Donaj and Kaci¢ EURASIP Journal on Audlio, Speech, and Music
Processing (2017)2017:6
DOI 10.1186/513636-017-0104-6

EURASIP Journal on Audio,
Speech, and Music Processing

RESEARCH Open Access

Context-dependent factored language

models

Gregor Donaj" and Zdravko Kaci¢

@ CrossMark

Abstract

language, Morphosyntactic tags

The incorporation of grammatical information into speech recognition systems is often used to increase performance
in morphologically rich languages. However, this introduces demands for sufficiently large training corpora and
proper methods of using the additional information. In this paper, we present a method for building factored
language models that use data obtained by morphosyntactic tagging. The models use only relevant factors that help
to increase performance and ignore data from other factors, thus also reducing the need for large
morphosyntactically tagged training corpora. Which data is relevant is determined at run-time, based on the current
text segment being estimated, i.e,, the context. We show that using a context-dependent model in a two-pass
recognition algorithm, the overall speech recognition accuracy in a Broadcast News application improved by 1.73%
relatively, while simpler models using the same data achieved only 0.07% improvement. We also present a more
detailed error analysis based on lexical features, comparing first-pass and second-pass results.

Keywords: Speech recognition, Factored language model, Dynamic backoff path, Word context, Inflectional

1 Introduction

Speech recognition still performs poorly in inflec-
tional languages compared to mainstream languages like
English. The cause can be found in the rich morphology of
such languages, which increases the need for larger vocab-
ularies. It is estimated that inflectional languages need up
to ten times larger vocabularies than English [1, 2].

Although we can easily build larger vocabularies, thus
reducing the number of recognition errors caused by out-
of-vocabulary words, the use of such models increases not
only the size of language models but also the required size
of training corpora. With larger vocabularies, words are
also substituted more easily, especially if they are acous-
tically similar. Many errors occur only in the grammatical
sense, when a recognition error results in a word with the
same lemma but with a grammatical error, e.g., a false case
or number.

An often used approach in speech recognition of mor-
phologically rich languages is the incorporation of gram-
matical information in some form. One practical imple-
mentation to achieve this is the use of a factored language

*Correspondence: gregor.donaj@um.si
Faculty of Electrical Engineering and Computer Science, University of Maribor,
Smetanova ul. 17, SI-2000, Maribor, Slovenia

@ Springer Open

model (FLM). Such models were first proposed for speech
recognition in Arabic languages [3], but they have also
been adopted in statistical machine translation [4] and,
more recently, in natural language generation [5].

In an FLM, each word is represented as a vector of fac-
tors containing information about the word. One of the
factors is usually the word itself; other factors can be the
lemma, the morphosyntactic description (MSD) tag, the
word stem, the ending, the root, etc. While traditional
(word-based) n-gram language models use only the basic
word forms to estimate the probabilities of sentences,
FLMs can use all defined factors and their information.
Since these factors have fewer possible values (smaller
vocabularies), we can build simple models on individual
factors using smaller training corpora.

The idea of FLMs, however, is to use different factors in
the same models. As each word can have several factors,
such an FLM will have many more terms in its condi-
tional probability than traditional #-gram models or an
FLM using only one factor. The potentially large num-
ber of selected factors again increases the need for larger
training corpora, which may not be available for some
languages or applications, causing data sparsity problems.

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13636-017-0104-6&domain=pdf
mailto: gregor.donaj@um.si
http://creativecommons.org/licenses/by/4.0/

Donaj and Kaci¢ EURASIP Journal on Audio, Speech, and Music Processing (2017) 2017:6

The two important steps for defining an FLM are to
define a set of relevant factors and to define the back-
off path, which determines the order in which to discard
factors in the case of training data sparsity.

In the present paper, we propose a novel approach to
factor definition and backoff path selection for FLMs, in
which the model considers only specific factors from spe-
cific words that can improve recognition performance.
The selection of these factors and their order in the
backoff path is made dynamically, based on the parts of
speech of words in the current context. Thus, the name
is context-dependent FLMs. With this approach, we can
build FLMs with a limited number of factors in each prob-
ability estimation, which can improve recognition perfor-
mance while avoiding new data sparsity problems. This
method also makes use of grammatical properties of the
target language, as the process of determining the backoff
path searches for specific correlations in a given sentence
structure.

1.1 Previous work

The first results on FLMs were perplexity calculations,
e.g., on the Arabic Callhome corpus [6] or the Wall Street
Journal corpus [7]. In both studies, the authors reported
perplexity improvements. Later, the models were used in
speech recognition applications [3].

While a backoff path can be selected manually and
may remain fixed, the authors of FLMs proposed several
methods for determining the backoff path based on train-
ing data, e.g., the (normalized) number of occurrences
and the maximum probability of the vertex. One of these
methods—min/max counts—was used by the authors in
[8]. The authors in [7] also proposed to using several back-
off paths simultaneously and determining the set of those
paths in run-time.

FLMs are often used in Arabic and Slavic languages,
probably most prominently in Russian [9, 10], as well as in
other morphologically rich languages such as Romanian
[8], Turkish [11], and Amharic [12].

There is previous work with N-best list rescoring
using FLMs. In [13], the authors presented an N-best
list rescoring approach in which the language model
was adapted based on the vocabulary in the hypothe-
sis list. While the system used morpheme-based mod-
els in the first pass, the performance improved in the
second pass, in which the models were word based.
Part of the difference between the first and second pass
can be explained with the use of trigram sub-word-
based models in the first pass and the trigram word-
based models in the second pass. It was shown that
sub-word-based models require higher model orders to
achieve performance comparable with word-based mod-
els [14]. The authors in [15] implemented FLMs with
the use of morpheme units for language modeling. With

Page 2 of 16

N-best list rescoring, they achieved an improvement of
0.3% absolutely.

Sak [11] showed for the Turkish language that the
improvements achieved by using FLMs rather than tra-
ditional #-gram models are greater while only limited
size corpora are available for training; the improvements
decreased as the corpus size increased. These results can
be considered relevant to speech recognition in specific
domains with limited training data, where data sparsity
becomes a problem for word-based models.

In [16], the authors defined trigger part-of-speech (POS)
tags and used them as syntactic features, demonstrat-
ing that FLMs can outperform traditional trigram lan-
guage models regarding perplexity and mixed error rate in
speech recognition. While their approach included POS
tags, the backoff paths were selected based on overall
perplexity.

In previous research, backoff path selection is often
made with fixed backoff paths, a method based on n-gram
occurrences in training data, or overall perplexity results
on development data. Our approach differs from previ-
ous work as we perform backoff path selection for each
word sequence individually in run-time, selecting the path
differently for each possible sequence of POS tags in the
context and basing the decision on the perplexity results
relevant only to the considered sequence of POS tags.

1.2 Structure of the paper

In Section 2, we present the basics of FLMs required for an
understanding of the proposed context-dependent FLMs
and their implementation. In Section 3, we present our
proposed models along with all of the algorithms neces-
sary to efficiently determine backoff path selection, and,
in Section 4, a two-pass recognition algorithm suitable for
using the proposed models is introduced. In Section 5,
we describe our experimental system used for building
and testing the models. The obtained results are then
presented in Section 6, followed by the conclusion in
Section 7.

2 Morphosyntactic description tags

A basic process of text or speech annotation is the addi-
tion of part-of-speech (POS) tags to each word in a text.
The most basic tags would be noun, adjective, verb, adverb
...residual. However, to be more useful, typically addi-
tional properties are considered. Tags which hold more
information, especially in morphologically rich languages,
are called morphosyntactic description (MDS) tags.

