� = sj,b|sb�−1 = si,b

)
= pbij; and p

(
b�|sb� = si,b

)
=

N
(
b�; μb

i ,Qb
i

)
, where we assume Sa = Sb in sake of

simplicity.
The mixture process can be modeled by the FHMM [36]

that comprises two underlying HMMs evolving indepen-
dently over time, each corresponding to a single speaker.
At each time instant �, the observed sample z� depends on
the states of HMMa and HMMb, emitting the latent out-
puts {a�,b�}, respectively, such that z� = ξ (a�,b�), where
ξ (·, ·) is the mixing function.
Roweis [36] used the log-max mixing function approxi-

mation (see [31, 52])

z� ≈ max(a�,b�). (3)

Nádas computed the probability of z� analytically. How-
ever, in our scenario, as two speech signals are involved,
the sparsity of the signals can be utilized

p(z�|sa� = i, sb� = j) = N (z�; μij,Q) (4)

where μij = max(μa
i ,μb

j ) and Q is the covariance matrix
of the observation, assuming that ∀i, jQa

i = Qb
j = Q.

3 The diffusion framework and the Nyström
extension

The diffusion framework is the core computational tool
used in our work. The fundamentals of the diffusion
framework [50] are detailed in Section 3.1, and the Nys-
tröm extension is described in Section 3.2. The asymptotic
properties of random walks that pave the way for a novel
approach for HMM and FHMM estimation, are discussed
in Section 3.3. A systematic approach for estimating the
HMM parameters based on the diffusion framework is
presented in Section 3.4.

3.1 Diffusion maps
The diffusion framework is an advanced approach for
dimensionality reduction [53]. Let � = {x1, x2, . . . , xL}
be a set of L points, such that xi ∈ R

d . � is viewed

as the nodes of an undirected graph, where the weight
w(xi, xj) of the edge connecting xi and xj is the affin-
ity between the two nodes. The kernel function w(·, ·) is
symmetric, nonnegative, and is commonly based on an
application-specific distance measure between the points
�. For instance, in speech processing, it is common to
compute the distance between MFCC features [49], or
log-spectrum feature vectors. The radial basis function
(RBF) kernel is often used:

w(xi, xj) = exp
(−‖xi − xj‖2/ε2

) = exp
(
−d2ij/ε

2
)

(5)

where dij � ‖xi − xj‖2. In addition, here ε > 0 such that if
xi and xj are similar w(xi, xj) ∼ 1, and w(xi, xj) ∼ 0 if they
are dissimilar, implying that the corresponding affinity
graph nodes are disconnected. ε is a scale factor quanti-
fying the scale of the similarity, as xi and xj have nonzero
affinity for dij < 3ε, approximately.
Let W be the affinity matrix such that wij = w(xi, xj),

and a corresponding Markov matrix is computed by

P = F−1W (6)

where F is a matrix such that fii = ∑
j wij and the

non-diagonal entries are zeros. pij can be viewed as the
transition probability from xi to xj in a single time step.
Taking the tth power of P is equivalent to running the
Markov chain forward t time steps. ThisMarkov chain has
a unique stationary distribution φ0 such that φT

0 P = φT
0

[50]. In the pre-asymptotic regime, the transition proba-
bility from xi to xj can be expressed using the biorthogonal
spectral decomposition:

pt(xi, xj) =
∑

l≥0
λtlψl(xi)φl(xj) , (7)

where 1 = λ0 ≥ |λ1| ≥ |λ2| ≥ . . . are the (right)
eigenvalues ofP, and {ψl}, {φl} are the corresponding right
and left eigenvectors, respectively. Due to the spectrum
decay, the term pt(xi, xj) in (7) can be well approximated
by summing only a few elements.
The induced Markov chain is utilized to define the

diffusion distance

D2
t (xi, xj) =

∑

y∈�

(pt(xi, y) − pt(xj, y))2

φ0(y)
. (8)

This metric evaluates the connectivity of the pair of
nodes xi, xj through the entire graph, by the weighted
distance between the conditional probabilities pt(xi, ·)
and pt(xj, ·) induced by the random walk. The diffusion
distance can be computed by the eigenvalues and right-
eigenvectors of P [50]

D2
t (xi, xj) =

∑

l≥1
λ2tl

(
ψl(xi) − ψl(xj)

)2 . (9)
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Due to the spectral decay, the diffusion distance
Dt(xi, xj) can be approximated by a relatively low number
of eigenvectors in (9). Hence, the right eigenvectors {ψl}
can be used as a new set of coordinates for the set �, such
that the Euclidean distance between these diffusion coor-
dinates {ψl} approximates the diffusion distance in (9). Let
m(t) be the number of terms retained, then the diffusion
map (embedding) is given by


t : xi 	−→
(
λt1ψ1(xi), λt2ψ2(xi), . . . , λtm(t)ψm(t)(xi)

)
.

(10)

for xi ∈ �. Note that ψl(xi) for 1 ≤ l ≤ m(t) is the ith
coordinate of ψl, the lth eigenvector of P.

3.2 Nyström extension
The Nyström extension [51, 54] is a numerically efficient
approach to extend the embedding vectors {ψl} defined on
a set � = {xi}Li=1 to a sample point x̃ /∈ �. Namely, we aim
to compute
t(x̃). The crux of the Nyström extension is to
compute 
t(x̃) without having to recompute the embed-
ding of � by forming a (L + 1) × (L + 1) affinity matrix
and its eigenvectors. The Nyström extension is given by

ψ l(x̃) = 1
λl

L∑

i=1
p(x̃, xi)ψl(xi) (11)

for each eigenvector ψl, and

p(x̃, xi) = w(x̃, xi)∑L
j=1 w(x̃, xj)

. (12)

The weighting by 1/λl implies that due to the decaying
spectrum of the Markov matrix, the Nyström extension
can be applied to a limited number of eigenvectors to
ensure numerical stability.
Since our models will be trained on a massive amount of

data, the Nyström extension can help reduce the dimen-
sions of P and, thus to reduce the computational burden
and to mitigate the storage requirements.

3.3 The asymptotics of randomwalks and their
convergence properties

The diffusion maps scheme utilizes numerically induced
random walks to analyze data sets, by forming the diffu-
sion kernel and the corresponding discrete eigenfunction
{ψl} computed with respect to the discrete domain (set)
� = {xi}Li=1. This approach aims to study the intrinsic
continuous manifold �̂ of the data, via its sampled finite
manifestation �.
Nadler et al. [55] showed that as the number of data

points L → ∞ the random walk on the discrete graph
manifested by the Markov matrix P, as in (6), converges to
a randomwalk on the continuous space, manifested by the
Fokker-Planck operator. The convergence is given by the

convergence of the eigenfunctions of the discrete graph
to those of the underlying continuous Fokker-Planck
operator {ψ̂l}

lim
N→∞ψl = ψ̂l. (13)

In the continuous domain, systems with potential wells
are characterized by their eigenfunctions, where the sta-
ble states of the underlying Markov process, correspond-
ing to the potential wells are points of high density in
the metric eigenfunctions space {ψ̂l}. Nadler et al. [56]
extended these classical results asymptotically to the dis-
crete domain, showing that as the discrete eigenfunction
{ψl} approximate the continuous ones, the points of high
density in the discrete domain estimate those of the cor-
responding continuous ones.
This implies that a diffusion embedding computed as

in Section 3.1 with respect to a finite and discrete set
of points � can be used to approximate the states of
a latent Markov walk �̂ given its discrete manifestation
�. In particular, given that the intrinsic representation of
the data and corresponding Markov system is assumed
to be low dimensional, implies that it can be represented
by a few leading eigenvectors. In speech analysis, the
low dimensionality of the system stem from the multiple
constraints induced on a human speech process by the
physical attributes (the anatomical structure of themouth,
tongue etc.), as well as social conventions.
Lafon and Lee [57] studied the quantization of the cor-

responding Markov chain and graph, aiming to derive a
computational approach for recovering the stable meta-
states and showed that the optimal quantization with
respect to the diffusion distance as in (9) is given by
the centroids computed by the K-means quantization
scheme with an Euclidean distance metric, in the dif-
fusion domain. Their result stems from the equivalence
between the optimal L2 distances (optimized by the K-
means scheme) and the diffusion distances. Hence, given
a set of L points, their quantization in the diffusion space
allows to optimally approximate the meta-states of the
latent Markov system [57], in terms of diffusion distance
distortion.

3.4 Learning an HMMwith diffusion maps
We propose to apply the diffusion framework to estimate
an HMM model, by computing a reduced dimensional-
ity representation of the training set and estimating the
meta-states. This emphasizes the gist of our HMM esti-
mation approach, as the Markov states and transition
probabilities can be estimated non-parametrically in the
diffusion domain, based on the asymptotics of Markov
random walks. Our approach decouples the estimation of
theMarkov states and the transition probabilities from the
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estimation of the emission p.d.f.s, and avoids the iterative
training of the classical EM-based approach.
Let the set of samples � = {x�}L�=1 ∈ R

d be a sequence
of HMMemissions. TheHMMhas S states with transition
probabilities {pij}Si,j=1, initial probabilities {πi}Si=1, mean
vectors {μi}Si=1, and covariance matrices {Qi}Si=1.
The diffusion embedding of {x�}L�=1 is denoted by

{x̄�}L�=1 ∈ R
D, where D � d. In order to identify the

meta-stable states of the random process manifested by
{x�}L�=1, we quantize the embedding coordinates {x̄�}L�=1
into S meta-states, denoted as {si}Si=1, using the K-means
algorithm. The L2 distance in the embedding domain cor-
responds to the diffusion distance, and allows to coarsen
the corresponding Markov chain.
The computed meta-states are utilized to estimate the

parameters of the HMM. The transition probabilities pij
are estimated by running the training samples through the
meta-states

{
si
}S
i=1 , and accumulating the transitions in a

S × S transition histogram. For that, each sample {x̄�}L�=1
is associated with its closest meta-state in {si}Si=1, in terms
of the L2 norm. μi is the average of the high-dimensional
vectors {x�}L�=1 belonging to a state s

i. The initial probabil-
ities and the covariance matrices are estimated similarly.
An example demonstrating the learning procedure and

its results are given in Appendix.

4 Speech separation by diffusionmaps
In this section, we introduce two novel speech separa-
tion schemes based on the diffusion framework. In both,
we derive data-driven speech models for recovering latent
state-space models, where Sa and Sb, are the first and sec-
ond speakers, respectively, and the FHMM models are
trained with respect to them.

4.1 Hybrid-FHMM
We propose to train an HMM model per speaker using
the diffusion framework following Section 3.4. Given the
speaker’s estimated meta-states and the corresponding
probabilities found in the training step, the observa-
tion (emission) p.d.f.s are computed in the log-spectral
domain, using the log-max formulation in (4). With these
emission p.d.f.s, the factorial Viterbi algorithm is car-
ried out in the log-spectral domain to infer the states
sequences of the speakers, as suggested in [36]. Finally, a
masking mechanism is applied to the mixed signal based
on the decoded states. We denote this method HFHMM,
as it utilizes both the (original) log-spectral domain as well
as the (embedded) diffusion domain. The training of the
model is carried out in the low-dimensional space, and the
inference in the high-dimensional log-spectral domain. By
testing the HFHMM (and comparing it to [36]), it will be
easy to demonstrate that the new training procedure, at
the very least, does not come with performance penalty.

4.1.1 Training phase
Let u[ n] be the discrete temporal samples forming the
training set of Sa. We start by computing the log-spectral
frames �a = {u�}M�=1 ∈ R

d, where each frame u�

comprises d = K/2 + 1 frequency bins. The diffusion
embedding of {u�}M�=1 is denoted by {ū�}M�=1 ∈ R

D, where
D � d. Throughout this paper, over-bar designate term in
the embedded space. In order to identify the meta-stable
states of the random process manifested by {u�}M�=1, we
quantize the embedding coordinates {ū�}M�=1 into Sa =
Sb = S meta-states, denoted {si,a}Si=1, using the K-means
algorithm. Although one can set a different value of states
to each speaker, the same value was used for both, in
sake of simplicity. S is on the order of tens of states due
to the limited number of training data points. The tran-
sition probabilities paij and the log-spectral mean vectors
{μa

i }Si=1 are estimated following section 3.4, and a similar
procedure is applied to v[ n], the temporal samples of Sb.
The training phase is depicted in Fig. 1, where the HMM

of the speakers are trained separately, and their coupling
is formulated by the observation probability within the
FHMM framework.