For example, Penn Treebank Project specifies 36 dif-
ferent POS tags for the English language. Some part of
speech have several possible tags, e.g., there are four
different nouns listed with tags in parentheses:

¢ Noun, singular or mass (NN)
e Noun, plural (NNS)

Donaj and Kaci¢ EURASIP Journal on Audio, Speech, and Music Processing

e Proper noun, singular (NP)
e Proper noun, plural (NPS)

These tags are used by TreeTagger, a freely available MSD
tagger for several languages.

As English is not a morphologically complex language,
its POS tags give only sparse information on the gram-
matical role of a word in a sentence. Typically, information
that is given by POS tags is the number for nouns (singular
or plural) and some information about verbs (base form,
past tense, present participle, third person, etc.).

In the MULTEXT-east project [17], tagsets for sev-
eral languages were specified and standardized includ-
ing a more complex tagset for English. Version 5 of the
project specifies 16 categories (parts of speech) with a
total of 31 attributes and a set of 135 different tags.
For example, verbs have the following attributes: type,
verb form, tense, person, and number, and the attribute
person has the following possible values: first, second,
and third.

Slovene, being morphologically complex language, has
much more different tags. The JOS specifications [18],
which were derived from the MULTEXT-east system,
define 12 parts of speech. Again, some parts of speech
have several attributes, e.g., verbs have the following
attributes: type, aspect, form, person, number, gender,
and negative. Some parts of speech have none additional
attributes, e.g., particles and interjections. JOS specifies
12 parts of speech with a total of 37 attributes and a set of
1902 different tags.

Considering all possible values for all attributes of a
given part of speech and all parts of speech, JOS defines
1902 different MSD tags for Slovene.

Figure 1 shows a Slovene sentence with part of speech
tags. The set was annotated with Obeliks, a tagger for
Slovene. The text is in XML-TEI format and is also tagged
with lemmas. A translation of the sentence into English is
tagged in Fig. 2. The translation was tagged with TreeTag-
ger and result converted into the same XML-TEI format.
The sentence was taken from the BNSI test set, later used
in this research.

<s>
<w msd="Dr" lemma="do">do</w>
<w msd="Rsn" lemma="danes'">danes</w>
<w msd="L" lemma="Se">Se</w>
<w msd="Gp-ste-d" lemma="biti">ni</w>
<w msd="Gp-d-ez" lemma="biti">bila</w>
<w msd="Ppnzei" lemma="viden">vidna</w>
<e>.</c>

</s>

Fig. 1 An MSD-annotated text in Slovene

(2017) 2017:6

Page30f 16

<s>
<w msd="IN" Tlemma="until">Until</w>
<w msd="NN" Tlemma="today">today</w>
<w msd="PP" lemma="1it">it</w>
<w msd="VBZ" lemma="have'">has</w>
<w msd="RB" lemma="not">not</w>
<w msd="VBN" lemma="be">been</w>
<w msd="3JJ" lemma="visible">visible</w>
<e>.</c>
</s>

Fig. 2 An MSD-annotated text in English

3 Factored language models

Language models are used to estimate the probability
of a given word sequence W = (wy,ws,...,w,). Most
commonly used are traditional word-based n-gram lan-
guage models, which estimate the conditional probability
of each word given the previous # — 1 words. The current
and previous words in these models are often called the
context.

In an FLM, each word w is represented as a vector of K
factors w; = (fil, i2, .. ,fiK), where i is the index number
of the word. Much like in word-based #-gram language
models, the probability of a sentence is the product of the
probabilities of individual words. In the case of an FLM,
we use the conditional probabilities of all factors in the
estimated word given the factors of previous words:

1K p1:K 1:K 1:K
Tl = S = B m

Using the chain rule for probabilities, we can express this
probability with

K
B k— B :
P(F) =TT (R f) . @
k=1

The probabilities of individual factors on the right-hand
side are again conditional probabilities given the factors
from previous words and previous factors from the cur-
rent word. With several words of history and several
factors per word, the total number of given factors can
quickly exceed a feasible amount for practical application.

Similarly, in word-based n-gram models, the above
equation also makes use of data from sequences of n
words so that we can speak of an #-gram FLM. We say that
n is the FLM order. We also use this definition of the FLM
order when only some of the possible factors are present
in the conditional probability.

In the above equations, probabilities are estimated sta-
tistically. Due to data sparsity, we cannot always efficiently
determine probability estimates in language models. Both
word-based models and FLMs employ a technique called
backoff [19], in which we discard terms in the conditional

Donaj and Kaci¢ EURASIP Journal on Audio, Speech, and Music Processing

probability and back off to a model with fewer terms. If
necessary, we can repeat the process to reduce the num-
ber of terms further. The selection of a backoff path in a
word-based n-gram model is rather clear: on each step, we
discard the most distant word, based on the assumption
that more distant words have less impact on the current
word. However, in an FLM, several factors can have the
same distance from the current factor. Furthermore, there
is no guarantee that discarding one of the most distant
factors will result in better performance than discarding
some closer factor, whether it is the same type of factor or
not.

Often, lemmatizers and MSD taggers are used as tools to
automatically determine grammatical properties. In this
case, it is important that we try to identify all of the fac-
tors with the potential to improve performance in the
application and include only those factors in the model.
While other factors may not decrease performance, they
will increase the size of the model and make the final
application more time and space consuming.

In the context of FLMs, the backoff path first became
relevant and the backoff graph was introduced. We can
define the backoff path as a sequence of factor subsets. On
every step in the backoff procedure, we move to another
subset that has one factor less than the previous subset.
The selection of the factor to be removed at each step
determines the backoff path. Assuming we have k factors
as the conditional terms in the FLM probability, we start
with the set of all factors. On every step, we discard one
factor that is still in the path. This method gives us k! pos-
sible backoff paths. Figure 3 shows a backoff graph that
illustrates this principle in the case of three factors. The
vertices of the directed graph represent subsets of factors
used in the conditional probability.

[{hfnfs))

() (Uit (Unfe})
e
C))

{}

Fig. 3 Backoff graph for an FLM with three factors

(2017) 2017:6 Page 4 of 16

4 The context-dependent backoff path

In the proposed models, we will use run-time determi-
nation of the backoff path, although we will use only one
path simultaneously. Backoff path determination will be
achieved using POS information from the currently esti-
mated word sequence. We have therefore called these
backoff paths and models context-dependent. We will
later define the backoff function, which will tell us which
path to use for probability estimation, given the current
word and its context.

We based the proposed models on the property of gram-
matical matching in inflectional languages, in which the
properties of some words correlate with the properties of
other words. An example is the matching of case, num-
ber, and gender between nouns and adjectives. Given that
these words might not be adjacent in the sentence, we
made the assumption that it is not always best to discard
more distant factors; examining which parts of speech are
present in the sentence might suggest which factors are
better suited for probability estimation.

The first step in building the proposed language models
is to determine the set of different factors for each word.
We found that word-based #n-gram language models still
have the greatest impact on performance. Thus, one fac-
tor shall remain the word itself. Other factors can be the
lemma and grammatical properties, either as separated
factors or combined (e.g., MSD tag). We can also include
other information if it is useful and if appropriate tools are
available to determine it automatically.

One necessary piece of information in the proposed
models is the POS tag, which can be incorporated as a
separate factor or can be included within the MSD tag.

4.1 The backoff function
Let P; denote the POS tag of word w;. Assuming we have
an input word sequence (Wj_y+1,...,W;), we can deter-

mine a corresponding POS sequence (Pi—;+1,...,P;). We

then define the backoff function
BO:(Pi—n+l)~~~;Pi)'_)(ﬁ1---1ﬁ)1 (3)

for every possible POS sequence, where (f1,...,f;) is an

ordered set of factors to be included in the conditional
probability (Eq. 2). While the set alone defines the start-
ing point in the backoff graph, its order determines the
backoff path. Considering the above equation, we will start
with / factors and then remove them one by one from right
to left.

Let us assume that for each word, we have defined K
factors and we are considering a model of order #n. The
conditional probability will have between K - (n — 1) and
K- (n—1)+ K — 1 possible conditional factors depend-
ing on the modeled factor. Let |P| denote the number of
all possible values of POS tags including start-of-sentence

Donaj and Kaci¢ EURASIP Journal on Audio, Speech, and Music Processing (2017) 2017:6

and stop-of-sentence tags. We can derive the total number
of valid POS sequences of length n > 2 as:

(1P| — D*- (1P| —2)"2. (4)

For a sequence to be valid, the start-of-sentence tag can
appear only in the first place and the end-of-sentence tag
can appear only in the last place, while all other tags are
not restricted.

Factor probabilities can be expressed conditionally
given the factors of previous words and the previous fac-
tors of the current word. If we are currently considering
factor k, the number of possible conditional factors m is

m=m—-—1)-K+k—1. (5)

If we were to look for backoff paths that start with a set of
all possible factors, the number of backoff paths would be
m!. For shorter paths of length /, the number of possible
backoff paths is

m!

. 6
(m —1)! (©)
Finally, the number of paths of all possible lengths is
m m'
! , ;
2 (6 %w) ”

where we also include a path of length 0, which is a
model containing only the modeled factor itself and no
conditional factors.

Depending on the number of possible POS tags and the
model order, the number of different POS sequences can
increase beyond a feasible amount. The number of all pos-
sible paths increases even faster, exceeding 108 for trigram
models with three factors, for example. Therefore, it is
necessary to implement an efficient method to determine
the backoff function BO.

4.2 |Initial algorithm

Let us first assume that we have the necessary equipment
to consider the whole search space and a training set large
enough to train all models. A simple brute-force search
to determine backoff paths is presented in Algorithm 1,
where N is the maximal model order, K is the number of
factors in a word, and P, is the set of all possible POS
sequences of length .

The final output of the algorithm is one backoff path A1
for each possible POS sequence, given the model order
and the factor to be estimated. The algorithm works
by testing all possible paths M and selecting the path
that maximizes a certain function 7. We need to repeat
the algorithm for different model orders and all defined
factors.

Let us consider the computational complexity of the
initial algorithm. The maximum model order N and the
number of factors per word K are given. The number of

Page 5 0f 16

Algorithm 1: Initial brute-force algorithm for backoff
path determination.
Input: N
Input: K
Input: P,
Output: S
begin
S=0
fornel,...,Ndo
forkel,...,Kdo
for P € P, do
M <«— No solution
for M € M do
if T(M) > T(M) then
L M=M

S «— SU (n,k, P, M)

Vnel{l,...,N}

possible POS sequences P, is given in Eq. 4, as a function
of the number of different POS tags |P|. The number of all
paths of the maximum given length / is given in Eq. 7. Con-
sidering the nested loops in Algorithm 1, the total number
of models to be trained and tested can be expressed as

N K |
3 (Z ((|P| — D72 m)) . ®

n=1 \k=1

where m is described in Eq. 5.

The number of possible POS sequences can be ignored
when we are interested in the umber of models to be
trained and tested, since models can be reused for any
POS sequence, and results can be filtered accordingly
to the actual POS sequence. In any case, we can then
derive the computational complexity of the brute-force
algorithm as

O(PPN (NK)NE), 9)

Clearly, this algorithm is not tractable and we shall, there-
fore, derive a feasible system.

However, the presented algorithm will be the starting
point from which we will derive a feasible system. In order
to achieve this, we have to address several issues

1. Determine a criterion function T that will be fast and
will have the ability to estimate the performance of
models. The criterion function is needed to estimate
which model will perform better in the final
application.

2. Define a reasonably ordered list of paths to be tested,
from which we can quickly obtain a satisfactory result
along with criteria determining when to discontinue

Donaj and Kaci¢ EURASIP Journal on Audio, Speech, and Music Processing (2017) 2017:6

searching. Such a list is essential as a search through
all possible paths would not be feasible.

3. Define a method to combine different POS
sequences, as the training data for some individual
sequences would be too small for obtaining a reliable
probability estimate.

4.3 Criterion function

In order to determine a language model’s performance, we
could use it in the final application, in our case speech
recognition. This will provide the best estimate of whether
a particular model will outperform another model or not.
This method is only feasible if we test just a handful of
models. However, this does not apply to our case.

We often estimate the performance of a model by cal-
culating its perplexity on a selected development text.
Compared to estimation within speech recognition, this
method is much faster, as we only need to estimate each
sentence once. Furthermore, it has been shown that there
is a correlation between a language model’s perplexity and
its performance in speech recognition [20].

In the presented algorithm, we want to compare mod-
els with different backoff paths. While the perplexity of a
model is typically estimated using the whole text, we now
want this estimate only at words with the given context.

The backoff path selection for each word will be inde-
pendent of the backoff path selection at neighboring
words and so the contributions of individual words to
the perplexity of the whole text will also be independent.
Thus, we can use perplexity and slightly modify its calcu-
lation for use as our criterion function. This modification
will be necessary as we need to compare models not on
the whole text but only at words with a given context.

The perplexity PP of a model M on a text W is defined
by

PPy (W) = 2OV (10)
where Hy;(W) is the cross entropy
1
Hp(W) = = - log, POV)
, (11)

1 T
=7 - log, HP(W,’)
i=1

where T is the total length of the text.

We want to modify the perplexity definition to our
needs. Let P* denotes a given POS sequence. For each P¥,
we define a set of numbers

P cil,..., T}, (12)
containing indexes of words with the POS context P*:
i€ I(P*) <= (Pip..

., P;) = P*. (13)

Page 6 of 16

We can then define a modified cross entropy on the
subset of corresponding words as
1
H*OW,P*) = ———log, [] P(wy). (14)
—|Z(P*)] o
i€T(P¥)

For our criterion function, we can then use the modified
perplexity

PP*(W, P¥) = 2"OVPH), (15)

We shall note that better models have a lower perplex-
ity, and we can decide either to minimise the criterion
function or to use the negative value of the perplexity as a
criterion function T and maximize it. In the present paper,
we will use the latter approach.

4.4 Backoff path lists
We derived a search algorithm that will build a list of back-
off paths to be tested considering the following guidelines:

1. Up to a certain length, it is still feasible to test all
possible paths, and we shall do so. We can build
longer paths by extending the best shorter paths.

2. We will use a beam width, a technique used by
speech recognition search algorithms to exclude less
likely hypotheses. As in these recognition search
algorithms, we will keep a list of possible paths and
exclude candidates that have results (obtained by the
criterion function) that fall sufficiently below the
current best path.

3. If a certain path is given, we will search for additional
factors considering the factors from the next word
back not only in the current word’s history but also
in several words of history.

The backoff path search Algorithm 2 takes the cur-
rent list as input and gives a new list of backoff paths as
output. For each path in the input list, the algorithm deter-
mines all possible factors F* with which the path can be
expanded. After we include these new paths in the list,
the algorithm tests them with the criterion function and
finds the best backoff path M*. Finally, a beam width &
is determined and all paths falling outside the beam are
discarded.