4.1.2 Test phase (latent state estimation)
The decoding phase of the proposed HFHMM scheme
identifies with that of [36]. Let z[ n]= a[ n]+b[ n] be a
test mixture signal, where a[ n] and b[ n] are the utter-
ances from Sa and Sb, respectively, and {z�}N�=1 ∈ R

d its
corresponding log-spectral vectors. The observation p.d.f.
is modeled in the log-spectral domain utilizing the log-
max approximation, similarly to (4). The underlying states
of the speakers are estimated using the factorial Viterbi
algorithm (see Algorithm 1) given the models inferred
in the training phase. The separation is implemented by
adaptively masking the speakers (see Section 4.3).

4.2 Dual-FHMM
In the second proposed approach, we derive a novel
formulation for estimating the emission (observation)
p.d.f.s of the speech mixture directly in the diffu-
sion domain, as opposed to the HFHMM scheme. The
meta-states of the underlying Markov processes (mod-
eling the speakers) are estimated by K-means based
training in the diffusion domain, as in the previous
section.
We propose to synthesize an artificial mixture signal

consisting of randomly combined training segments of
both speakers. Two FHMM are trained in two differ-
ent diffusion domains, one FHMM per speaker. Since
each diffusion domain is based on the segments of one
particular speaker, it is best adapted to that speaker.
Denote these models FHMMa and FHMMb, respectively.
In the test phase, we process the input data with both
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Algorithm 1 Factorial Viterbi algorithm for the HFHMM
scheme
1. Preprocessing:
For i = 1:Sa, j = 1:Sb

π̃a
i = logπa

i ; π̃b
j = logπb

j
p̃aij = log paij; p̃bij = log pbij
p̃

(
za� |sa� = si,a, sb� = sj,b

)
=

:= log p
(
za� |sa� = si,a, sb� = sj,b

)
.

2. Forward:
For � = 2 to N

For i = 1:Sa, j = 1:Sb
v1(i, j) = π̃a

i + π̃b
j +

+p̃
(
z1|sa1 = si,a, sb� = sj,b

)

v�(i, j) =
= max1≤r≤Sa

1≤q≤Sb

{
v�−1(r, q) + p̃ari + p̃bqj

}
+

+p̃
(
z�|sa� = si,a, sb� = sj,b

)

δ�(i, j) =
= argmax1≤r≤Sa

1≤q≤Sb

{
v�−1(r, q) + p̃ari + p̃bqj

}
.

3. Set
(
ŝaN , ŝbN

)
= argmax1≤i≤Sa

1≤j≤Sb
δN (i, j).

4. Backward:
For � = N − 1 to 1(

ŝa� , ŝ
b
�

)
= δ�+1

(
ŝa�+1, ŝ

b
�+1

)
.

models, where at each time segment, FHMMa is used to
infer the latent state of Sa, and FHMMb infers the state
of Sb.

4.2.1 Training phase
We detail the computation of FHMMa, the FHMM
defined in the diffusion embedding domain of Sa, and
the procedure is applied to FHMMb mutatis mutandis. In
general, in order to derive an FHMM, two quantities need
to be estimated. First, the states and the corresponding
transition probabilities for each speaker (Markov pro-
cess), and second, the observation p.d.f. associating an
input measurement with an underlying Markov states.
The meta-states of Sa, i.e.

{
si,a

}S
i=1, the meta-states of Sb,

{
si,b

}S
i=1, and the corresponding S × S transition matrices

are computed similarly to Section 4.1.1.
In order to find the observation p.d.f. of a mixture sig-

nal, we first embed {u�}M�=1, the training set of Sa, to
yield {ū�}M�=1 and the corresponding eigenvalues {λui }Di=1.
Similarly, {v̄�}M�=1 is the embedding of the training
sequences of Sb into his diffusion domain.
The observation p.d.f. is estimated in the same diffusion

domain, by synthesizing the mixture signal:

w[ n]= u[ n]+v[ n] . (14)

Since both u� and v� have S Markov states, w� has
possible S2 states. We define the mixture’s observation
p.d.f. as

P
(
w̄a

� |sa� = si,a, sb� = sj,b
)

= N
(
w̄a

� ; μ̄a
ij, Q̄a

ij

)
, (15)

where w̄a
� is the embedding of w� in the diffusion domain

of Sa using the Nyström extension. That is, w� substitutes
x̃ in (11), andN, λl, and xi are substituted byM, λui and u�,
respectively. sa� and sb� are the corresponding states of Sa
and Sb, at time �. μ̄a

ij and Q̄a
ij are the mean and the covari-

ance of the mixture embedding w̄a
� related to the states

sa� = si,a and sb� = sj,b. Namely, let

γ a
ij �

{
w̄a

� |ū� ∈ si,a and v̄� ∈ sj,b
}
. (16)

be the set of points in the mixture embedding, associated
with the states si,a and sj,b, then the estimates of μ̄a

ij and
Q̄a

ij are

ˆ̄μa
ij = 1

|γ a
ij |

∑

w̄a
�∈γ a

ij

w̄a
� (17)

and
ˆ̄Qa
ij = 1

|γij|
∑

w̄a
�∈γij

(
w̄a

� − ˆ̄μa
ij

) (
w̄a

� − ˆ̄μa
ij

)T
. (18)

In contrast to the HFHMM where all states share a sin-
gle covariance matrix (in the high-dimensional domain),
in the DFHMM we chose to define a distinct covariance
matrix (in the low-dimensional space) for each state, so
the algorithm is as general as possible.
The training procedure of FHMMa and FHMMb is sum-

marized in Algorithm 2. The overall scheme is depicted in
Fig. 2.

Fig. 1 Training in HFHMM scheme. The training phase of the hybrid log-spectral-diffusion approach, for speaker 1 (top) and speaker 2 (bottom)
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Algorithm 2 Dual FHMM training
1: Compute the log-spectra {u�, v�}M�=1 of the training

signals u[ n] and v[ n].
2: Compute {λu� , ū�}M�=1 and {λv�, v̄�}M�=1, the embedding

of {u�}M�=1 and {v�}M�=1, respectively.
3: Estimate the HMMmodels of Sa and Sb as in Fig. 1.
4: Define the synthetic mixture w[ n]= u[ n]+v[ n], and

compute its log-spectrum {w�}M�=1.
5: Embed {w�}M�=1 onto the diffusion space of Sa using

the Nyström Extension and obtain
{
w̄a

�

}M
�=1.