The search algorithm must be repeated m-times, where
m is the maximum number of factors allowed in a path,
as the algorithm always creates paths that are one factor
longer than the input paths. However, the algorithm is not
employed for short paths, as the list is generated with all
possible paths. The final result is a list of backoff paths of
length m or shorter.

The beam width ¢ is empirically determined for each
length of the path. In our experimental system, we found
that for shorter paths, ¢ shall be greater. We saw that in
shorter paths, the addition of another factor results in a

Donaj and Kaci¢ EURASIP Journal on Audio, Speech, and Music Processing (2017) 2017:6

Algorithm 2: The search algorithm for determining a
list of backoff paths for a given POS sequence or POS
class.
Input: M
Output: M*
begin
M* =M
for VM € M do
Determine F*
for VF € F* do
| M* = M*U{M+F)}

M* = argmax T(M*)
M*e M*

Determine &

for VM* € M* do

L if T(M*) < T(M) — ¢ then

[M* = M*\{M)}

larger change of perplexity than in longer paths. If we
expand shorter paths with a certain difference in perfor-
mance with additional factors, the worse performing path
has a greater chance of being expanded into a path that
will later outperform other paths.

The described search algorithm is executed for a given
class of POS sequences, and it must be repeated for every
class. These classes will be defined in the next section.

4.5 POS sequence classes

Due to the large number of POS sequences, data spar-
sity will become inevitable. We decided to group POS
sequences into a smaller number of classes based on their
similarity. Each class will consist of one or more POS
sequences, and the final application will make use of a
backoff path assigned to the class containing a certain
POS sequence. Thus, the criterion function and the search
algorithm described above will be performed using classes
of POS sequences.

Given that the primary problem leading to the need
for POS classes is data sparsity for some POS sequences,
we decided that the algorithm shall merge the POS class
with the smallest number of occurrences in the training
set with the most similar POS class. The final result shall
be a set of POS classes that all have a sufficient number
of occurrences and contain similar POS sequences. The
algorithm takes a set of classes as input and returns a
smaller set of classes as output.

We define the first set of classes with one set for each
POS sequence that has occurred. The merging algorithm
then performs several iterations to reduce the number
of classes until it reaches the outer loop threshold «.

Page 7 of 16

In these iterations, we first determine a list of possible
backoff paths for each class using the search algorithm
described above. We then perform several iterations of
class merging, where the class with the smallest number
of occurrences P’ is merged with the most similar class P”.
For this purpose, we need to define the similarity function
D. We repeat the merging until the number of classes falls
below the inner loop threshold S.

The similarity between two classes is based on the two
obtained lists of backoff paths. We look for a backoff path
that gives good (but not necessarily the best) results in
both classes. When faced with a small number of occur-
rences, we can also incorporate the POS sequences them-
selves to determine the similarity of classes. Other infor-
mation can also be included to determine the similarity
between classes.

The algorithm was conceived with two nested loops.
The outer loop determines the final number of classes
and incorporates the inner loop for a trade-off between
speed and reliability. We might assume that if two classes
are similar, they will also be similar to the merged class.
We do not assume that after several iterations, merged
classes will still behave similar to the original classes from
which they were merged; we therefore incorporated an
inner loop that determines how many merging iterations
we want to perform before determining new backoff path
lists for the merged classes.

Algorithm 3: The merging algorithm, used for merg-
ing different POS classes based on their similarity.
Input: P
Output: P*
Output: M(P) VP e P*
begin
P*="P
Determine o
repeat
for VP € P* do
| Determine M (P)
Determine 8

repeat
P = arg min|(P)|
PeP
P’ = argminD(P', P")
Pep\{P'}

P* < Merge P’ and P’
until No. classes < B
until No. classes < o

4.6 Final path selection
After reducing the number of POS classes to « using the
merging algorithm, we perform a final run of the search

Donaj and Kaci¢ EURASIP Journal on Audio, Speech, and Music Processing (2017) 2017:6

algorithm. The output will again be a list of different back-
off paths. For the final solution, one of them must be
selected.

One simple solution would be to choose the model with
the smallest perplexity, regardless of other considerations.
However, we can compare the models by their perplexity
as well as their size. We are therefore able to make a trade-
off between the expected results and the expected speed
of the models.

We propose a simple algorithm to select another model,
where we first consider smaller models that would esti-
mate probabilities faster. We first choose the smallest
model. We then test all other models in ascending order
of model size. If a larger model has a lower result of the
criterion function T (i.e., higher perplexity), we skip it. If
a larger model has a significantly higher result of the crite-
rion function, we select this model as our current choice.
We need to determine a threshold y that defines how
much better the result of the criterion function must be in
order to call it significant.

We do not want to select a significantly larger model
if the criterion function increases only by a minimal
amount; however, we still want to allow the possibility of
choosing a slightly larger model. Therefore, we allowed
the selection of a larger model if the criterion function
gives a better result and the model’s size increases by an
amount smaller than the threshold é.

The process of selecting the final model is represented in
Algorithm 4. We are again forced to determine two heuris-
tic constants: y and §. We can start by setting y = 0 and
8 = oo so that the algorithm will give us the model with
the best criterion function result. We can then change the
values of both constants to achieve a compromise between
performance and speed.

Algorithm 4: The selection algorithm, used to deter-
mine which model from the solution set will be used in
training and recognition.

Input: M

Output: M

begin
Sort M by size
M <— find smallest model in M

for VM € M do
Determine y in §

if (M| > |M| & T(M) < T(M) then

L Next

if T(M) > T(M) + y then

L M« M

if TM) > T(M) & |M| < |M| + & then
L M<«—M

Page 8 of 16

4,7 Model usage

Our final result obtained by the selection algorithm is
the backoff function. This function is determined for
each model order and each defined factor. While using
a context-dependent FLM for a given word sequence, we
decide which model order we want to use. Usually, it
would be the largest order available, except at the begin-
nings of speech segments, where there are fewer words
in the context. We then determine the POS sequence and
look up the POS class in which this sequence has been
merged. For each factor, we find the selected path for this
function and then calculate estimates using these backoff
paths.

5 The recognition algorithm

An appropriate system for testing the performance of
context-dependent models is a two-pass continuous
speech recognition algorithm.

In the first recognition pass, we typically make use of
acoustic models and word-based language models. The
main requirement of the speech recognition search algo-
rithm is that it will produce a list of hypotheses for each
speech segment. In the first pass, each hypothesis W is
scored with the equation

P(W) = paPa(W) + pLPL(W) 4+ pC(W), (16)
where P4 and P;, are probabilities obtained with an acous-
tic and a word-based language model, respectively. Func-
tion C is a simple word count function. We call these
results the individual scores. Coefficients py4, pr, and py
are the acoustic model weight, the language model weight,
and the word insertion penalty, respectively.

We then use an MSD tagger to annotate the hypotheses
with all information used in the context-dependent FLMs.
In order to reduce the space requirement for the hypothe-
ses, we shall include only useful information, e.g., we can
discard information produced by MSD taggers, which will
not be used by the models.

In the second recognition pass, the hypotheses are
rescored. We can use all three scores from the first pass
and add scores from context-dependent FLMs. For exam-
ple, if we have three factors, i.e., three FLMs, the scoring
function becomes

P(W) = paPa(W) + pLPL(W) + pC(W)

1

+ 1P (W) + paPra(W) + psPr3 (W), an

where Pr1 (W), Pra (W), and Py3(W) are probability scores

obtained by the three context-dependent FLMs. Each of

these three scores also has an appropriate weight: p1, pa,
and ps.