6: Embed {w�}M�=1 onto the diffusion space of Sb using

the Nyström Extension and obtain
{
w̄b

�

}M
�=1

.

7: Compute
{
μ̄a
ij, μ̄b

ij, Q̄a
ij, Q̄b

ij

}S
i,j=1

, the Gaussian param-
eters of the observation p.d.f.s using (16)–(18).

4.2.2 Latent state estimation
In the test phase a mixed utterance z[ n]= a[ n]+b[ n]
is measured, where a[ n] and b[ n] are the (unknown)
separate speech signals. The latent states correspond-
ing to z[ n] are estimated by embedding z� on the two
diffusion spaces, yielding {z̄a�}N�=1 and {z̄b�}N�=1, and apply-
ing the embedded domain FHMMs, namely FHMMa
and FHMMb, to {z̄a�}N�=1 and {z̄b�}N�=1, respectively. Each
FHMM is used to infer the latent state of the speaker
used for its own embedding. Hence, we use FHMMa only
to recover the state sequence of Sa, while discarding the
states sequence obtained for Sb. The states sequences are
recovered using the factorial Viterbi algorithm with the
parameters of FHMMa. It is identical to Algorithm 1, with
z̄a� substituting z�. Similarly, FHMMb is used to estimate
the latent states of Sb, i.e., using Algorithm 1 with z̄b�
instead of z�.
The gist of this approach, as can be deduced from

Section 3.3, is that an embedding space, either FHMMa or
FHMMb, encodes the speech attributes of the respective
speaker, and hence would best estimate the latent states of
the corresponding speaker.
The procedure for estimating the latent state sequence

is summarized in Fig. 3.

4.3 Masking
Masking is a common approach in speech separation
given latent states, that is often implemented in the
STFT domain, which provides a sparse representations
of speech signals. The separated log-spectral vectors of
the test signal are reconstructed by associating each fre-
quency bin of the input signal z�, with either Sa or Sb.
There are various ways to define the mask, and here we
stick to [36]. Formally, given the estimates of latent states
sa� = si,a and sb� = sj,b, Roweis proposed [36] to estimate
the log-spectral domain vector of Sa by

âk� =
{

zk� μa
i (k) > μb

j (k)
m0(k) else

, (19)

where m0(k) is a tunable parameter that determines the
attenuation of the frequency bins. Also recall that k is the
frequency index. In [36], it is proposed to set m0(k) =
−∞, ∀k resulting in a hard mask. As the use of a hard
mask might result in noticeable distortions and artifacts
in the output signals, we applied a soft estimator instead,
by settingm0(k) = μa

i (k)

âk� =
{

zk� μa
i (k) > μb

i (k)
μa
i (k) else . (20)

In this estimator, the log-spectral content of the weaker
source is not attenuated as in (19), but synthesized accord-
ing to the estimated HMM. This masking was shown by
Radfar and Dansereau [35] to correspond to the MMSE
estimator given a zero model error. Recovering the log-
spectrum of Sb is carried out mutatis mutandis.

5 Experimental results
The proposed HFHMM and DFHMM schemes were
experimentally verified by studying common state-of-the-
art speech separation tasks. The quality of the result is
evaluated using both objective criteria and (informal) lis-
tening tests. The proposed schemes are compared to the
separation scheme proposed by Roweis [36] (for both hard
and soft masks), the iterative FHMM-based estimator by
Hu and Wang [38], and to the MIXMAX estimator by
Radfar and Dansereau [35].

Fig. 2 The Dual FHMM training scheme
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Fig. 3 The DFHMM state inference scheme. The states are inferred by applying two FHMMs. Each FHMM infers the states of the speaker whose
training set was used to compute its embedding

5.1 Experimental setup
A training set of 450 noiseless sentences per speaker
drawn from the speech separation challenge [58] is used.
Each sentence is 1–2 s long, and was down-sampled from
25 kHz to 8 kHz to shorten the running time of the code.
The STFT was computed using 256 samples long frames,
having an overlap of 128 samples between successive
frames (50 % overlap). Consequently, each log-spectral
STFT feature vector is 129 coefficients long, and a Hann
windowwas used in both the analysis and synthesis stages.
On average, the training set of each speaker consisted of
55,000 log-spectral vectors.
The application of the diffusion embedding to the train-

ing set is carried out in two steps. First, 30 random
sentences per speaker are embedded by extracting the
eigenvectors of the Markov matrix defined by the diffu-
sion framework. In the second stage, the remainder of
the 420 sentences are embedded by applying the Nys-
tröm extension. This embedding scheme was chosen due
to complexity and memory considerations.
From the complexity aspect, the dimensionality of the

Markov matrix determines the number of operations for
the DFHMM in the test phase. The embedding of the
mixed signal involves the Nyström extension, which is
calculated via (11) and thus affected proportionally to
the dimensionality of the Markov matrix. It can also be
deduced from (12) that the samples creating the Markov
matrix, used for calculating the weight functions mea-
suring the graph connectivity, should be kept in the
memory.
An RBF kernel is used to compute the spectral embed-

ding, with kernel bandwidth ε. In general, a kernel band-
width that is too large can result in HMM states which
are almost identical, since all the data points are fully con-
nected. An excessively small ε, might result in a model
consisting of mostly disconnected graph nodes, with an
increased number of states, that might be computation-
ally intractable. A kernel bandwidth ε ∼ 110 was found
to be a good compromise, as it retains 5 % of the edges
connected. This is a common approach used in previ-
ous works on diffusion based embedding [59], where
the embedding was shown to be robust to the kernel
bandwidth.

Each FHMM uses S = 70 meta-states computed by
applying K-means with Euclidean distance measure to
the embedded vectors (see Section 3.4). The proposed
schemes is evaluated using different combinations of
speakers’ gender: male-female, male-male and female-
female, where each combination is tested using four pairs
of speakers, each pair contributing 15 mixtures. There-
fore, each gender combination is evaluated using 60 sen-
tences. The pairs of speakers (numbers refer to [58]) are
listed in Table 1. The individual signals are noiseless, and
the source to interference ratio (SIR) of the mixed sig-
nals is set to 0 dB for all experiments (to comply with our
model).
When generating the mixed signal w[ n] for the

DFHMM scheme (refer to (14)), each of the signals u[ n]
and v[ n] was created by concatenating utterances from
the database in a random order. This implementation
stems from the unique structure of the utterances. Each
sentence is composed of six words that are ordered in
the followingmanner: command, color, preposition, letter,
number and an adverb. For example, a valid sentence is
“bin blue at Z three please”. Each component of the utter-
ances has a final set of possible values. For instance, the
command word can be only one of the following: “bin”,
“lay”, “place’,’ or “set”. If u[ n] and v[ n] are summed without
shuffling the utterances from the database, an undesired
situation can occur in which the mixture of the signals
depicts only states in which the speakers utter the same
word.
Several variants of the proposed schemes were imple-

mented to assess the influence of the various components
on the performance. First, an ideal DFHMM (iDFHMM)

Table 1 Tested speakers. The pairs of speakers used for testing
each algorithm, each pair contributing 15 sentences

Male+male Male+female Female+female

1 + 32 14 + 25 15 + 20

14 + 30 19 + 20 18 + 29

19 + 28 26 + 34 22 + 33

26 + 27 32 + 23 16 + 31

For the male-female case, the left number is associated with the male, and the right
with the female
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with the accurate factorial states, instead of their
estimated counterparts, is implemented by computing
the embeddings and the meta-states of the separate
(unmixed) speakers.
Second, the hard mask (19) and the soft mask (20) are

compared, and the corresponding schemes are denoted
as DFHMM-H (hard mask), DFHMM-S (soft mask),
iDFHMM-H (idealized DFHMMwith hard mask) etc.
Third, two training schemes are compared. The first,

uses the entire training set to form the Markov matrix
P, while in the second, the matrix is based on 30 sen-
tences only and the Nyström extension is used to embed
the remaining sentences. These variants are denoted as
HFHMM-H-E, HFHMM-S-E for the exact embedding,
and HFHMM-H-N, HFHMM-S-N for the procedure that
utilizes the Nyström extension. Only the Nyström exten-
sion based training is used in the DFHMM scheme, as
detailed earlier.
The proposed approaches are compared with contem-

porary state-of-the-art schemes: (1) the work of Roweis,
using 70 HMM states per speaker, that are inferred by the
EM procedure. The HMMs are used to define an FHMM,
as detailed in [36]; (2) the iterative algorithm by Hu and
Wang [38], with the separation part implemented by infer-
ring FHMM states for the mixed signal and then applying
MAP estimation. As recommended in [38], the FHMM
comprises 256 Gaussians per speaker, and a maximum
number of 4 iterations is allowed. To reduce the computa-
tional complexity, the beam search uses the 16 most likely
preceding state pairs.
The MIXMAX estimator by Radfar and Dansereau [35]

uses 512 mixtures per GMM, that are trained on the same
450 sentences as the HFHMM and DFHMM schemes.
Such a high dimensional GMM per speaker imposes a
heavy computational burden. Therefore, we separated the
mixed signals only the most probable states pair [35] and,
as indicated by the authors, this procedure achieves com-
parable scores to that of full estimation. Finally, in order
to reduce some of the artifacts and distortions of the
hard mask, we set m0(k) = −8, ∀k for the algorithm
proposed by Roweis [36], and for the HFHMM and the
DFHMM schemes (when the hard mask is applied). This
value was chosen to reflect the average level of low power
time-frequency bins. It achieved the best balance between
speech intelligibility and separation performance.

5.2 Figures-of-merit
In order to quantify the performance of the proposed sep-
aration schemes, we utilized the SIR, source to distortion
ratio (SDR) and source to artifacts ratio (SAR) criteria,
proposed by Vincent et al. [60] and implemented as aMat-
lab toolbox [61]. The SIR measures the attenuation of the
interference with respect to the desired speech signal, and
the SAR evaluates the level of artifacts (e.g. musical noise)

in the processed signal. The SDR is the desired signal
level with respect to the total contribution of all the other
distortion factors. The SDR and the SAR criteria are infor-
mative when a hard mask is applied. The outcome of the
algorithm was also assessed by informal listening tests.

5.3 Results
5.3.1 HFHMM
We start by evaluating the performance of the HFHMM
scheme. The results are depicted in Fig. 4 for the exact
diffusion training. The figure presents the results for the
male-female case. It indicates that for the male speaker,
30 dimensions yield the best score, whereas for the female
speaker D = 50 is better than D = 30 by 0.7 dB. For
the same gender mixture a similar trend is observed, and
thus not reported in the figure. The results for the training
procedure that incorporates the Nyström extension are
less satisfying. Consequently, they are not extensively pre-
sented due to space limitations. The quantitative results
are reported in Table 2, with D = 30 for the male speaker
andD = 50 for the female speaker across all mixtures. For
the male-female mixtures, we report the results related
to each gender separately, and for male-male and female-
female pairs, we extracted both speakers, and averaged the
results. It follows that the HFHMM-S approach outper-
forms the HFHMM-H formulation in both the SDR and
SAR figures-of-merit for most mixtures, although a degra-
dation in the SIR is encountered. The results indicate a
performance gap between the HFHMM-H-N, HFHMM-
S-N and the HFHMM-H-E, HFHMM-S-E, in favor of
the latter. Consequently, we conclude that the Nyström
extension leads to performance degradation.