In both recognition passes, we have to optimize all

weights using a development set. Usually, we set the

Donaj and Kaci¢ EURASIP Journal on Audio, Speech, and Music Processing (2017) 2017:6

acoustic model weight to 1 and we use an optimization
algorithm for the remaining weights.

We perform several recognition run-throughs on the
development set to find the best language model weight
and word insertion penalty for the first recognition pass.
We then use the optimized values in a single recognition
run-through on the evaluation set.

In the second pass, we use lists of N-best hypothe-
ses from both the development and the evaluation sets.
We optimized all model weights and the word insertion
penalty again on the development set and used them in
the evaluation set.

A brute-force exhaustive search of optimal values would
again not be feasible, as we have several real-valued val-
ues to optimize. Two weights are already present in the
first pass but need to be optimized again. For each fac-
tor in the context-dependent FLMs, we have an additional
weight to optimize. A simple algorithm was devised to
optimize these weights. The algorithm works on N-best
lists of all hypotheses in the development set. It starts with
an initial set of values for all weights and then optimizes
only one weight at a time while all other weights remain
constant, before moving on to the next weight. The algo-
rithm performs several iterations of optimizing all weights
for a predefined number of times or until the optimized
values do not differ from the values obtained in the previ-
ous iteration. We can repeat the algorithm with different
starting values.

6 Experimental system

We evaluated the performance of the proposed language
models on a large vocabulary continuous speech recogni-
tion (LVCSR) application in an inflective language, namely
a Slovene Broadcast News transcription. The general
structure of our system is presented in Fig. 4.

Page 9 0of 16

6.1 Speech databases

The Slovene Broadcast News (BNSI) database [21] was
the only speech database used; it is also the only Slovene
speech database appropriate for LVCSR. It consists of
approximately 25 h of transcribed speech data. The largest
part serves for acoustic model training, while the rest
makes up the development set and the evaluation set, each
consisting of approximately 2.5 h of speech data. We used
the development set in all parameter optimization pro-
cesses and the evaluation set for obtaining recognition
results.

We trained word-based n-gram language models on the
620 million words FidaPLUS corpus of the Slovene lan-
guage [22], which consists mainly of articles from newspa-
pers and journals. While it is available in a lemmatized and
MSD-tagged form, we used only basic word forms from it.

The Slovene ssj500k corpus is a manually MSD-
tagged and lemmatized corpus consisting of approxi-
mately 500,000 words. We used it for the training of all
FLMs. It is large enough to effectively train models with a
limited vocabulary—in this case POS tags and MSD tags.

The MSD tags in the ssj500k corpus follow the JOS
specifications [18], which themselves were derived from
the MULTEXT-EAST system [17]. Depending on the POS
tags, the MSD tags can hold several grammatical cate-
gories. However, we found that only a few are useful in the
presented application: POS, type, gender, case, number,
and person. All other tags were removed.

6.2 First pass

The speech database was manually segmented. The
trained acoustic models were HMM triphones with 16
Gaussian mixtures. We used 39 features of mel-frequency
cepstral coefficients (MFCC): energy features and 12 fea-
tures with delta and delta-delta coefficients.

Determine Context-
SSJSOOk backoff dependent
function FLMs
BNSI Speech N-best list Parameter Optimal
Development recognmon -oestlis optimization parameters

VA
Parameter Optimal
optimization parameters

4

BNSI
Evaluation

‘(Speech

2ns pass
K recognmon) N-best list s rescoring ¢

- Acoustic model
$N_S| l\/}g(rijlsttra:slr;g Language model
rain P Vocabulary

Y Y
‘ First pass ‘ ‘Secondpass

results results

Fig. 4 The experimental system

Donaj and Kaci¢ EURASIP Journal on Audio, Speech, and Music Processing (2017) 2017:6

The vocabularies in the first pass include the most
common words in the FidaPLUS corpus. We built vocabu-
laries ranging from 60,000 to 300,000 words, constructing
bigram and trigram models on all vocabulary sizes. Two
smoothing techniques were used: Good-Turing and mod-
ified Knesser-Ney.

In the first pass, we used a Viterbi decoder to obtain
an N-best list for the development and evaluation sets
(N = 1000). We repeated the recognition on the devel-
opment set in order to obtain optimal parameters for the
language model weight and the word insertion penalty
and used the optimized values on the evaluation set.
We used the Obeliks tagger—an MSD tagger developed
especially for the Slovene language—on all N-best lists.

6.3 Context-dependent model training

The first step in building context-dependent models was
to define factors. The Obeliks tagger generates tags
according to the JOS specifications, in which 12 different
POS tags are defined, some of them having different types.
Combining the POS tag and type, we defined an extended
POS tag, e.g., we distinguished the types common noun
and proper name instead of using noun. We decided to use
extended POS tags due to grammatical concerns, as dif-
ferent types of the same part of speech can have different
grammatical properties. The extended POS tags had 32
possible values. According to the search space estimation
in the previous section, we have a total number of over
one billion possible POS sequences with lengths up to six.

Next, we built MSD tags that included only gender, case,
number, and person. Preliminary experiments showed
that those grammatical categories could improve perfor-
mance in speech recognition, while other grammatical
categories cannot. We therefore used a reduced MSD tag
set. Different parts of speech can have from 1 to 255 differ-
ent values of the reduced MSD tag. The last chosen factor
was the word itself.

We trained all MSD models on the ssj500k corpus. Not
all possible POS sequences appeared in the corpus. For
the first determination of POS sequence classes, we used
only those sequences that did appear in the corpus. In
Table 1, the number of classes depending on the model
order is shown. The numbers are significantly lower than
the theoretical upper limit, as most theoretically possible
sequences do not produce meaningful or grammatically
sensible sentences.

While implementing all of the necessary algorithms to
determine the backoff function, we had to determine sev-
eral heuristic constants. We did this experimentally to
achieve good performance with reasonable time and space
demands. The beam width ¢ itself is newer fixed but is
rather determined based on the currently best hypothe-
ses in the search algorithm and the number of factors
already in the backoff path, e.g., if the path has perplexity

Page 10 of 16

Table 1 Number of POS classes given the model order n
observed in training and used for the first determination of POS
classes

n Number of sequences
1 30

2 475

3 3003

4 8666

5 13,682

6 15,478

PP, and a certain number of factors, the beam width is
determined as

& = PPy, - Fs, (18)
where values for F; are given in Table 2. Any backoff
path with a perplexity higher than PPpni, + ¢ will be
discarded. Additionally, we implemented further criteria
in the pruning procedure. If the set of possible backoff
paths contains two paths that contain the same factors
in a different order, we excluded the worse performing
model. We found that the search algorithm time demands
changed by about 10%, when using different values of the
factors in Table 2 ranging from 0.1 to 2 at all path lengths
and, therefore, different values for ¢. Finally, the values in
Table 2 were chosen based on preliminary results obtained
during the implementation of the search algorithm.

Unlike ¢, the thresholds « and B in the merging algo-
rithm have almost no impact on the time demands in
determining the backoff function.

We determined « = 10 for unigram models and
a = 50 for higher order models to be suitable values. The
parameter § is determined in each iteration at run-time.
We added the constraint that the number of classes in the
inner loop must not be reduced by more than 50%.

Lastly, we had to determine the parameters y and § in
the selection algorithm. Those parameters have no effect
on time demands for training. It was also found that they
do not have a significant impact on model performance.
We chose y to be 5% of the perplexity of the currently

Table 2 Pruning width factors k for the search algorithm given
the number of factors

No. factors Fe
1 1.0
2 0.5
3 03
4 0.2
>5 0.1

Donaj and Kaci¢ EURASIP Journal on Audio, Speech, and Music Processing (2017) 2017:6

selected model and § to be 25% of the size of the currently
selected model in terms of entries in the language model.

6.4 Computational demands

The total time to perform the search algorithm was 56 h,
of which the largest part (36 h) was spend using model
order n = 5. It was performed on a dual-processor
server with 88 logical threads at 3.6 GHz and 128 GB
of memory. We shall note that the exact time depends
not only on hardware configuration but also on software,
other server load, development and training sets, and the
possibility of parallel processing. We also reused already
build models.

Rather than comparing real-time values, we shall state
the number of trained models. Table 3 shows the num-
ber of all possible backoff paths given the model order #
and the current factor k. The number of maximum mod-
els is based on Eq. 5; however, we also limited the backoff
path length to eight factors. We also show the number of
models that were actually trained and tested with our final
search algorithm. We see that at higher model order, the
number of tested models only slightly increases, while the
number of maximum models reaches infeasible numbers.
The final ratio between the sum of all tested and sum of all
possible models is 1:1100. This means that we tested 1100
times fewer models than we would have to in brute force.
Even, if we consider models with an order of up to 4, this
ratio would be 1:200.

Table 3 Comparison of the number of all possible backoff paths
with the number of trained and tested paths with regard to
model order n and modeled factor k

n k Maximum Tested

1 1 1 0

1 2 2 1

1 3 5 4

2 1 16 15

2 2 65 55

2 3 326 176

3 1 1957 705

3 2 13,700 1758

3 3 109,601 5129

4 1 623,530 15,320

4 2 261 x 10° 15,505

4 3 871 x 10° 21,552

5 1 247 x 10/ 56,388

5 6.19 x 107 45,085

5 3 141 x 108 51,466
Total 240 x 108 213,659

Page 11 0f 16

It should be noted that one possibility is a model without
any factors. This model was not tested as it always gives
the lowest performance. Therefore, the number of all pos-
sible backoff paths in the table is 1 higher than the number
of tested models at data points where otherwise all models
were tested.

6.5 Simple MSD models

In order to determine whether the context-dependent
backoff paths have any effect on the recognition perfor-
mance that is not due to the inclusion of MSD data itself,
we also built simple language models based on MSD tags.
These models are based on the extended POS tag (P) and
the MSD tag (M).

The first set of models is defined by

P(Py|P-1,...,P_p),

(19)
P(MolM_1,...,M_y).

The backoff path in both models is to remove the most
distant factor. In the first set, we only use factors of the
same type in the model. These models are n-gram models
of extended POS tags and n-gram models of MSD tags.
The second set of models is defined by

P(Py|P—1,...,P_y, My,...
P(M()lM_l, s !M—VDP—]; ..

yM—}’l),

P, (20)

Here, both types of factors are used in the same model. We
built models with a maximum of seven conditional factors
and considered at most five words of history. Therefore,
we obtained 6-gram FLMs with fixed backoff paths of no
more than eight vertices. The limits of the number of
factors and history length are due to preliminary results
indicating that longer paths are of no further benefit to the
performance. Additionally, we added the constraint that if
a particular factor appears in these models, then all fac-
tors of the same type that are closer to the modeled word
must also appear.

Backoff paths are built simply by adding one of two
possible next factors to the path. A total of 244 possible
models were built, all with backoff paths that comply with
the presented constraints.

These models were later used to obtain results
regarding the degree to which performance can be
improved if morphological information is introduced into
the speech recognition algorithm without introducing
context-dependent models.

6.6 Tools

We used the HTK toolkit with the speech decoder HDe-
code in acoustic model training and the first recognition
pass. In order to build the language models (including
FLMs), as well as for hypothesis rescoring, we used the
SRILM toolkit, as it supports FLMs [23]. For backoff path

Donaj and Kaci¢ EURASIP Journal on Audio, Speech, and Music Processing (2017) 2017:6

determination and the second recognition pass, tools were
developed within the framework of the present research.

7 Results

7.1 First pass and N-best lists

Table 4 shows recognition results in word error rate
(WER) for the first recognition pass with bigram and tri-
gram language models with Good-Turing and modified
Knesser-Ney smoothing and different vocabulary sizes.
Vocabulary size and model order have an expected impact
on performance. However, while other research indicated
that modified Knesser-Ney smoothing performs better
than Good-Turing [24], our results show the opposite,
although there are only slight, statistically non-significant
differences. The best WER result of 22.64% was obtained
with a trigram Good-Turing smoothed model built on a
300K vocabulary. Similar results can be obtained on the
BNSI development set.

We can also compare computational and memory con-
sumption. Table 5 shows real-time factors (RTF) for all
first-pass scenarios. We notice only small differences with
regard to the smoothing method. Results show that RTF
increases by a factor of 2 if the vocabulary size is increased
from 60K to 300K and by a factor of 3 if when using tri-
gram models compared to bigram models. Considering
also recognition results, we see that the increase in vocab-
ulary brought a larger performance increase with a smaller
RTF increase than the increase in model order.

However, increasing the vocabulary size mainly elim-
inates errors due to out-of-vocabulary words. With the
300K vocabulary, the out-of-vocabulary rate is 1.02% and
further enlargement of the vocabulary results in only small
recognition improvements.

Preliminary research showed us that there are also only
small differences in model perplexity if we increase the
model order to 4-gram models. Also, the recognition
results we found increase only slightly if at all. This was
found using a two-pass rescoring algorithm as the recog-
nition tool (HDecode) supports only bigram and trigram
models.

Table 6 shows us the the memory demands for all first-
pass scenarios. We can again observe that increase in

Table 4 Recognition results in the first pass obtained on the BNSI
evaluation set

Page 12 of 16

Table 5 Average real-time factors for recognition in the first pass
obtained on the BNSI evaluation set

Real-time factor

Vocabulary size Good-Turing Knesser-Ney

Bigram Trigram Bigram Trigram
60K 6.29 1846 6.14 18.62
100K 7.82 2342 752 2337
200K 1044 31.55 1048 31.71
300K 12.66 37.09 12.88 37.70

vocabulary size increases the memory demands slightly
less than the increase in model order.

We have to add that the exact values for RTF as well as
memory consumption depended on the computer hard-
ware and the software tools used.

When rescoring the N-best list, there is always an upper
limit of how much improvement can be achieved, as only
a limited number of hypotheses are available in the sec-
ond pass. Assuming we had a system in the second pass
that would always select the best hypothesis (an oracle),
we would still have an error rate—the so-called oracle
error rate (OER)—that is dependent on the number of
hypotheses. The OER results on the BNSI evaluation set
using bigram and trigram language Good-Turing mod-
els are shown in Figs. 5 and 6, respectively. Similar OER
results can also be obtained for other models and on the
BNSI development set. In both figures, we can see that the
oracle error rate at 1000 hypotheses is approximately 50%
lower than the WER.

We tagged the hypotheses obtained with the bigram and
trigram Good-Turing models with the 300K vocabulary
for use in the second recognition pass. It was decided to
use the N-best lists with the best WER results, as well as
the list obtained with the corresponding bigram model.
The used tagger is rather slow and had real-time factors
from 26.07 to 26.67.