5.3.2 DFHMM
Sonograms and time-frequency maps of the DFHMM-H
and DFHMM-S schemes for the male-female mixture are
depicted in Figs. 5 and 6. In Fig. 6, the white regions corre-
spond to time-frequency bins associated with the female
speaker, while the darker ones with the male speaker.
It follows that the mask resembles the clustering of the
mixed signal (but not perfectly so). Figure 7 depicts the
performance metrics of the DFHMM-H estimator and its
ideal counterpart iDFHMM-H as a function of the dimen-
sionality for the male-female mixture. It follows that an
embedding space of D = 20 suffices for all schemes and
the iDFHMM-H outperforms the DFHMM-H by close to
20 % for the male speaker, and ∼ 10 % for the female
speaker.
The results of applying a soft mask to the male-

female mixture are similar to those of the HFHMM. As
expected, the SAR and SDR measures indicate that the
DFHMM-S yields lower distortion levels as compared
with the DFHMM-H scheme. However, the SIR measure
deteriorates. This can be attributed to the higher level of
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Fig. 4 HFHMM, separation results for the male-female mixture. Speech separation results measured by SDR, SIR and SAR of the HFHMM scheme for
the male-female mixtures. Confidence intervals are also indicated. Training stage was based on exact diffusion maps, without utilizing the Nyström
extension

residual interference, being a consequence of the softer
mask.
We also subjectively compared the DFHMM-H and

the DFHMM-S. The male speaker was recovered by the
DFHMM-H without noticeable artifacts. However, the
separated female speech sometimes sounds disrupted
when a hard mask is used, and applying a soft mask
resolved this artifact. Similar trends were observed for the
male-male combination.
Application of the DFHMM-H resulted in audible

artifacts, that are evident by the low SAR and SDR
levels. As in the male-female mixture, applying the
DFHMM-S, improves the results, and the ideal estimators,

iDFHMM-H and iDFHMM-S, respectively, outperform
their non-ideal counterparts. We attribute this to the pos-
sible overlap of themeta-state of speakers of the same gen-
der. The female-female mixtures, exhibit similar results to
the male-male case.
We further study the effect of the overlapping spectral

components, by depicting the hard mask of the female-
female mixtures, obtained by the DFHMM-H scheme, in
Fig. 8. The white regions of the mask correspond to the
time-frequency bins, where Sb is estimated to have higher
spectral content. As most of the mask is white, this indi-
cates that Sb is the dominant speaker in the segment.
We fail to identify Sa accurately due to the overlapping

Table 2 Quantitative results

Male+female Male+male Female+female Average

Male Female - - -

SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR

Hu and Wang [38] 16.2 7.3 6.5 15.3 8.0 7.0 12.6 6.0 4.6 11.6 5.5 4.0 14.0 6.7 5.5

Roweis-H 18.8 5.4 5.0 15.8 6.1 5.3 10.8 3.3 1.8 9.3 2.6 0.9 13.7 4.3 3.2

Roweis-S 13.0 7.2 5.8 12.6 7.2 5.7 7.7 5.5 2.6 6.5 4.8 1.7 9.9 6.2 3.9

HFHMM-H-E 19.4 5.4 5.1 16.0 6.2 5.4 11.1 3.3 1.8 9.9 3.0 1.3 14.1 4.5 3.4

HFHMM-S-E 13.2 7.2 5.9 12.5 7.2 5.7 7.7 5.5 2.6 6.9 5.2 2.1 10.1 6.3 4.1

HFHMM-H-N 16.9 4.7 4.1 14.4 5.3 4.4 10.6 3.1 1.6 6.4 1.9 -0.8 12.1 3.7 2.3

HFHMM-S-N 12.1 6.4 5.0 11.7 6.3 4.8 7.5 5.2 2.4 4.5 4.0 0.0 8.9 5.5 3.0

DFHMM-H 13.7 5.0 4.1 15.5 4.6 4.0 9.4 2.7 0.7 7.0 4.0 -0.4 11.4 3.9 2.1

DFHMM-S 10.8 6.4 4.7 12.7 5.6 4.5 6.7 4.8 1.5 5.6 4.2 0.4 8.9 5.2 2.3

MIXMAX 15.6 8.6 7.6 15.1 8.6 7.4 10.7 6.8 4.8 9.7 6.3 4.1 12.3 7.6 6.0

Separation performance of the different schemes. The leading result per category is marked in bold
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Fig. 5 DFHMM, illustrative sonograms for the male-female mixture. Male-female mixture. Sonograms of the clean male speech, the clean female
speech, the mixture signal and the estimated sources are depicted. The estimated signals were constructed by the DFHMM-S scheme, for a more
informative presentation

spectral content of the same gender speakers, especially in
the lower frequency band.

5.3.3 Comparisonwith competing algorithms
In this section, we compare the performance of our
proposed algorithms to several single microphone sep-
aration algorithms, namely the algorithms proposed by
Roweis [36], Hu and Wang [38], specifically the itera-
tive FHMM-based inference andMAP estimator variant1,
and the MIXMAX-based separation scheme [35]2. For
implementing the proposed algorithms we have set the
following parameters: for the DFHMM scheme we used

D = 30. For the HFHMM we used D = 30 for the male
speaker and D = 50 for the female speaker. Note that
increasing D in the HFHMM only influences its training
phase.
The comparative study is summarized in Table 2. For

the male speaker in male-female mixture, the HFHMM-
H-E outperforms the other estimators with respect to the
SIR measure. However, it obtains lower SAR and SDR
than the MIXMAX algorithm. Hu and Wang, Roweis-S
and HFHMM-S-E also obtain good SAR score, but worse
than the MIXMAX. The HFHMM-H-E has a better SIR
result also for the female speaker, with the DFHMM-H,

Fig. 6 DFHMM, illustrative masks for the male-female mixture. Male-female mixture. Sonograms of the estimated and ideal masks constructed by
the DFHMM-H scheme, corresponding to Fig. 5. White regions are bins associated with the female speaker and the black bins with the male speaker
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Fig. 7 DFHMM, results for the male-female scenario. a, cMale-female separation using the DFHMM-H. b, d using iDFHMM-H, respectively

Roweis-H scoring below. The SAR and SDR of the MIX-
MAX are again superior to the respective measures
obtained by the competing algorithms. The algorithm of
Hu and Wang also exhibits satisfactory SAR and SDR,
although still being inferior to the score obtained by the
MIXMAX.
For the male-male mixture, the best SIR result is

obtained by Hu and Wang algorithm. The second best
results are obtained by the HFHMM-H-E, and then by
Roweis-H, HFHMM-H-N and the MIXMAX, respec-
tively, with similar performance. The MIXMAX scores
the best results in the SAR and SDR measures. The algo-
rithm of Hu and Wang demonstrates better measures

for the female-female mixtures in terms of SIR, as well.
Again, also for these mixtures the MIXMAX gains the
highest SAR score, and shares the best SDR score with
Hu and Wang algorithm. However, the HFHMM-S-E and
Roweis-S also obtain good SAR results.
By looking at the overall performance, described in

the three right-hand-side columns of Table 2, it fol-
lows that the HFHMM-H-E and Hu and Wang iterative
algorithm obtained the best SIR. The HFHMM-S-E and
Hu and Wang also demonstrate reasonable SAR. How-
ever, the best SAR and SDR performance was achieved
by the MIXMAX algorithm. It is also indicated that using
the Nyström extension leads to a degraded performance,

Fig. 8 DFHMM, illustrative mask for a female-female mixture. Masking results for the female-female mixture using the DFHMM-H scheme.
Sonograms of the clean speech of the first female, the second female and the corresponding mixture signal. The resulting hard mask is also
depicted with white regions correspond to speaker 2 active
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which might explain the relatively disappointing scores of
the DFHMM schemes.
Informal listening tests of all estimators and scenarios,

demonstrate that there is a large room for improvement.
While we notice a slight advantage to the MIXMAX and
Hu and Wang algorithms over the proposed algorithms,
we claim that the performance differences are rather
marginal. Several examples can be found in our website3.
Analyzing both objective results and the informal lis-

tening test, we can also observe that better results are
obtained for the female-male mixtures, as compared with
the female-female and male-male mixtures. This may be
attributed to the higher spectral content overlap of the
latter two.
We attribute the superior performance of MIXMAX

algorithm with respect to the SAR and SDR metrics to
the different separation scheme it utilizes. The proposed
DFHMM and HFHMM schemes, as well as [36], estimate
a single dominant latent state per time-frame, to yield the
separation mask, making it susceptible to state estima-
tion errors. In contrast, the MIXMAX estimator utilizes a
weighted sum of state estimates

â� =
∑

ij
p

(
sa� = si,a, sb� = sj,b|z�

)
âij� (21)

where âij� is the estimation of â� given z� and(
sa� = si,a, sb� = sj,b

)
. The iterative algorithm of Hu and

Wang also utilizes a more sophisticated soft masking
procedure (with respect to the procedure discussed in
Section 4.3) and hence yields good SAR and SDR. The
iterative adaptation of the pre-trained HMMs of the
speakers might explain the good SIR performance of Hu
and Wang algorithm.

6 Computational complexity of the DFHMM
One of the main attributes of the DFHMM algorithm is its
computational efficiency (with respect to [36, 38]) due to
the use of the low-dimensional embedding. The HFHMM
has identical complexity as in [36], since they differ only
in the training stage.
The application of the DFHMM algorithm consists of

the following steps: spectral analysis and logarithm cal-
culation, Nyström extension, factorial Viterbi algorithm,
filtering (masking), and spectral synthesis. The procedure
in [36] is similar, with the Nyström extension omitted.
Another difference is the dimensionality of the factorial
Viterbi algorithm. In the DFHMM, it is applied in the
(low-dimensional) embedded domain of the mixed signal,
whereas in [36] in the (high-dimensional) log-spectrum
domain.
It therefore suffices to analyze the computational

requirements of the Nyström extension for the DFHMM,
and the factorial Viterbi algorithm in order to compare

the computational requirements of both techniques. The
number of HMM states for each speaker is S. The analysis
refers to a single log-spectral vector of the mixed signal.

6.1 Nyström extension
The Nyström Extension is used to embed a log-spectral
vector of the mixed signal using (5), (11), and (12)

λlψ l(x̃) =
L∑

i=1
p(x̃, xi)ψl(xi). (22)

It follows that the number of operations depends on the
number of samples in � = {xi}Li=1, namely LD additions
and multiplications.
The computation of the embedding for each point in

the dataset xi ∈ � involves the computation of the kernel
(5), requiring d multiplications and additions. The expo-
nent can be computed using a lookup table (LUT). Hence,
(5) is implemented by Ld multiplications and additions,
and L LUT indexing operations. Finally, note that in (12),
the denominator is the same for every xi ∈ �. Conse-
quently, only additional L multiplications and additions
are required.
The total number of operations of the Nyström exten-

sion is therefore L(d+D+1)multiplications and additions,
and L LUT indexing operations.

6.2 Factorial Viterbi algorithm
The factorial Viterbi is utilized by both the DFHMM and
[36], and applied to data of different dimensionality. We
start by analyzing the number of operations required by
Roweis’s approach [36], as summarized in Algorithm 1. At
the preprocessing phase, all expressions are evaluated in
advance, except for the p.d.f. p(z�|sa� = i, sb� = j). Writing
this p.d.f. explicitly, we have

p
(
z�|sa� = i, sb� = j

)
(23)

= 1
√

(2π)D|Q| exp
{
−1
2
hT�ijQh�ij

}

where |Q| is the determinant of the covariancematrix, and

h�ij = z� − μij.

This analysis relates to each time instant �. The normal-
ization of the Gaussian can be discarded, as it does not
affect the maximization. The computational complexity
can be further reduced by maximizing the logarithm of
the p.d.f. . Hence, only hT�ijQh�ij, i, j = 1, 2, . . . , S should
be calculated, requiring S2 × (d2 + d) multiplications
and additions. In the forward stage, the computation of
v�(i, j) for all states requires approximately S2 additions.
Note that the term p̃ari + p̃bqj can be calculated in advance
and consequently does not require additional calculations.
The Backward phase does not involve any additional
calculations.
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TheDFHMMalso applies the factorial Viterbi algorithm
to decode the states. However, it is executed in a lower-
dimensional space D � d. It is applied twice, once for
FHMMa and once for FHMMb. By substituting d by D,
the total number of operations in the preprocessing stage
is therefore reduced to 2 × S2 × (D2 + D) multiplications
and additions. The forward stage is independent of the
dimensionality, and hence requires 2 × S2 additions. The
major computational saving is thus attributed to the lower
dimensionality of the embedded space.
Table 3 summarizes the total number of operations for

the DFHMM, Roweis [36], Hu and Wang [38] and the
MIXMAX. The HFHMM has an identical computational
burden as [36]. Algorithms for the two stages previously
discussed.
To demonstrate the differences in the computational

burden of the algorithm we show the results for the nom-
inal values used for obtaining the results in Section 5:
S = 70, L = 3000, d = 129, and D = 30. The parame-
ters for [38] also include the beam widthW = 16 and the
iterations number I = 4.
With the above parameter settings, the number of mul-