7.2 Context-dependent models
Several models were tested in the process of determining
the backoff functions for different maximal model orders

Table 6 Peak memory usage in the first pass obtained on the
BNSI evaluation set

WER [%] Memory usage [MB]
Vocabulary size Good-Turing Knesser-Ney Vocabulary size Good-Turing Knesser-Ney

Bigram Trigram Bigram Trigram Bigram Trigram Bigram Trigram
60K 33.89 30.73 33.84 30.95 60K 743 1287 745 1299
100K 3127 28.08 31.24 28.36 100K 917 1512 914 1530
200K 29.70 2627 29.78 26.53 200K 973 1776 1110 1815
300K 29.22 25.64 29.28 25.87 300K 1252 1934 1273 1935

Donaj and Kaci¢ EURASIP Journal on Audio, Speech, and Music Processing (2017) 2017:6

OER[%]

10 | |
10° 10° 102 10°
No. of hypotheses

Fig. 5 Oracle error rate on the BNSI evaluation set with bigram

models and different vocabulary sizes

and different factors. The total number of tested models
was 407,892, of which 322 were in the final selection for
all backoff functions. In all cases, the number of selected
models in a single backoff function lies below the thresh-
old in the merging algorithm, which defines the maximum
number of classes. The number is lower because some
classes use the same backoff path as others.

Table 7 shows the perplexity results of context-
dependent FLMs on the evaluation set. These perplexities
were obtained using the backoff function for probability
estimations in the text.

We separately rescored the N-best lists obtained with a
bigram and a trigram model in the first pass. The results

OER[%]

10 | |
10° 10° 102 10°
No. of hypotheses

Fig. 6 Oracle error rate on the BNSI evaluation set with trigram

models and different vocabulary sizes

Page 13 of 16

Table 7 Perplexity results of context-dependent FLM on the
BNSI development set

Modeled factor

Model order

P M w
1 / 6581 38,867
2 8392 3490 33,536
3 7275 3147 31,294
4 6561 2970 29,447
5 6231 2876 27,947

are shown in Tables 8 and 9, respectively. We repeated
rescoring using any one, any two, or all three FLMs. We
also indicate the model order with which the best results
were obtained.

The results show significant increases in performance
when bigram language models were used in the first pass.
We also used a traditional trigram language model in the
second pass instead of the bigram model from the first
pass. Thus, part of the increased performance is due to
this model and part to the use of context-dependent FLM.
We decided to do so as the use of bigram models in the
first pass is much faster and the results can be largely
improved with traditional trigram language models in the
second pass.

Still, the results do now outperform the use of trigram
language models in the first pass. The best improvement is
observed using only the FLM for MSD tags. Furthermore,
combinations with this model show greater improvement
than other combinations.

When rescoring the results obtained with a trigram
model in the first pass, the differences are smaller as the
same traditional language model was used. However, in
this case, we can see the impact that context-dependent
FLMs have on performance. When only one FLM is used,
the best improvement is obtained with the model for MSD
tags. Using the model for POS tags even lowers the results.
This can be due to either the nature of this model or
the differences in the evaluation and developments on the
basis of which the parameters were optimized. We also

Table 8 Recognition results on the evaluation set using bigram
models in the first pass and context-dependent models in the
second pass

FLMs Optimal model order WER [%)] Relative improvement[%)]
P 5 2651 9.26

M 4 25.84 11.56

w 5 26.07 10.78

P+M 5 25.92 11.27

P+W 5 26.38 9.71

M+W 4 2592 11.30

All 5 26.01 10.99

Donaj and Kaci¢ EURASIP Journal on Audio, Speech, and Music Processing (2017) 2017:6

Table 9 Recognition results on the evaluation set using trigram
models in the first pass and context-dependent models in the
second pass

FLMs Optimal model order WER [%] Relative improvement[%)]
P 3 2590 —1.01

M 5 2539 0.99

w 5 2546 0.70

P+M 5 2561 0.14

P+W 5 25.95 —1.20

M+W 2 25.20 1.73

All 5 2545 0.74

see that combinations using the POS tag FLM show worse
results. The best results are obtained using models for the
MSD tag and for the basic word form. We observe a 1.73%
relative improvement over the first-pass result.

The results in both tables suggest that POS tag FLMs are
not beneficial to recognition accuracy, while both of the
other models are.

The computational and memory demands in the second
pass are much smaller, as only language models are used
on a finite number of sentences. The real-time factor in
the second pass is about 0.50, while the real-time factor
for simple models is about 0.01.

7.3 Comparison with simple MSD models

We performed the same two-pass algorithm and param-
eter optimization using simple MSD models. The recog-
nition results after the second pass on the evaluation set
are shown in Table 10. Results are shown for using either
bigram or trigram language models in the first pass and
either only the model for MSD tags or both models for
MSD and POS tags in the second pass.

The results using bigram models in the first pass are
comparable with the use of context-dependent models.
The results obtained while using trigram models in the
first pass show that recognition accuracy was improved
only by 0.07% when using both models, for MSD tags and
POS tags. The accuracy was even reduced while using only
the model for MSD tags. Results using only the model for
POS tags were significantly lower.

Table 10 Recognition results on the evaluation set using simple
MSD models for POS tags (P) and MSD tags (M)

First pass Second pass WER [%] Relative

model model improvement[%]
Bigram M 25.84 +11.56

Bigram M+P 26.01 +10.99

Trigram M 25.86 —0.84

Trigram M+P 25.62 +0.07

Page 14 of 16

The comparison shows that the simple addition of
grammatical information does not improve the recogni-
tion results significantly unless we use this information in
a more sophisticated model.

7.4 Error analysis
We analysed the best results in the first pass and their best
improvement in the second pass in more detail.

The statistical significance of the improvement was
tested with the approximate randomization test. This test
was selected because it does not require special assump-
tions about the evaluation set. With 10,000 runs, we
obtained a p value of 0.0055, indicating that the results
were statistically significant at a significance threshold
of 0.01.

Table 11 shows the basic results of inserted, deleted,
and substituted words. The largest difference can be seen
in the number of deleted words—a reduction of 16%
relatively—while other types of error increased slightly.

Table 12 shows the WER results regarding different
parts of speech. The results are shown for the first and
second pass, displaying the difference as well as values rel-
ative to the number of occurrences in the reference tran-
scription. The greatest improvements occur with preposi-
tions and conjunctions. Considering these results and the
data in Table 11, we can conclude that context-dependent
FLMs have the most impact on correcting deletion errors
involving short words, mainly minor parts of speech.

The results for inflected parts of speech are mixed.
While the error rates for verbs, adjectives, and pro-
nouns decreased, the error rates for nouns and numerals
increased. Although the increase WER for nouns is rather
small, the increase for numerals is more significant.

Finally, Table 13 shows the results for inflectional parts
of speech, where the correct POS and the correct lemma
but the false word form were recognized. These errors
indicate falsely recognized word endings. The percentage
values are given relative to the total number of substi-
tution errors of the POS, e.g., 866 nouns were substi-
tuted with other nouns, while 296 of these substitutions
(34.58%) were with a noun with the same lemma. We see
that approximately 40% of all errors on inflectional parts
of speech are due to falsely recognized word forms. In

Table 11 Comparison of recognition errors by type between the
first and second pass

Error type 1st pass 2nd pass Difference
Deletion 1446 1216 —230
Insertion 401 498 97
Substitution 4013 4043 30

Total 5860 5757 —103

Donaj and Kaci¢ EURASIP Journal on Audio, Speech, and Music Processing (2017) 2017:6

Table 12 Comparison of recognition errors by POS between the
first and second pass

Page 15 0of 16

languages. Further research on the possibility of com-
bining the presented statistics-based method with formal
knowledge-based methods could also lead to improve-
ments in recognition of word relations in a spoken sen-
tence and consequently to a reduction in recognition
errors.