tiplications of the DFHMM algorithm is lower by close to
two orders of magnitude as compared with Roweis’ algo-
rithm [36], and the number of additions is, respectively,
lower by an order of magnitude. The number of opera-
tions required by [38] is double the number of operations
required by the DFHMM.
TheMIXMAX is an exception, since it only uses GMMs

instead of the HMMs and therefore avoids the computa-
tionally expensive factorial search.
The computational burden of the DFHMM can be fur-

ther reduced by decreasing the value of D. This, however,
might result in degraded performance. Thus, there is a
tradeoff between performance and computational com-
plexity of the DFHMM.
Extended computational saving might be obtained by

adopting a grammar model. As shown in [39], various
methods for complexity reduction can be applied. These
methods can be adopted by the proposed DFHMM algo-
rithm to reduce the computational complexity without
sacrificing performance. However, we preferred to leave
these extensions for a later study, and to only focus in this
paper on dimensionality reduction.

7 Conclusions
In this work, we presented two novel approaches for
estimating temporal FHMM on manifolds based on the
diffusion framework, that are non-iterative and rigor-
ously accurate. The core of our approach is to utilize the
asymptotics of the Markov random walk, induced on the
graph representation of a high-dimensional data source,
to decouple the estimation of the latent state space (states
and transition probabilities), and the estimation of the
emission (observation) p.d.f.s. We applied the proposed
schemes to the task of separating two speakers using
a single-microphone, that provides a viable baseline to
validate the effectiveness of the proposed scheme. In par-
ticular, we derived two FHMM-based separation schemes,
where the first estimates the HMM of each speaker in the
diffusion domain, and then utilizes the log-max approxi-
mation to infer the FHMMmodel. The second, formulates
the speech separation problem entirely in the embed-
ded domain, as the derivation of two FHMM models,
each adapted to the diffusion embedding of a particular
speaker. The inferred states are used to construct mask-
ing functions to unmix the speech signal. Two masking
schemes are presented, utilizing either soft or hard masks.
We experimentally evaluated the proposed schemes using
both objective metrics and informal subjective listening
tests, for male-female, male-male, and female-female mix-
tures. The HFHMM scheme is shown to yield comparable
and even slightly better performance than [36], while
the DFHMM scheme exhibits performance degradation,
probably due to sub-optimal embedding (that uses the
Nyström extension). The MIXMAX [35] and the iterative
algorithm by Hu and Wang [38] had the best SAR and
SDR score, although the HFHMM and Roweis methods
with soft masks obtained good SAR as well. The pro-
posed HFHMM scheme obtained the best SIR scores on
average among all tested algorithms, with insignificant
advantage over Hu and Wang method. Informal listening
tests demonstrate the insufficiency of the current solution
to fully recover the two speakers. Although the separation
capabilities of theMIXMAX andHu andWang algorithms
are slightly better than those of the proposed schemes,
the differences are quite marginal, according to our sub-
jective evaluation. Several sound clips are available on our
website.

Table 3 Number of operations per output frame for the DFHMM, Roweis, MIXMAX, and the iterative separation by Hu and Wang
(with I iterations)

Algorithm Additions Multiplications LUT indexing

DFHMM L(d + D + 1) + 2S2(D2 + D) L(d + 1) + D(L + 2S2 + D) L

Roweis S2(d2 + d + 1) S2(d2 + d) −
MIXMAX 3dS2 2dS2 −
Hu and Wang (6d + W + 2)S2I (3d + W + 1)S2I + dSI 2dSI
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Finally, the proposed training-based methods, and in
particular the DFHMM scheme, can be considered as a
computationally efficient alternative to the inference of
time-series modeled by a large number of states. The
performance of the proposed methods is comparable
to contemporary methods, and we anticipate that care-
ful examination of the relation between the log-spectral
domain and the embedded domain might lead to further
improvements.

Endnotes
1 The authors are grateful to Ke Hu and Deliang Wang

for the assistance in applying their algorithm [38] to the
reported dataset.

2 The implementation of the MIXMAX [35] algorithm
was done by Yeminy, Keller and Gannot.

3 See http://www.eng.biu.ac.il/gannot/speech-enhance-
ment/single-microphone-speech-separation-by-diffusion
-based-hmm-estimation.

Appendix
Example of learning HMMswith diffusion
In order to demonstrate the learning process of an HMM
with diffusion maps, we take a simple HMM with 3 states
as an example. The mean vectors of the HMM are μ1 =
−10 · 17,μ2 = 2 · 17 and μ3 = 0 · 17, where 1D is the
D× 1 vector whose all elements are ones. Each state has a
diagonal covariancematrix, withQ1 = 0.5·I7,Q2 = Q3 =
0.1 · I7, where Qi is the covariance matrix of the ith state,
and ID is the identity matrix of dimension D.
The matrix of transition probabilities, P, is

⎛

⎝
0.4 0.3 0.3
0.3 0.55 0.15
0.35 0.25 0.4

⎞

⎠

and the initial probabilities are p1 = 0.3, p2 = 0.2, p3 =
0.5. A sequence of 1000 samples of the process is gen-
erated, and the diffusion mapping is applied to the data.
Since there are 3 states, the kernel bandwidth was chosen
so as to have each sample connected to≈ 20 % of the data.
There are states with high probability and low variance
and vice-versa, so such a connectivity suits the scenario. A
value of ε = 1.6 met the requirement. Only the two most
leading eigenvectors and eigenvalues were used, so in the
diffusion space each sample has two coordinates.
By applying the K-means algorithm to the embed-

ded samples, the meta-states were found. The transitions
probabilities between states were subsequently assessed
like detailed above, namely constructing a 3×3 transitions
histogram. It resulted in the following estimated transition
probabilities matrix:

⎛

⎝
0.376 0.300 0.324
0.302 0.554 0.144
0.356 0.248 0.396

⎞

⎠ .

which is very close to the original matrix, P. The mean
vectors and the variances were also very close to the real
values. The estimated initial probabilities are p̂1 = 0.343,
p̂2 = 0.382, and p̂3 = 0.275, which are not consistent with
the true value. Nevertheless, the initial probabilities are
used only for the first frame of each sentence during the
inference process. Together with the fact the sentence is
composed of tens of frames, it is reasonable to consider
their impact negligible.
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