POS Total 1st pass 2nd pass Difference
Noun 6721 23.20% 23.26% +0.25%
Verb 3901 28.22% 27.66% —2.00%
Adjective 2646 20.67% 20.33% —1.65%
Adverb 1667 24.84% 24.18% —2.66%
Pronoun 1536 34.18% 33.27% —267%
Numeral 747 27.31% 27.71% +1.47%
Preposition 2499 27.53% 26.65% —3.19%
Conjunction 1964 28.16% 26.78% —4.88%
Particle 1038 24.76% 24.47% —1.17%
Interjection 8 100.00% 50.00% —50.00%
Residual 6 66.67% 100.00% +50.00%

the second pass, the total number of errors decreased by
1.65% relatively.

8 Conclusions

In the present paper, we proposed a new method of deter-
mining the backoff path for factored language models.
As the basic method leads to data sparsity and a large
search space, we also presented all of the necessary algo-
rithms to build a feasible system. We demonstrated that
models using these backoff paths outperformed factored
language models using more simply determined backoff
paths. We also demonstrated that simpler models might
not have any potential to improve recognition results,
while the use of models with context-dependent back-
off paths resulted in an accuracy improvement that was
shown to be statistically significant.

The methods presented still leave room for the further
optimization of several parameters used in the algorithms.
Training set and factor selection may also be considered
in further research. While we performed the experiments
on Slovene, the proposed models can also be used in
other inflectional or otherwise morphologically complex

Table 13 Falsely recognized word forms of inflectional parts of
speech relative to the total number of substitutions within the
same part of speech

POS 1st pass 2nd pass

Noun 296 34.58% 291 34.64%
Adjective 135 57.94% 126 53.58%
Verb 183 48.93% 177 47.58%
Pronoun 47 52.22% 46 51.11%
Numeral 16 20.78% 16 21.33%
Total 667 41.53% 656 40.72%

Acknowledgements
This work was partially financially supported by the Slovenian Research
Agency (ARRS) under contract number 1000-10-310131.

Authors’ contributions
This paper shows results from the doctoral research of GD under the
supervision of ZK. Both authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 13 October 2016 Accepted: 20 February 2017
Published online: 28 February 2017

References

1.

S Zablotskiy, K Zablotskaya, W Minker, in Intelligent Environments (IE), 2010
Sixth International Conference on. Some approaches for Russian speech
recognition, (Kuala Lumpur, 2010), pp. 96-99

T Rotovnik, MS Maucec, Z Kaci¢, Large vocabulary continuous speech
recognition of an inflected language using stems and endings. Speech
Commun. 49(6), 437-452 (2007)

K Kirchhoff, D Vergyri, J Bilmes, K Duh, A Stolcke, Morphology-based
language modeling for conversational Arabic speech recognition.
Comput. Speech Lang. 20(4), 589-608 (2006)

AE Axelrod, Factored language models for statistical machine translation.
(University of Edinburgh, 2006)

EM de Novais, Portuguese text generation using factored language
models. J. Brazilian Comput. Soc. 19(2), 135-146 (2013)

K Kirchhoff, J Bilmes, K Duh, Factored language models tutorial. (University
of Washington, 2016). http://ssli.ee.washington.edu/people/duh/papers/
flm-manual.pdf. Accessed 1 October

JA Bilmes, K Kirchhoff, in NAACL-Short ‘03. Factored language models and
generalized parallel backoff, (Edmonton, 2003), pp. 4-6

M Lazar, D Militaru, in Speech Technology and Human - Computer Dialogue
(SpeD), 2013 7th Conference on. A Romanian language modeling using
linguistic factors, (Cluj-Napoca, 2013), pp. 1-6

D Vazhenina, K Markov, in Awareness Science and Technology and
Ubi-Media Computing (iCAST-UMEDIA), 2013 International Joint Conference
on. Factored language modeling for Russian LVCSR, (Aizuwakamatsu,
2013), pp. 205-211

| Kipyatkova, A Karpov, in SPECOM 2014. Study of morphological factors
of factored language models for Russian ASR, (Novi Sad, 2014),

pp. 451-458

H Sak, M Saraglar, T GUngor, in ICASSP. Morphology-based and sub-word
language modeling for Turkish speech recognition, (Dallas, 2010),

pp. 5402-5405

MY Tachbelie, ST Abate, W Menzel, in Language and Technology
Conference. Morpheme-based and factored language modeling for
ambharic speech recognition, (Poznan, 2011), pp. 82-93

Z Alumae, in ICASSP. Sentence-adapted factored language model for
transcribing estonian speech, (Toulouse, 2006), pp. 429-432

T Hirsimaki, J Pylkkonen, M Kurimo, Importance of High-Order N-Gram
Models in Morph-Based Speech Recognition. IEEE Trans. Audio, Speech,
Lang. Process. 17(4), 724-732 (2009)

AED Mousa, MAB Shaik, R Schltter, H Ney, in INTERSPEECH. Morpheme
based factored language models for German LVCSR, (Florence, 2011),
pp. 10531056

H Adel, NT Vu, K Kirchhoff, D Telaar, T Schultz, Syntactic and Semantic
Features For Code-Switching Factored Language Models. IEEE/ACM
Trans. Audio, Speech, Lang. Process. 23(3), 431-440 (2015)

T Erjavec, in LREC. Multext-east version 4: multilingual morphosyntactic
specifications, lexicons and corpora, (Valletta, 2010), pp. 2544-2547

http://ssli.ee.washington.edu/people/duh/papers/flm-manual.pdf
http://ssli.ee.washington.edu/people/duh/papers/flm-manual.pdf

Donaj and Kaci¢ EURASIP Journal on Audio, Speech, and Music Processing (2017) 2017:6 Page 16 of 16

18. T Erjavec, D Fiser, S Krek, N Ledinek, in LREC. The JOS Linguistically tagged
corpus of Slovene, (Valletta, 2010), pp. 1806-1809

19. S Katz, Estimation of probabilities from sparse data for the language
model component of a speech recognizer. IEEE Trans. Acoust. Speech,
Signal Process. 35(3), 400-401 (1987)

20. D Klakow, J Peters, Testing the correlation of word error rate and
perplexity. Speech Commun. 38(1-2), 19-28 (2002)

21. A Zgank, D Verdonik, AZ Markus, Z Kaci¢, in INTERSPEECH. BNSI Slovenian
broadcast news database—speech and text corpus, (Lisbon, 2005),
pp. 1537-1540

22. S Arhar, V Gorjanc, S Krek, in Proceedings of the Corpus Linguistics
Conference. FidaPLUS corpus of Slovenian. The new generation of the
Slovenian reference corpus: its design and tools, (Birmingham, 2007)

23. AStolcke, J Wheng, W Wang, V Abrash, in Proceedings IEEE Automatic
Speech Recognition and Understanding Workshop. SRILM at sixteen: update
and outlook, (Waikoloa, 2011)

24. SF Chen, J Goodman, An empirical study of smoothing techniques for
language modeling. Comput. Speech Lang. 13(4), 359-394 (1999)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

	Abstract
	Keywords

	Introduction
	Previous work
	Structure of the paper

	Morphosyntactic description tags
	Factored language models
	The context-dependent backoff path
	The backoff function
	Initial algorithm
	Criterion function
	Backoff path lists
	POS sequence classes
	Final path selection
	Model usage

	The recognition algorithm
	Experimental system
	Speech databases
	First pass
	Context-dependent model training
	Computational demands
	Simple MSD models
	Tools

	Results
	First pass and N-best lists
	Context-dependent models
	Comparison with simple MSD models
	Error analysis

	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	References

